AS5147 # 14-Bit On-Axis Magnetic Rotary Position Sensor with 11-bit Binary Incremental Pulse Count #### **General Description** The AS5147 is a high-resolution rotary position sensor for fast absolute angle measurement over a full 360-degree range. This new position sensor is equipped with a revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency. The robust design of the device suppresses the influence of any homogenous external stray magnetic field. A standard 4-wire SPI serial interface allows a host microcontroller to read 14-bit absolute angle position data from the AS5147 and to program non-volatile settings without a dedicated programmer. Incremental movements are indicated on a set of ABI signals with a maximum resolution of 2048 steps / 512 pulses per revolution. The resolution of the ABI signal is programmable to 1024 steps / 256 pulses per revolution. Brushless DC (BLDC) motors are controlled through a standard UVW commutation interface with a programmable number of pole pairs from 1 to 7. The absolute angle position is also provided as PWM-encoded output signal The AS5147 supports embedded self-diagnostics including magnetic field strength too high, magnetic field strength too low or lost magnet, and other related diagnostic features. The product is defined as SEooC (Safety Element out of Context) according ISO26262 including FMEDA, safety manual and third party qualification. The AS5147 is available as a single die in a compact 14-pin TSSOP package. Ordering Information and Content Guide appear at end of datasheet. #### **Key Benefits & Features** The benefits and features of this device are listed below: Figure 1: Added Value of using the AS5147 | Benefits | Features | |--|---| | Easy to use – saving costs on DSP | DAEC™ Dynamic angle error compensation | | Good resolution for motor & position control | 14-bit core resolution | | Versatile choice of the interface | Independent output interfaces: SPI, ABI, UVW, PWM | | Benefits | Features | |--|---| | No programmer needed (via SPI command) | Zero position, configuration programmable | | Supports safety challenging applications | Self-Diagnostics | | Lower system costs (no shielding) | Immune to external stray field | #### **Applications** The AS5147 has been designed to support BLDC motor commutation for the most challenging automotive applications (AEC-Q100 grade 0 automotive qualified) such as electric power steering (EPS), transmission (gearbox, actuator), pump, brake (actuator) and starter & alternator. #### **Block Diagram** The functional blocks of this device for reference are shown below: Figure 2: AS5147 Block Diagram Page 2ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 # **Pin Assignment** Figure 3: TSSOP-14 Pin Assignment Figure 4: Pin Description | Pin Number | Pin Name | Pin Type | Description | | |------------|----------|----------------|-------------------------------------|--| | 1 | CSn | Digital input | SPI chip select (active low) | | | 2 | CLK | Digital input | SPI clock | | | 3 | MISO | Digital output | SPI master data input, slave output | | | 4 | MOSI | Digital input | SPI master data output, slave input | | | 5 | Test | | Test pin (connect to ground) | | | 6 | В | Digital output | Incremental signal B | | | 7 | Α | Digital output | