

PRODUCT DATASHEET

DESCRIPTION

The LX2273 is a high brightness multi-dimming channel Boost LED driver designed for Solid independent control of several white LED State Lighting applications. It offers the strings or color mixing capability for designer a high degree of flexibility to optimal light temperature control. PWM accommodate different LED configurations frequency of up to 25kHz is supported to (white or RGB), drive currents and output avoid audible noise. Fault conditions can voltages while providing a high degree of be reported through a digital 2-wire serial control, protection and fault management of bus the system.

The LX2273 driver supports up to four independent LED strings and can be integrated in a system that supports up to 60V per channel. The drive current of each string can be programmed up to 500mA, with a typical channel-to-channel matching accuracy within +/- 1.5 percent. The FETs of the boost converter and each LED current sink are external to provide the flexibility and scalability to accommodate a variety of LED configurations as well as to provide optimal thermal management of the system.

The device includes a 0V to 2V Analog Dimming input to control the LED current: as an example the analog input can be provided via an ambient light sensor, a thermistor sensing the LED temperature, or the very common 0-10V dimming signal with the use of some external circuitry. In addition there are three independent PWM

Rev. 1.2 7/16/2012

inputs interface (I2C and **SMBus** compatible) and include LED short, LED open, and IC over temperature indicators as well as information about the LED string voltage.

The IC also provides externally programmable LED current rise and fall time that can be used to optimize system

The LX2273 is designed to provide protection of the expensive LED lighting fixture while allowing continued operation in case of a fault (StayLITTM). The device also includes a variety of protection features such as output short circuit protection (without the need for an input fuse that may require cost intensive replacement), manual over-voltage protection. and over-temperature shutdown. In addition, the LED current can be compensated to stay within a given LED temperature profile by the use of an external thermistor.

KEY FEATURES

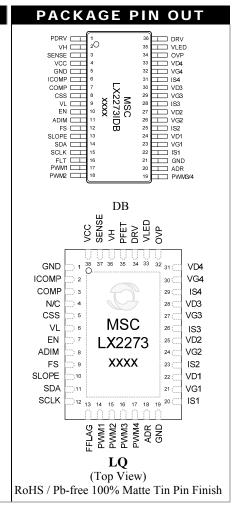
- Four LED Channels with Independent PWM Control
- Up to 500mA LED Current per Channel with External Power Components for Optimal Design and Thermal Management
 - 3% Current Setting Accuracy
 - 1.5% Channel to Channel **Current Matching**
 - Programmable LED Current Amplitude via SMBus or I2C
- Analog Dimming via Ambient Light Sensor, Thermistor or 0-10V Signal
- Wide Digital Dimming Range 3000:1 via PWM input
- StayLIT™ Feature to Enable Continued Operation in Case of a Fault (Open String or an LED Short)
- Short Circuit. OVP Protection
- SMBus and I2C Compatible Digital Diagnostic Reporting
 - LED Fault Status
 - String V monitoring
 - **LED Over Temperature Warning** & Protection
- Soft Start to Limit Inrush Current and Protect the LED's
- Programmable LED Current Rise/Fall Time for EMI Control

APPLICATIONS

- White or RGB LEDs for Single or Multiple Strings Solid State Lighting **Applications**
 - Street/ Parking Lot Lights, Down lights
 - Wall-washers
 - Commercial Spot Light etc.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

	Р	ACKAGE ORDER INFO	THERMAL DATA
	DB	Plastic QSOP 36-pin	θ _{JA} = 70 °C/W
T _A (°C)	LQ	Plastic 5 x 7 mm² QFN 38-pin	θ _{JA} = 19.3 °C/W
		RoHS Compliant / Pb-free	THERMAL RESISTANCE-JUNCTION TO AMBIENT
-40°C to 85°C		LX2273IDB LX2273ILQ	Junction Temperature Calculation: $TJ = TA + (PD \times \theta jA)$. The θJA numbers are guidelines for the thermal performance of the
Note: Av	ailable in Tape	e & Reel. Append the letters "TR" to the part number. (i.e. LX2273IDB-TR)	device/pc-board system. All of the above assume no ambient airflow.


PRODUCT DATASHEET

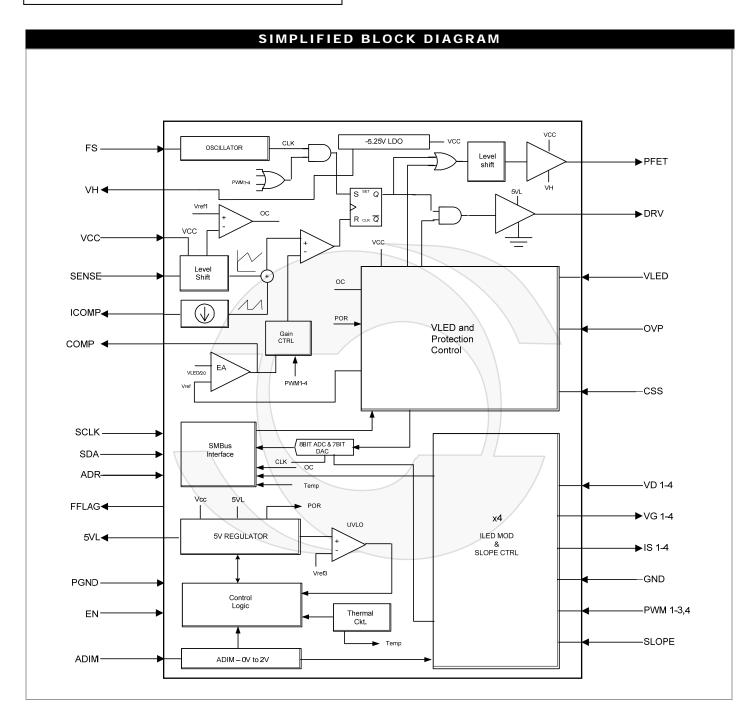
ABSOLUTE MAXIMUM RATINGS

Supply Input Voltage VCC, SENSE, PFET, VH, VD1-4, EN, VLED.	0.3V to 35V
VH to VCC	6V
VL to GND	0.3V to 6V
SDA, SCLK, PWM1-4, FFLAG	0.3V to 6V
All other pins	0.3V to VL+0.3V
Maximum Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Peak Package Solder Reflow Temperature (40 seconds maximum ex	

Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to GND.

Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

	FUNCTIONAL PIN DESCRIPTION						
Pin Name	DB PIN#	LQ Pin#	Description				
GND	5	1	GND pin: The external NFET for DC-DC converter should return to this GND				
ICOMP	6	2	Power converters current slope compensation. Connect a resistor from this pin to GND to compensate current slope. See "slope compensation section" for detail.				
COMP	7	3	Boost Mode Compensation: Connect a series RC to GND.				
N/C		4	Not Used				
CSS	8	5	Feedback Soft-start: Connect a capacitor 4.7µF typical from this pin and GND.				
VL	9	6	5V power supply output – Power Pin – Provides a regulated 5.25V typical to the internal and external 5V circuits.				
EN	10	7	Enable Input. Pull low to put the system into sleep mode. If not used must tie to VCC.				



