

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

December 2014

FSA642 Low-Power, Three-Port, High-Speed MIPI Switch

Features

Low On Capacitance: 7.0 pF Typical
 Low On Resistance: 7.0 Ω Typical
 Wide -3db Bandwidth: 1 GHz Typical

24-Lead UMLP (2.5 x 3.4 mm) Package

8 kV ESD Rating; >16 kV Power/GND ESD Rating

Applications

- Dual Camera Applications for Cell Phones
- Dual LCD Applications for Cell Phones, Digital Camera Displays, and Viewfinders

Description

The FSA642 is a bi-directional, low-power, high-speed analog switch. The pin out is designed to ease differential signal layout and is configured as a triple-pole, double-throw switch (TPDT). The FSA642 is optimized for switching between two MIPI devices, such as cameras or LCD displays and on-board Multimedia Application Processors (MAP).

The FSA642 is compatible with the requirements of Mobile Industry Processor Interface (MIPI). The low-capacitance design allows the FSA642 to switch signals that exceed 500 MHz in frequency. Superior channel-to-channel crosstalk immunity minimizes interference and allows the transmission of high-speed differential signals and single-ended signals, as described by the MIPI specification.

Ordering Information

Part Number Top Mark		Operating Temperature Range	Package
FSA642UMX	JG	-40 to +85°C	24-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 2.5 x 3.4 mm

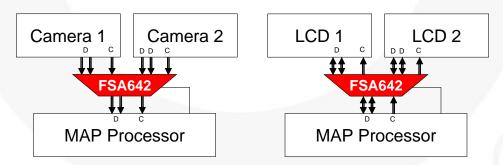


Figure 1. Application Block Diagram

Pin Configuration

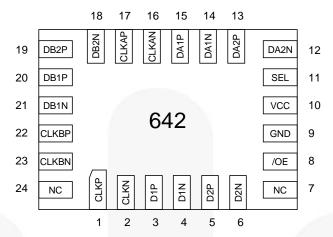


Figure 2. Pin Configuration (Top Through View)

Pin Definitions

Pin #	Name	Description
1, 2	CLKP, CLKN	Clock Path (Common)
3, 4	D1P, D1N	Data Path 1 (Common)
5, 6	D2P, D2N	Data Path 2 (Common)
7, 24	NC	No Connect (Float)
8	/OE	Output Enable (Active Low)
9	GND	Ground
10	VCC	Power
11	SEL	Select (0=A, 1=B)
12, 13	DA2N, DA2P	Data Path (A2)
14, 15	DA1N, DA1P	Data Path (A1)
16, 17	CLKAN, CLKAP	Clock Path (A)
18, 19	DB2N, DB2P	Data Path (2B)
20, 21	DB1P, DB1N	Data Path (1B)
22, 23	CLKBP, CLKBN,	Clock Path (B)

Functional Diagram

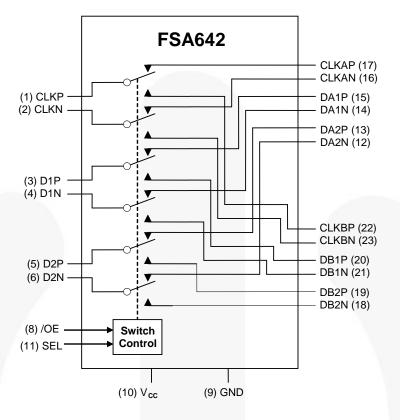


Figure 3. Functional Diagram

Truth Table

SEL	/OE	Function
Don't Care HIGH Disconnect		Disconnect
LOW	LOW	D1, D2, CLK=DA1, DA2, CLKA
HIGH	LOW	D1, D2, CLK=DB1, DB2, CLKB

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.50	+5.25	V
V _{CNTRL}	DC Input Voltage (SEL, /OE) ⁽¹⁾		-0.5	Vcc	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾	-0.5	V _{CC} + 0.3	V	
I _{IK}	DC Input Diode Current	-50		mA	
I _{OUT}	DC Output Current		50	mA	
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		6.5	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND	/	8.0	kV
ESD		Power to GND		16.0	N.V
1	Charged Device Model, JEDEC: JESD22-C10		2.5		