PRODUCT DATASHEET

			FUNCTIONAL PIN DESCRIPTION
Pin Name	DB PIN#	LQ Pin#	Description
ADIM	11	8	Analog Dimming Input: This input pin has 0V to 2V of control range. Connect ADIM to VL (5V) to force 100% output current when analog dimming is not used.
FS	12	9	Oscillator Frequency Setting pin. Connect a resistor R_{FS} between FS to GND to set the buck/boost frequency using the following formula: Freq [kHz] = $67000/R_{FS}$ where R is in k Ω .
SLOPE	13	10	LED current rise/fall time programmable pin. Connect a resistor from this pin to GND to program LED current rise/fall time for EMI purpose. If not used, tie this pin to VL.
SDA	14	11	Serial Data In/Output. Read data for fault conditions, LED string status via drain voltage, VLED voltage. SDA also can be used to set the LED peak current amplitude by writing to register 08h. Connect to GND if SDA is not used.
SCLK	15	12	Serial Clock Input. Maximum clock is 100kHz. Connect to GND if not used.
FFLAG	16	13	Fault signal output. Open drain output. This pin goes low when a fault condition is detected.
PWM1-4	17-19	14-17	Pulse Width Modulated dimming signal – Signal input. PWM input can be tied together for a common PWM signal or use for individual PWM control. PWM3 & PWM4 are internally connected together for DB package.
ADR	20	18	Address Setting: connect to VL, GND or leave it open for three different address choices. Refer to SERIAL INTERFACE section.
GND	21	19	GND pin
IS1-4	22,25, 28,31	20,23, 26,29	LED current setting. – Program this pin with an external resistor to set the LED current with 300mV internal reference voltage. I-LED = 300mV/R _{IS}
VG1-4	23,26, 29,32	21,24, 27,30	Gate Drive – CMOS Output Pin: Connect to the gate of the external NFET current sink. Any unused pins must be tied to ground to distinguish between intentionally unused and LED failed open.
VD1-4	24,27, 30,33	22,25, 28,31	Drain – Signal Pin – This connects to Drain pin of the external NFET switch. The boost output voltage regulates based on the lowest VD, and the lowest voltage is kept at 0.9V (typical). Any unused pins can be left open.
OVP	34	32	Over Voltage Protection – Signal input: An external voltage divider sets the maximum LED voltage. System will stop switching when OVP limit hits, and resume when it goes lower than the limit.
VLED	35	33	LED voltage. Connect this pin directly to common anode strings voltage.
DRV	36	34	Low-side NFET gate drive: Connect to the gate of the NFET
PFET	1	35	High-side PMOS gate drive: Connect to gate of a PFET. When the boost output short detected or EN signal low, PFET will open.
VH	2	36	High side power rail. Connect a 1µF 10V capacitor from this pin to VCC.
SENSE	3	37	Converters current sense negative pin. The differential input voltage across R _{SENCE} resistor used to set the peak inductor current. Use Kevin connection directly to the R _{SENCE} output side
VCC	4	38	Power supply input – Provides power to the IC. Must be closely decoupled to ground with ceramic capacitors.

PRODUCT DATASHEET

PRODUCT DATASHEET

ELECTRICAL **CHARACTERISTICS**

Unless otherwise specified, the following specifications apply over the operating ambient temperature of -40°C \leq T_A \leq 85°C and the following test conditions: VCC = 12V; EN = 3V, RFS = 100k Ω (670kHz)

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units
Input Power Supply						
Input Voltage	VCC	Withstand voltage VCC = 35V	8		28	V
Quiescent current	ICC _{ON}	EN > 2 V, No PFET & NFET connected			10	mA
Sleep current	ICC _{SLEEP}	EN < 0.8V , VCC = 28V			25	μA
Control and Logic						
EN Logic High	V _{ENH}		2			V
EN Logic Low	V _{ENL}				0.8	V
EN Current High	I _{ENH}	EN = 3.3V			5	μA
EN Current Low	I _{EN-L}	EN < 0.8V			5	μA
Address High Input	V _{ADRH}		VL-0.8			V
Address Low Input	V _{ADRL}				0.8	V
Address Open	V _{ADRO}		2	VL/2	2.7	V
Address Input Low Current	I _{ADRH}		-20	-7		μA
Address Input High Current	I _{ADRL}			7	20	μA
FFLAG Output Low Voltage	V _{FFLAGH}	I _{LOAD} = 3mA			0.4	V
FFLAG Output High Leakage Current	V _{FFLAGL}	V _{FFLAG} = 5.5V			10	μA
DC/DC PWM Error Amplified	•					
Peak Output Current	I _{OUT}			+/-40		μA
Output Resistance	Rout		2.6	4	8	ΜΩ
Forward Transconductance	gm	At EA inputs (I _{OUT} /(V _{LED} /20-V _{CSS})		120		μmho
Soft Start/Drain Voltage Ser	nse Error Am	plifier				
CSS Source Peak Current	Icss		-30	-20	-10	μA
CSS Sink Peak Current	I _{CSS}		10	20	30	μA
Forward Transconductance	gm		45	80	100	μmho
Output Resistance			2	5	7	МΩ
Valid Output Voltage Range	V _{CSS}	1/20 of V _{LED}	0.5		2	V
CT Fast Charge-up Current	CT _{CHG}	VD < 700mV	75	120	175	μA
Start Up Time	Ts	C_{CSS} = 0.47 μ F, R_{ISx} = 2 Ω , V_{IS} setting 300mV, 100% PWM, at IS voltage > 90%		5	20	mS
Pulse Width Modulation Inp	ut	<u> </u>				
PWM Input Low Voltage	V _{PWM_L}				0.8	V

Page 5 Copyright © 2009 Microsemi

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ and the following test conditions: VCC = 12V; EN = 3V, RFS = $100k\Omega$ (670kHz)

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units	
PWM Input High Voltage	V _{PWM_H}		2			V	
PWM Input Frequency	F _{PWM}		0.1		25	kHz	
		Digital Dimming ; SLOPE = VL	2			μs	
Minimum PWM Input Pulse Width	PW _{MIN}	Adjustable Slope Option to set t _R and t _F	2.5			x t _R or	
			25	100	200		
PWM Input Pull-down Resistor	PWM _R	Applies to PWM3/4 input, DB package only	12.5	50	100	kΩ	
DWM I a the IO O to I Date		SLOPE = VL (minimum t _R , t _F)	2	6.5	10	μs	
PWM Input to IS Output Delay		$R_{SLOPE} = 82.5k\Omega (t_R, t_F \sim 4\mu S)$	5	9	15	μs	
Device Protection						'	
OVP Threshold Voltage	V _{TH OVP}		1.87	1.97	2.07	V	
Over Temperature Shutdown	T _{OVT-SHDN}	Rising temperature hysteresis, T _{HYS} = 20°C		150		°C	
Shut Down Recovery	T _{RECOVERY}			120		°C	
Over Temperature Warning	T _{OVT-WARN}	Rising temperature hysteresis, T _{HYS} = 15°C		130		°C	
Clear Warning				105		°C	
LED Current Output							
Sink Current Overshoot	V _{ISET OVERS}	VS setting at 100% , PWM Dimming			5	%	
V-source Pk-Pk Matching Among	V _{ISET 150}	$R_{\text{sense}} = 2\Omega$, $0.8V \le VD \le 3V$ (note 1) $T_{\text{AMB}} = 25^{\circ}\text{C}$, PWM = 100% duty cycle,	295.5		304.5	mV	
Strings	- ISL1 130	F _{PWM} = 200Hz, PWM = 25% duty cycle	291		309	mV	
Maximum IS valtaga	V _{ISx}	R_{sense} = 2 Ω , Average of the four outputs	291		309	mV	
Maximum IS voltage		$R_{\text{sense}} = 2\Omega$, Each outputs	286.6		313.6	mV	
Minimum VD regulation	V _{Dx}	At the lowest VD pin, I _{DS} = 150mA	800		1000	mV	
IS In put Bias Current	l _{IS}	V _{IS} = 300mV			300	nA	
DC Gain	A _{OL}			80		dB	
Current Source Driver Op Am	ıp						
On State VG Voltage Range	VG _{RANGE}	VG voltage that maintains DC accuracy	1.5		4	V	
Off State VG Voltage	VG _{OFF}				0.1	V	
VG Sink Current	VG _{SNK}	V _{VG} = 2.5V, V _{IS} = 0.4V, PWM = HIGH		-7		mA	
VG Source Current	VG _{SRC}	V _{VG} = 2.5V, V _{IS} = 0.2V, PWM = HIGH		7		mA	
VG Load Capacitance	C _{LG}				1500	pF	
LED Current On/Off slope							
SLOPE Reference Voltage	V _{SLOPE}			2		V	
I-LED Rise Time	T _{I-LED RISE}	SLOPE = 5VL	1	1.5	2.5	μs	
I-LED Fall Time	T _{I-LED FALL}	F _{PWM} = 200Hz, PWM = 50% duty cycle CLG < 500pF	1	1.5	2.5	μs	
I-LED Rise Time	T _{I-LED RISE}	R_{SLOPE} = 82.5k Ω , T_{RISE} // $T_{FAL}L$ = 10% to 90%	3	4.2	5.5	μs	

Copyright © 2009 Page 6 Microsemi

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$ and the following test conditions: VCC = 12V; EN = 3V, RFS = $100k\Omega$ (670kHz)

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units
I-LED Fall Time	T _{I-LED FALL}	F _{PWM} = 200Hz, PWM = 50% duty cycle	3	4.2	5.5	μs
Analog Dimming						
AD Voltage	V _{AD}	I-LED = 95%; PWM1-4 = HIGH; Register 08h = x1111111 I-LED = 6.7%; PWM1-4 = HIGH	1.8 0.05	1.9 0.2	2.0 0.34	V
AD Input Bias Current	AD _{IIB}	Register 08h = x1111111	-1	U. <u></u>	1	μA
Analog Control Output Range	V _{IS}	 PWM1-4 = High Register 08h = x1111111	5		100	%
SMBus LED Peak Current Ad	liustment	Tregister con XTTTTT	l	l		
Adjustment Range	I _{PADJ}	V _{IS} = 300mV represents maximum current setting	15.4		100	%V _{IS}
Resolution	I _{RES}	2 mV translates out to be 7 bits DAC		2		mV
LED short/open Protection						
LED Short Threshold Voltage (note 1)	VDx _{SHORT}	F _{PWM} = 25kHz, PWM = 10% duty cycle	6.7	7.2	7.7	V
Derated IS Voltage		VD > 7.75	5	10	15	%
LED Open Threshold Voltage	VDx _{OPEN}	F _{PWM} = 25kHz, PWM = 10% duty cycle	0.18	0.24	0.27	V
Inductor Over Current Prote	ction					
Maximum Short Circuit Current	I _{LSHORT}	With 10mΩ current sense resistor, L = 15μH		10		Α
Over Current Threshold Voltage	loc	At current sense inputs		100	130	mV
SENSE Input						
Sense Input Voltage Range	Vsense	For design reference only, reference to VCC (this is the same parameter as over current threshold. Current sense comparator's input maximum is 150mV that accounts for slope compensation.)			100	mV
Sense Sink Current	I _{SENSE}	For design reference only		1		μΑ
VL Regulator (5.0V)						
VL Output	5V	8V ≤ VCC ≤ 28V; 0mA ≤ I _{VL} ≤ 15mA	4.75	5.00	5.25	V
VL Source Current	5V _{CURRENT}	Not include internal 5V supply. VCC = 8V		10	15	mA
UVLO	VL _{UVLO}	VL rising, V _{HYS} = 0.50V	3.75	4.25	4.65	V
VH (VCC-5.25V) Regulator						
VH Output Voltage	VH	8V ≤ VCC ≤ 28V; 0mA ≤ I _{VH} ≤ 15mA Reference to VCC	-4.75	-5.25	-5.5	V
UVLO	VH _{UVLO}	VH falling, VHYS = 0.50V. Internal POR activates on VH falling UVLO threshold, reference to VCC	-4.65	-4.25	-3.75	V
Oscillator						
FS Reference Voltage	V _{FS}		1.85	2	2.1	V
Oscillator Frequency	F _{SW}	$R_{FS} = 100k\Omega$	600	670	740	kHz

Copyright © 2009 Page 7 Microsemi

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature of $-40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$ and the following test conditions: VCC = 12V; EN = 3V, RFS = $100\text{k}\Omega$ (670kHz)

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units
Oscillator Frequency Setting Range	F _{RANGE}		400		800	kHz
DC/DC Switching NFET Drive	r					
DRV Voltage High	V_{DRVH}		4.6	5	5.5	V
DRV Rise Time	T _{RISE}	C _L = 1000pF		25	50	ns
DRV Fall Time	T _{FALL}	C _L = 1000pF		15	50	ns
Off Voltage	V _{DRVOFF}	EN = 0V		0	0.7	V
DC/DC Switching PFET Drive	r					
PFET High Voltage	V_{PFETH}	EN = 0V, refer to VCC		0	0.5	V
PFET Low Voltage	V _{PPFETL}	Refer to VCC	-5.8	-5.25	-4.5	V
Overall System Efficiency	η	V _{IN} = 12V, VS setting at 100%, PWM = 100%		87		%
SMBus						
SDA, CLK Input Low Voltage	I _{LV}				0.7	V
SDA, CLK Input High Voltage	I _{HV}		2			V
SDA, CLK Input Hysteresis	IH _{YS}			100		mV
SDA,CLK Input Bias Current	I _{IB}		-5		+5	μΑ
SDA Output Low Sink Current	Osnk	V _{SDA} = 0.4V	4			mA
SMBus Frequency	F _{SMBUS}		10		100	kHz
SMBus Free time	T _{BUF}		4.7			μs
CLK Serial Clock High Period	T _{HIGH}		4			μs
CLK Serial Clock Low Period	T _{LOW}		4.7			μs
Start Condition Set-up Time	T _{SU:STA}		4.7			μs
Start Condition Hold-up Time	T _{HD:STA}		4			μs
Stop Condition Set-up Time from CLK	T _{SU:STO}		4			μs
SDA Valid to CLK Rising Edge Set-up Time, Slave Clocking Data	T _{SU:DAT}		250			ns
CLK Falling Edge to SDA Transition	T _{HD:DAT}		0			ns
CLK Falling Edge to SDA Valid, Reading Out Data	T _{DV}		200			ns

Note: 1. When the different V_{DRAIN} voltages are more than 2V, then a single LED short may shut off the string that has a highest V_{DRAIN} (VD hits the limit). However V_{SOURCE} pk-pk matching will not be effected in this circumstance.