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.65	4.30	V
V _{CNTRL}	Control Input Voltage (SEL, /OE) ⁽²⁾	0	Vcc	V
V_{SW}	Switch I/O Voltage	-0.5	V _{CC} -1	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =-	Units		
Symbol	Faranietei	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
V _{IK}	Clamp Diode Voltage	I _{IN} =-18 mA	2.775			-1.2	V
I _{IN}	Control Input Leakage	V _{SW} =0 to 4.3 V	4.3	-1		1	μΑ
V _{IH}	Innut Voltage High	V _{IN} =0 to V _{CC}	2.650 to 2.775	1.3			V
VIH	Input Voltage High	VIN=U tO VCC	4.3	1.7] '
V_{IL}	Input Voltage Low	V _{IN} =0 to V _{CC}	2.650 to 2.775			0.5	V
loz	Off-State Leakage	A,B=0+0.3 V to V _{CC} -0.3	4.3	-2		2	μΑ
I _{CC}	Quiescent Supply Current	V _{CNTRL} =0 or V _{CC} , I _{OUT} =0	4.3			1.0	μΑ
Ісст	Increase in I _{CC} Current Per Control Voltage and V _{CC}	V _{CNTRL} =1.8 V	2.775			1.5	μA

DC Electrical Characteristics, Low-Speed Mode

All typical values are T_A=25°C unless otherwise specified.

Symbol	Parameter		Conditions		T _A =-40 to +85°C			Units
Symbol	i arameter	Conditions		V _{cc} (V)	Min.	Тур.	Max.	Units
R _{ON}	LS Switch On Resistance ⁽³⁾	V _{SW} =	=1.2 V, I _{ON} =-10 mA, Figure 4	2.65	1	10	14	Ω
ΔR_{ON}	LS Delta R _{ON} ⁽⁴⁾	V _{SW} =	=1.2 V, I _{ON} =-10 mA (Intra-pair)	2.65		0.65		Ω

Notes:

- 3. Measured by the voltage drop between A/B and CLK/Dn pins at the indicated current through the switch.
- 4. Guaranteed by characterization.

DC Electrical Characteristics, High-Speed Mode

All typical values are T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =-40 to +85°C			Units
Symbol	i arameter	Conditions	VCC (V)	Min.	Тур.	Max.	Units
Ron	HS Switch On Resistance ⁽⁵⁾	V _{SW} =0.4 V, I _{ON} =-10 mA, Figure 4	2.65		7.0	9.5	Ω
ΔR_{ON}	HS Delta R _{ON} ⁽⁶⁾	V _{SW} =0.4 V, I _{ON} =-10 mA (Intra-pair)	2.65		0.65		Ω

Notes:

- 5. Measured by the voltage drop between A, B, and Dn pins at the indicated current through the switch.
- 6. Guaranteed by characterization.

AC Electrical Characteristics

All values are at R_L =50 Ω and R_S =50 Ω and all typical values are V_{CC} =2.775V at T_A =25 $^{\circ}$ C unless otherwise specified.

Cymbal	Parameter	Conditions	V 00	T _A =-4	Units		
Symbol		Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
O _{IRR}	Off Isolation ⁽⁷⁾	f=100 MHz, R _T =50 Ω Figure 14	2.775		-35		dB
Xtalk	Non-Adjacent Channel Crosstalk ⁽⁷⁾	f=100 MHz, R _T =50 Ω Figure 15	2.775		-55		dB
BW	-3 db Bandwidth ⁽⁷⁾	C_L =0 pF, R_T =50 Ω Figure 13	2.775		1.0		GHz
t _{ON}	Turn-On Time SEL, /OE to Output	C _L =5 pF, V _{SW} =1.2 V Figure 6, Figure 7	2.650 to 2.775		20	37	ns
t _{OFF}	Turn-Off Time SEL, /OE to Output	C _L =5 pF, V _{SW} =1.2 V Figure 6, Figure 7	2.650 to 2.775		15	27	ns
t _{PD}	Propagation Delay ⁽⁷⁾	C _L =5 pF Figure 6, Figure 8	2.775		0.25		ns
t _{BBM}	Break-Before-Make Time	C _L =5 pF, V _{SW1} =V _{SW2} =1.2 V Figure 12	2.650 to 2.775	3	5	8	ns