PRODUCT DATASHEET

SERIAL INTERFACE

SMBus Interface

LX2273 is a nine-register device which uses SMBus or I^2C protocols to communicate with the host system. All registers are defined as full byte wide. Some registers contain reserved (undefined) bits with a default value of "0", or are read only bits that are status indicators. Two of the nine registers are capable of both read and write, and seven registers are read only. See the LX2273 Register Definitions section for details.

The LX2273 communicates over the SMBus and operates in a "slave" mode receiving commands and sending / receiving data to / from the host or "master". Only standard two-wire SMBus and I^2C compatible serial bus and protocols may be used for this device. The LX2273 can be configured for one of the three addresses by connecting the ADR input pin to ground, $V_{\rm DD}$ or simply leaving it OPEN.

Address Strapping Codes

Option #	ADR	Address
1	GND	0101 100b
2	OPEN	0101 110b
3	$V_{ m DD}$	0101 111b

In this document, the SMBUs address occupies high seven bits of an eight bit field on the bus, the low bit is always the R/W bit.

Address = 0101100xb

1	7	1	1	8	1	1
S	Slave Address	Wr	Α	Data Byte	A	Р
	0101100	0				

Address = 0101110xb

1	7	1	1	8	1	1
S	Slave Address	Wr	A	Data Byte	A	Р
	0101110	0				

Address = 0101111xb

1	7	1	1	8	1	1
s	Slave Address	Wr	Α	Data Byte	Α	Р
	0101111	_				

SMBus Protocol

The only required command protocols are SMBus Send Byte, Receive Byte, Read Byte / Word, and the Write Byte / Word protocols.

Writes to registers can be performed by either the SMBus Write Byte / Word protocols and / or by internal IC logic, depending on the register type.

Read can be performed on all registers by issuing the Read Byte / Word protocol. Read Only registers can be written only by internal logics. Their contents will not be affected by SMBus write commands.

When LX2273 is initially powered, it will first test the address selection pin input to determine its own address and then look for its unique address each time it detects a "Start Condition". If the address does not match, the LX2273 ignores all bus activity until it encounters another "Start Condition".

SMBus Packet Protocol Diagram Element Key

S	Slave Address	Wr	Α	Data Byte	Α	Р
			х		Х	

S Start Condition

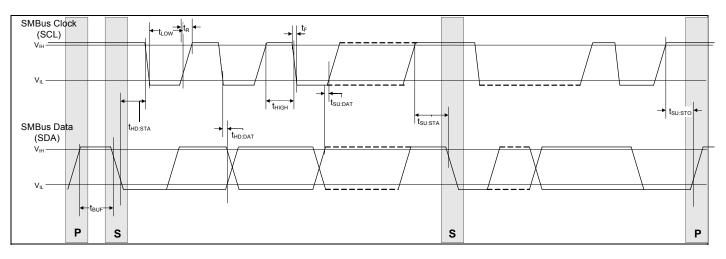
Rd Read (bit value of 1)

Wr Write (bit value of 0)

A Acknowledge ('0' for an ACK, or '1' for a NACK)

P Stop Condition

Command Code Register Address
Master-to-Slave Slave-to-Master


Protocols used to communicate with LX2273 must be per standard SMBus specification version 2.0 or higher.

PRODUCT DATASHEET

SERIAL INTERFACE

SMBus Timing Measurement

Register Definitions

The LX2273 includes a registers to monitor the fault status. The slave address is set by the ADR signal inputs as follows:

VD Register: Address is 00h to 03h. This register has 8 bits that allows monitoring the drain voltage (VD). This voltage will reveal the string status, i.e., LED short/open. It is suggested that the input PWM duty cycle be reduced when a LED short is detected to avoid LED current sink NFET overheating.

VLED Register: Address is 04h. This register has 8 bits that allow monitoring the Boost output voltage (VLED).

String 1& 2 status Register: Address is 05h. This register has 8 status bits that allows monitoring the string 1 & 2 status.

String 3& 4 status Register: Address is 06h. This register has 8 status bits that allows monitoring the string 3 & 4 status.

Fault/Status Register: Address is 07h. This register has 8 status bits that allows monitoring the backlight controller's operating state.

REGISTER 00h	VD1 (drain voltage monitoring)
REGISTER 01h	VD2 (drain voltage monitoring)
REGISTER 02h	VD3 (drain voltage monitoring)
REGISTER 03h	VD4 (drain voltage monitoring)
REGISTER 04h	VLED (LED Anode voltage monitoring)
REGISTER 05h	String 1 & 2 status
REGISTER 06h	String 3 & 4 status
REGISTER 07h	Faults
REGISTER 08h	LED Peak Current Reference Voltage Adjustment

REGISTER 00h to 03h			Drain voltage	monitoring	DEFA	00	
VD	VD	VD	VD	VD	VD	VD	VD
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION
Bit 0-7 (R)	Drain voltage	8-bit drain voltage monitoring. 256 steps for 8V. (bit 7 is MSB)

PRODUCT DATASHEET

SERIAL INTERFACE

REGISTER 04h			LED voltage m	onitoring	DEFAULT VALUE 0x00		
VLED	VLED	VLED	VLED	VLED	VLED	VLED	VLED
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION
Bit 0-7 (R)	LED voltage	8-bit LED voltage monitoring. 256 steps for 67.9V. (bit 7 is MSB)

REGISTER 05h:		String 1&2 Status Register			DEFA	x00	
	1	T					
String #2 not Used	String #1 not Used	S1_OV	S1_OPEN	S1_NOTUSE	S2_OV	S2_OPEN	S2_NOTUSE
Bit 7 (W)	Bit 6 (W)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION
Bit 7	String #1 not Used	Set 1 when string #1 is not used to mask string faults on the string. Bit 6 and 7 are written to register 05h by the systems via SMBus to let the LX2273 know the unused string so the LX2273 can remove it from the fault detection/reporting. At power up system must disregard fault reporting and FFLAG (software timer) until the systems has finished setting string not used bit (set bit 6 and or 7 to high) and have received acknowledge from LX2273. LX2273 sends an acknowledgement after masking string fault.
Bit 6	String #2 not Used	Set 1 when string #2 in not used to mask sting faults on the string.
Bit 5	S1_OV	String 1 Over Voltage $(1 = VD > 6.75V)$
Bit 4	S1_OPEN	String 1 Open (1 = string open)
Bit 3	S1_NOTUSE	String 1 status (1 = string is not used)
Bit 2	S2_OV	String 2 Over Voltage $(1 = VD > 6.75V)$
Bit 1	S2_OPEN	String 2 Open (1 = string open)
Bit 0	S2 NOTUSE	String 2 status (1 = string is not used)

BIT FIELD	DEFINITION		DESCRIPTION					
RI	EGISTER 06h	St	ring 3&4 Statu	ıs Register	DEFAULT VALUE 0x00			
String #4 not Used	String #3 not Used	S3_OV	S3_OPEN	S3_NOTUSE	S4_OV	S4_OPEN	S4_ NOTUSE	
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit 2 (R)	Bit 1 (R)	Bit 0 (R)	
Bit 7	String #3 not Used	register 06h by LX2273 can re At power up sy systems has fin acknowledge fi	Set 1 when string #3 in not used to mask sting faults on the string. Bit 6 and 7 are written to register 06h by the systems via SMBus to let the LX2273 know the unused string so the LX2273 can remove it from the fault detection/reporting. At power up system must disregard fault reporting and FFLAG (software timer) until the systems has finished setting string not used bit (set bit 6 and or 7 to high) and have received acknowledge from LX2273. LX2273 send acknowledge after masking string fault					
Bit 6	String #4 not Used	Set 1 when stri	ng #4 in not us	ed to mask sting fa	aults on the st	ring.		
Bit 5	S3_OV	String 3 Over V	Voltage (1 = VI)	0 > 6.75V)				
Bit 4	S3_OPEN	String 3 Open	(1 = string open	n)				
Bit 3	S3_NOTUSE	String 3 status	String 3 status (1 = string is not used)					
Bit 2	S4_OV	String 4 Over Voltage $(1 = VD > 6.75V)$						
Bit 1	S4_OPEN	String 4 Open	1 = string open	n)				
Bit 0	S4_NOTUSE	String 4 status	$(1 = \overline{\text{string is no}})$	ot used)				

PRODUCT DATASHEET

SERIAL INTERFACE TIMING

REGISTER 07h			Faults Regis	ster	DEFAUL		
RESERVED	RESERVED	RESERVED	RESERVED	OC SHDN	OC	OTP	T_Warning
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R/W)	Bit 2 (R)	Bit 1 (R/W)	Bit 0 (R)

BIT FIELD	DEFINITION	DESCRIPTION
Bit 3	OC SHDN	OC shutdown (1 = OCP shut down, $0 = OC$ SHDN OK). Reset after reading or by En = Low
Bit 2	OC	Input OC (1 = over current condition, $0 = OC OK$). Reset after reading or by En = Low
Bit 1	OTP	OTP Shutdown (1 = OTP shut down, $0 = T_{OK}$). (note 1)
Bit 0	T WARNING	Temperature warning $(1 = T_{WARNING}, 0 = T_{OK})$. (note 2)

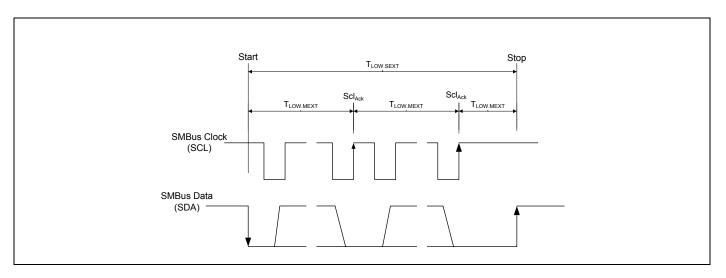
]	REGISTER 08h		ILED Setting R	egister	DEFAULT VALUE 0x7F		
ADIM	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit 7 (R/W)	Bit 6 (R/W)	Bit 5 (R/W)	Bit 4 (R/W)	Bit 3 (R/W)	Bit 2 (R/W)	Bit 1 (R/W)	Bit 0 (R/W)

BIT FIELD	DEFINITION	DESCRIPTION		
Bit 7	X	don't care		
Bit 6:0	ILED bit6:0	To program LED current setting reference voltage, see note below.		

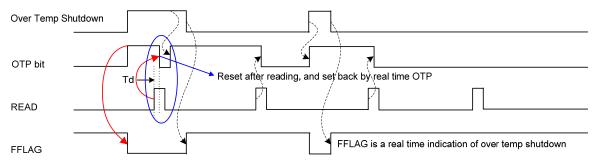
Register 08h: LED Peak Current Adjustment (7 bits used for 128 steps)							
Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	V _{IS} (mV)
0	0	0	0	0	0	0	46
0	0	0	0	0	0	1	48
0	0	0	0	0	1	0	50
0	0	0	0	0	1	1	52
0	0	0	0	1	0	0	54
y ♦	\	+	\	\	\P	\rightarrow	\
1	1	1	1	1	1	0	298
1	1	1	1	1	1	1	300

Default LED reference is 300mV regardless SDA/SCLK state at POR.

Note:


- 1. OTP bit change state from "0" to "1" and latched when the real time OTP changes from "0" to "1".
- 2. T WARNING bit changes state from "0" to "1" and latched when the real time T WARNING change from "0" to "1".

PRODUCT DATASHEET


SERIAL INTERFACE TIMING

Timeout Measurement Interval

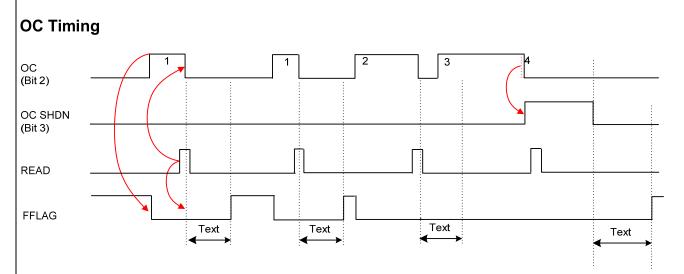
Faults Timing Diagram

OTP Timing (Bit 1, Reg 07h)

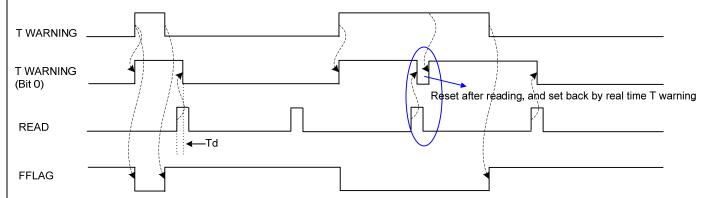
FFLAG stays low when the chip is in over temperature shutdown mode.

OTP bit is latched by over temperature warning signal.

FFLAG and OTP reset after reading and real time OTP is low. (Real time OTP not show)


Td < 1usec.