Note:

AC Electrical Characteristics, High-Speed

All typical values are V_{CC}=2.775V at T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	T _A =-4	Units		
	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{SK(Part_Part)}	Channel-to-Channel Skew Across Multiple Parts ^(8,9)	V _{SW} =0.2 Vdiff _{PP} , C _L =5 pF		40	80	ps
tsk(Chl_Chl)	Channel-to-Channel Skew Within a Single Part ⁽⁸⁾	V _{SW} =0.2 Vdiff _{PP} , C _L =5 pF, Figure 9		15	30	ps
t _{SK(Pulse)}	Skew of Opposite Transitions in the Same Differential Channel ⁽⁸⁾	V _{SW} =0.2 Vdiff _{PP} , C _L =5 pF	/	10	20	ps

Notes:

- 8. Guaranteed by characterization.
- 9. Assumes the same V_{CC} and temperature for all devices.

Capacitance

Symbol	Parameter	Conditions	T _A =-40°C to +85°C			Unito
	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance ⁽¹⁰⁾	V _{CC} =0 V		1.5		
C _{ON}	Dn/CLK- On Capacitance ⁽¹⁰⁾	V _{CC} =2.775 V, /OE=0 V, f=1 MHz, at 25°C, Figure 11	6.0	7.0	9.0	pF
C _{OFF}	Dn/CLK Off Capacitance ⁽¹⁰⁾	V _{CC} =2.775 V, /OE=2.775 V, f=1 MHz, Figure 10		2.5		

Note:

10. Guaranteed by characterization.

^{7.} Guaranteed by characterization.

Test Diagrams

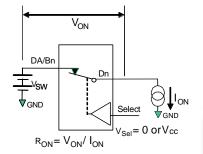
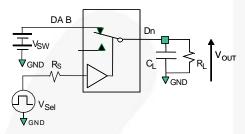



Figure 4. On Resistance

 R_L , R_S , an C_L ar fu ctions of th ap lication environment (se AC Tables for spe ific v lues) C_L inclu es test fixture an stra capacitance

Figure 6. AC Test Circuit Load

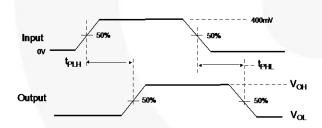
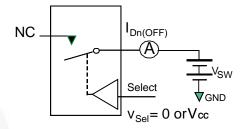



Figure 8. Propagation Delay (t_Rt_F - 500 ps)

**Each switch port is tested separately

Figure 5. Off Leakage

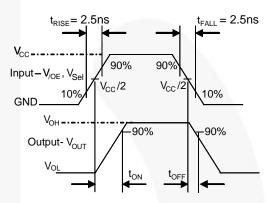


Figure 7. Turn-On / Turn-Off Waveforms

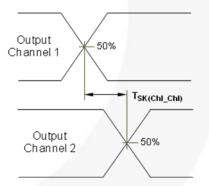


Figure 9. Channel-to-Channel Skew

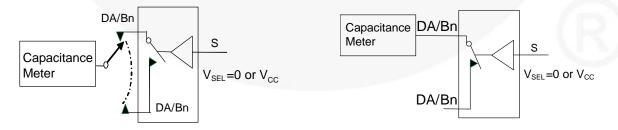


Figure 10. Channel Off Capacitance

Figure 11. Channel On Capacitance

Test Diagrams (Continued)