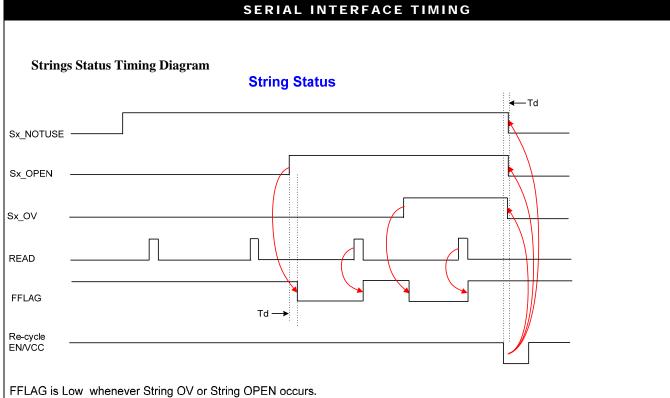
This timing diagram shows relationship between Over temperature Shutdown output and OTP bit, FFLAG only without any other fault conditions. In an actual application, FFLAG will not represent Over Temp Shutdown from temperature monitor because FFLAG is a NORed output of all faults and over temperature warning is always true when Over Temp Shutdown is true.


PRODUCT DATASHEET

SERIAL INTERFACE TIMING

FFLAG is Low whenever OC or OC SHDN occurs and extended by an internal timer. OC and FFLAG register bits are reset after reading. (Real time OC not shown) Fault bits are set back when the fault conditions present.

T Warning Timing (bit 0 Reg 07h)


FFLAG is Low whenever T Warning occurs.

T Warning bit is reset after read access and when real time T warning is low.

There are some Tdelay (Td) from real time T WARNING "1" to set T WARNING & FFLAG, as well as from end read Td < 1usec.

PRODUCT DATASHEET

FFLAG reset after reading.

Strings status are latched and be reset by recycling EN signal or Vcc

Td < 1usec.

PRODUCT DATASHEET

THEORY OF OPERATION

Operation Theory

The LX2273 operates in fixed frequency boost converter mode PWM controller to regulate the necessary voltage to the LED array. Fixed switching frequency is set by an external resistor, from 400kHz to 800kHz. LX2273 will regulate the lowest drain voltages (typ. 0.9V) to minimize the power loss through the external current sink NFETs. The voltage across an external input current sense resistor (typical $10m\Omega$) is used for limiting the switching current (coil current) cycle-by-cycle.

Inductor Selection

To keep the circuit in constant current mode (CCM), the maximum ripple current should be less than twice the minimum load current. Due to the effective of RHP zero on Error Amplifier compensation, select the minimum load = IOUT. The following formulae use to calculate the inductor values in boost mode.

Minimum inductor value for boost converter:

Where $f_{S} \approx 600 \text{kHz}$

$$L_{BOOST} \geq \frac{V_{IN} \cdot (V_O - V_I)}{(V_O \cdot f_S \cdot I_O \cdot \% \Delta_I)}$$

Where
$$V_{IN} = V_O/2$$
, $\%\Delta I = \Delta_I/I_O$

Slope Compensation.

LX2273 operates in fixed frequency CCM mode. Therefore, in some conditions, the duty cycle may extend beyond 50%. This condition will cause sub-harmonic instability. The cure for this is adding an additional ramp current. An external resistor will set the ramp current for the internal current slope compensation circuit.

Use the following equation to set the external resistor for the slope compensation:

Ricomp[
$$k\Omega$$
] = 66.7* $L[\mu H]/Rsense[m\Omega]$

This is a theoretical minimum slope compensation required to avoid subharmonic distortion. User may required to add larger slope compensation in the real application. Amount of slope compensation is inversely proportional to the R_{ICOMP} resistor.

Start-up

The start-up or wake-up is controlled to minimize inrush or to eliminate the starting surge current required from the input power supply. EN pin input is always alive, therefore the LX2273 consumes a minimal amount of current even when the chip is in sleep mode (EN=low). After EN assertion, 5V regulator is turned on first. Once the 5V regulator output (VL) reaches to UVLO limit, VCC-5.25V (VH) regulator turns on. After VH is ready, an internal POR is set then the rest of circuit turns on after POR time-out (100µs typ.).

LX2273's start-up time is set by an external capacitor C_{CSS} . During start-up, C_{CSS} is charged up at 120 μ A until lowest VD reaches to 700mV. Use the following equation to estimate the start up TSU.

$$Tsu \cong C_{CSS}/120\mu A/20*((V_{LEDtarge}t-1V) + (0.7V+dVD)/D_{PWM})$$

To speed up the startup time with low PWM duty cycle, user may try to stagger the PWM inputs so that the DC/DC converter stays active for an extended time. The LX2273's DC/DC converter is active when any of the active string's PWM inputs are high.

Over current (OC) and over current shut down (OC SHDN). (Requires external PFET)

In any mode of operation once over current (OC) is detected, the PDRV turns off for 4 switching clock cycles and then resumes operation. An internal 4 event counter accumulates the number of over current triggers that happen within 128 clock cycles. In other words, the 4 event counter is reset by 1/128 clock. At the 4th over current event (in case there is the 1/128 reset coming before the 4th trigger. total number of over current triggers that cause shutdown became more than 4), the chip shuts off the DC-DC converter and discharges CSS capacitor to 75mV. The chip resumes operation thereafter. If the over current condition is still present, the chip repeats the shut down and recovery cycle. The status of over current (OC) will set Bit 2 of register 07h to "1". Bit 2 will reset after reading. Hiccup cycle during the over current protection depends on dimming PWM duty. The cycle is inversely proportional to the PWM duty.

PRODUCT DATASHEET

THEORY OF OPERATION- CONTINUTED

Over Temperature Protection (OTP).

In any mode of operation once over OTP is detected, the LX2273 will shutdown. The status of OTP will set Bit 1 of register 07h to "1". Bit 1 will reset after reading in real time and OTP is low. System will resume operation when temperature drops below OTP threshold voltage.

Temperature Warning (T_Warning).

In any mode of the converter or any test condition, once T_warning is detected, the status of T_warning will set Bit 0 of register 07h to "1". Bit 1 will reset after reading in real time that T_Warning is low.

Fault Flags:

The following faults will set the FFLAG to "Low", and be reset either by after reading via SMBus. The fault output is intended to stay low for an extended period after internal faults are cleared. The timer is 8mS typical with 100kohm on FS pin.

Fault Condition	Register /Bit	Reset By	Notes
String Over Voltage	Register 05h & 06h, bit 2 & 5	Toggle EN or VCC	When VD >6.75V
String Open	Register 05h & 06h, bit 1 & 4	Toggle EN or VCC	When VD <0.2V
T-WARNING	Register 07h bit 0	After reading & real time T WARNING is Low	
OTP	Register 07h bit 1	After reading & real time OTP is Low	
OC	Register 07h bit 2	After reading & real time OC is Low	
OC SHDN	Register 07h bit 3	After reading & chip resumes start up	

5V Regulator

The 5V regulator generates 5V from VCC to the internal low voltage circuit and also provides power for an external light sensor (such as LX1973). Maximum output current is limited to 10mA for the external devices. The 5V output requires at least $0.1\mu F$ connected across 5V pin and GND for phase compensation. A $1\mu F$ capacitor is recommended and should be placed near the near the 5V and tied to the GND plane. The 5V is shut off while the chip is in sleep mode (EN = low).

VCC-5.25V Regulator

VCC-5.25V (VH) is a floating VSS for the low voltage circuits residing across VCC and VH. During start up, VH is turned on after VL gets ready.

POR

POR is cleared $100\mu S$ (typ.) after VH exceeds internal VH UVLO threshold.

PWM Dimming

The LED strings current are individual controlled directly by PWM input. A high on PWM input enables the output current.

DC Dimming

DC dimming can be achieved, but not independently. In this mode, all the PWM inputs must be tied to VL, while the DC control signal goes to ADIM pin. The DC input range from 2V to 0V corresponding from 100% to 5% of LED current setting.

OVP

Two external resistors program the LX2273's OVP level. The threshold is set to 2V (typical) at the OVP pin. When the OVP voltage threshold is reached it will stop the power converter from switching and then resume when the OVP pin voltage drops below the 2V threshold. The OVP function is active whenever the EN signal is high regardless the LED current condition.

PRODUCT DATASHEET

THEORY OF OPERATION- CONTINUTED

LED Open/Short Detection

In case an LED fails open or an opened string, the VD pin drops down to 0V. The power converter will try to raise the VLED under this condition. The open string will then latch off when VLED voltage reaches 100% of OVP setting. At latch off this string's VD pin voltage is excluded from the power supply regulation loop. The power converter will stop switching until the highest VD pin voltage drops below 2V and the OVP pin voltage is less than 2V. Any change in the VLED voltage should have minimum impact to the LED output current since they are current source outputs. However, the chip may shut down and recover after successful latch off of the open string depending on input, output voltage and other conditions. LED short protection is temporarily disabled when one or more open strings are detected. This allows VD to go beyond the LED short protection threshold of 7.25V (typ.). After successful latch off of any open string the VD voltage returns to a normal regulation level. The LX2273 reduces the LED current reference voltage to 10% while VD>7.25V to avoid the external FET from overheating. The LED current returns to normal level when VD voltage gets below 7.25V. Cycling power or the EN input will reset any latched off VD pin. User must tie VG pin to GND for any unused string to distinguish between string failed open and strings unused. During this condition, any string that has VD higher than the LED short threshold voltage will not be latched off and not be report with VD is higher than 6.75V. The LED short fault is masked when any of VD is below open LED detection threshold until such string is latched off. Broken PWM input lines will be checked during start and reported as corresponding strings open

In case of the LED short condition, LX2273 output works normally until the VD voltage reaches the LED short threshold voltage, and the corresponding string is turned off. LED short protection works this way when there are more than two active strings and the lowest VD regulation is at normal level (0.24V<VD<2V). This allows the VD voltage to go beyond the LED short threshold in case of an open string or temporary instability on VLED output. When there is only one active string in the system, the last string is latched of when VD voltage reaches to 7.25V. VD of the latched off strings are excluded from the power converter regulation loop. LED short detection is masked for 7µS (typ.) at the beginning of each PWM cycle to avoid false shutdown of LED strings.

Note: The size of NFET current sink must increase to handle LED short or VD voltages in excess of the LED short threshold voltage. Otherwise, the relative PWM input duty cycle must be reduced if smaller NFET is used.

Current Source Driver

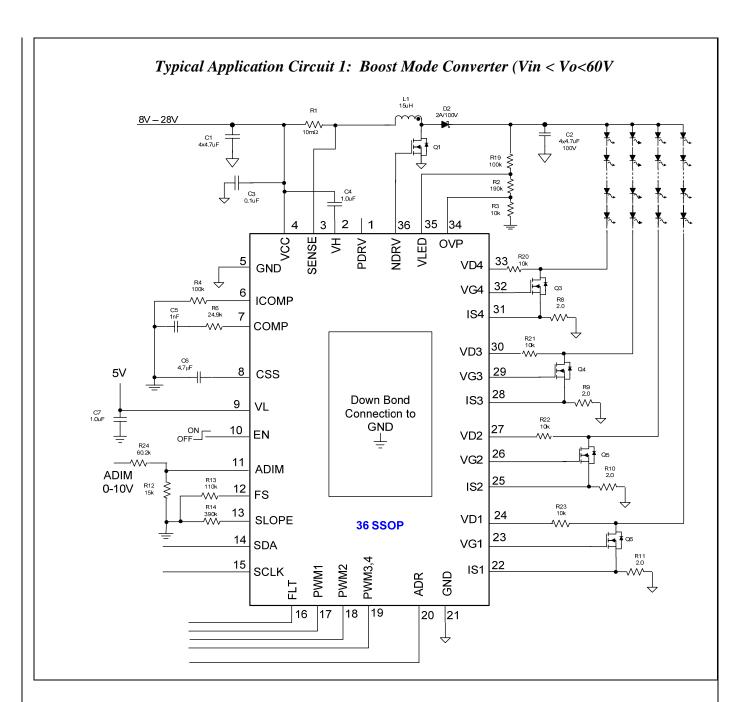
This is the current source driver for the external LED current sink NFET. The driver output VGx, and the feedback signal ISx will regulate the LED current through an internal op amp with a 300mV band gap (current source reference), for unused string will tie VG to ground. The lowest drain voltage of any external current sink NFET is used to regulate the boost voltage output. All the drains will report back to host computer through the SMBus to determine the strings status (number of shorted LED, open LED) The LED current matching between strings is 1.5% when matched with an external current sense resistor whose tolerance is 0.1% at room ambient temperature. The IC specifies voltage only at ISx pin and the voltage matching is +/-1.5%.

LED Output Current Rise/Fall Time Control

LX2273's LED output current rise/fall time can be programmed by one external resistor connected between SLOPE and GND.

Rise/Fall time can be calculated by:

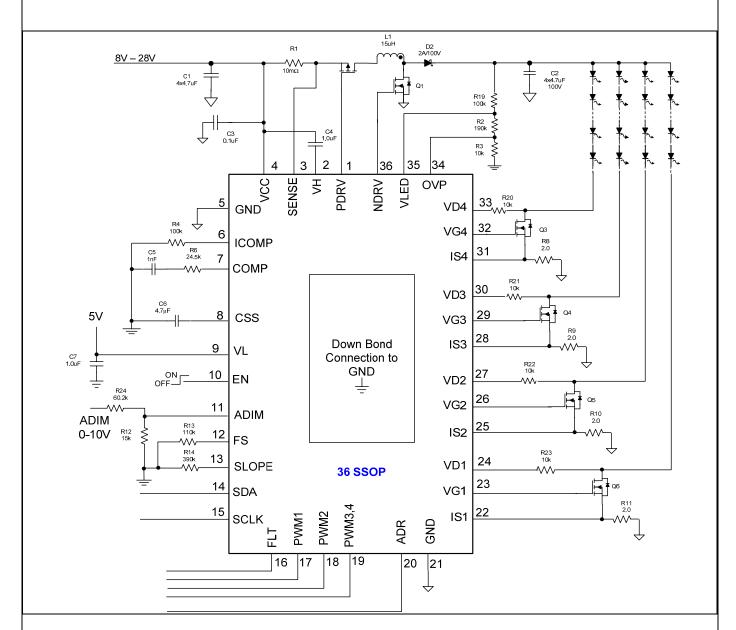
 $R_{SLOPE}[k\Omega] \cong 20*Tr,Tf[\mu s]$


Use 20k and greater resistor.