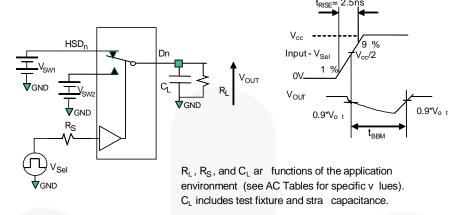


Figure 12. Break-Before-Make Interval Timing

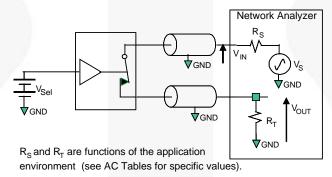
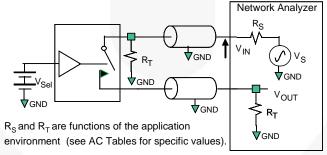



Figure 13. Bandwidth

Off isolation = 20 Log (V_{OUT} / V_{IN})

Figure 14. Channel Off Isolation

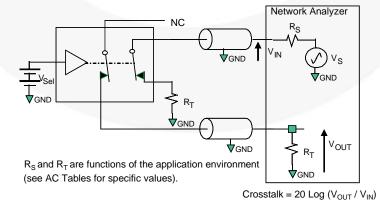
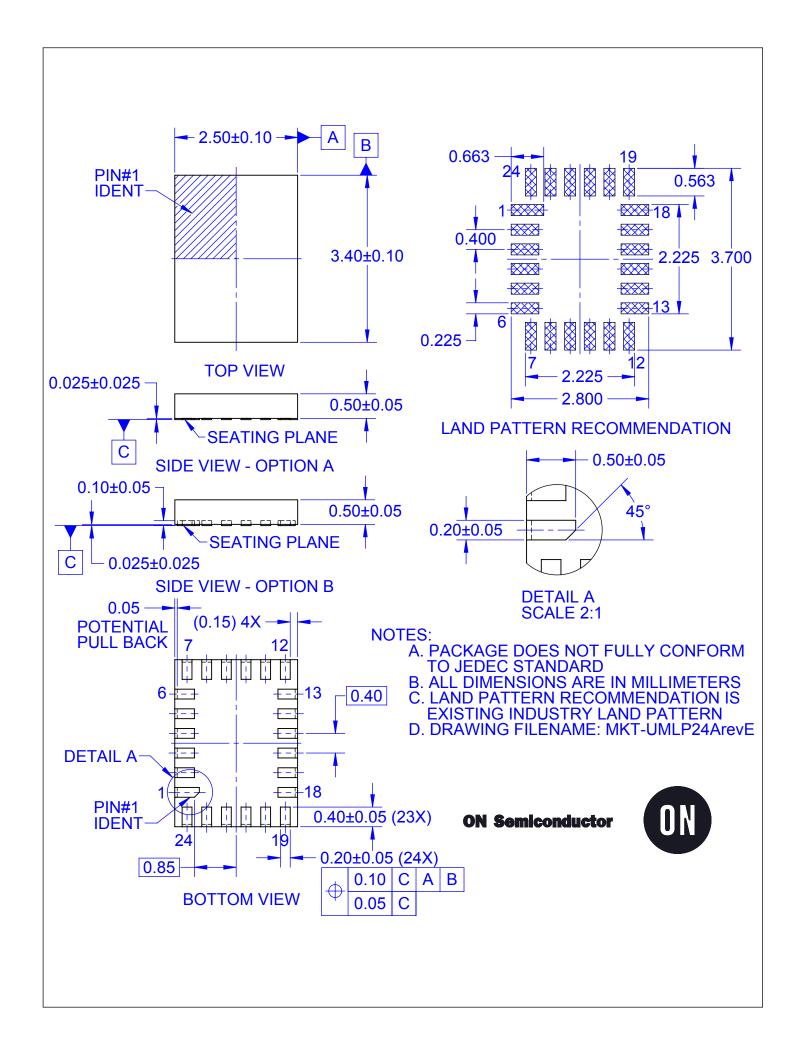



Figure 15. Non-Adjacent Channel-to-Channel Crosstalk

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FSA642UMX

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331