Connect SLOPE pin to VL when slope control is not used. 5V on SLOPE pin selects an internal 20kohm.

PRODUCT DATASHEET

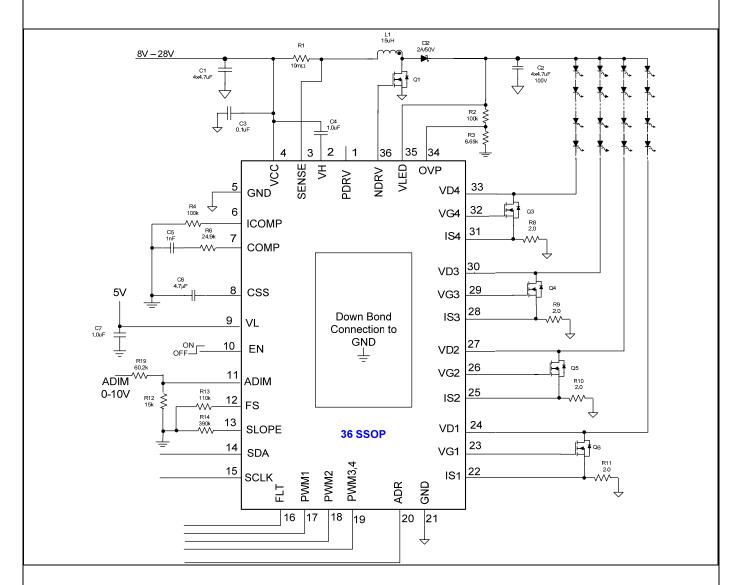
TYPICAL APPLICATIONS



The component values are for reference only

PRODUCT DATASHEET

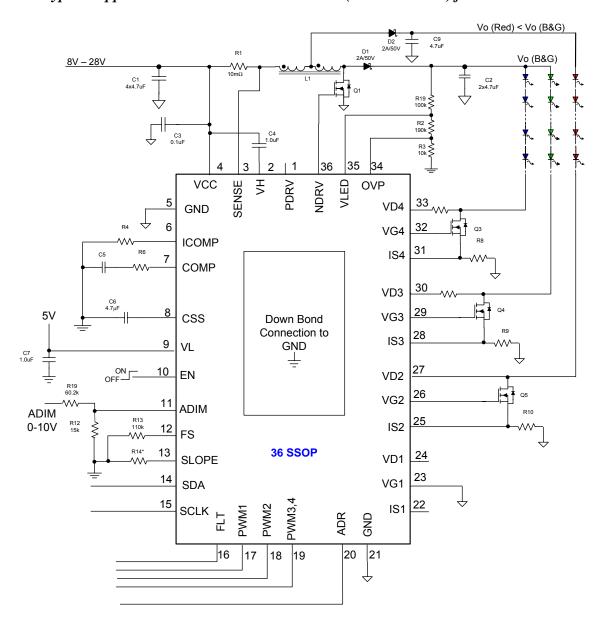
Typical Application Circuit 2: Boost Mode Converter (Vin < Vo<60V) With short circuit protection using external PFET



The component values are for reference only

PRODUCT DATASHEET

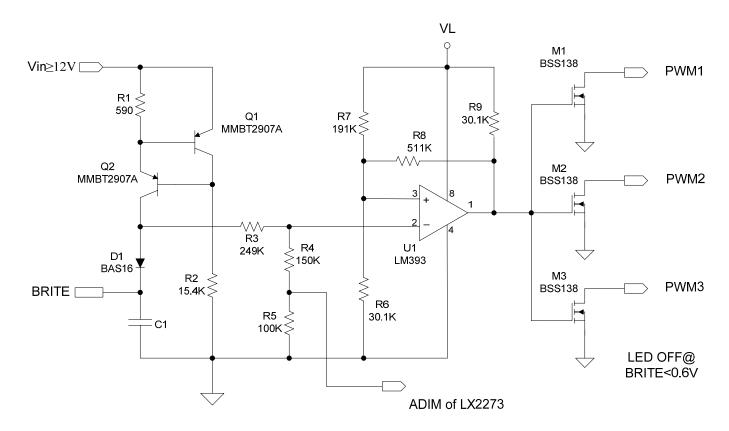
Typical Application Circuit 3: Boost Mode Converter (Vin < Vo<35V)



The component values are for reference only

PRODUCT DATASHEET

Typical Application 4: Boost Mode Converter (Vin < Vo<60V) for RGB LEDs

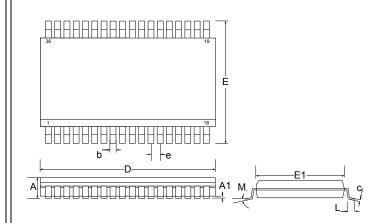


The component values are for reference only.

PRODUCT DATASHEET

Typical Application 5: SSL 0V to 10V Interface Circuit

The component values are for reference only.

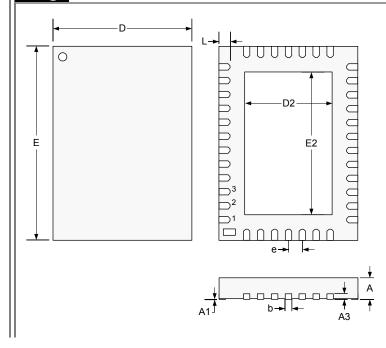

Typical application 4 provides a circuit to allow the LX2273 to be interfaced with a 0 to 10V SSL dimming control through the node labeled BRITE. Q1 and Q2 along with R1 sets up a current source to drive the dimmer over the 1V to 10V range providing the dimming control signal to the ADIM input of the LX2273. When the BRITE input is less than about 0.6V the comparator U1 will drive the PWMx inputs of the LX2273 low completely shutting of the LED string current.

PRODUCT DATASHEET

PACKAGE DIMENSIONS

36-Pin Plastic Quarter Size/Small Shrink Outline Package (SSOP/QSOP)

	MILLIN	/IETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	2.44	2.65	0.096	0.104	
A1	0.10	0.30	0.004	0.012	
b	0.25	0.51	0.010	0.020	
С	0.20	0.33	0.009	0.013	
D	15.20	15.60	0.598	0.614	
E	10.05	10.55	0.396	0.415	
E1	7.40	7.60	0.291	0.299	
е	0.80	BSC	0.031 BSC		
L	0.40	1.27	0.016	0.050	
M	0°	8°	0°	8°	
*LC	_	0.10	_	0.004	


^{*}Lead Coplanarity

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006") on any side. Lead dimension shall not include solder coverage

PACKAGE DIMENSIONS

38-Pin Plastic QFN (5x7mm) Exposed Pad

	MILLIM	IETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0	0.05	0	0.002	
A3	0.20	REF	0.008 REF		
b	0.18	0.30	0.007	0.011	
D	5.00	BSC	0.196 BSC		
D2	3.00	3.25	0.118	0.127	
Е	7.00 BSC		0.275 BSC		
E2	5.00	5.25	0.196	0.206	
е	0.50 BSC		0.019 BSC		
L	0.30	0.50	0.012	0.020	

Note:


1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006") on any side. Lead dimension shall not include solder coverage

PRODUCT DATASHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331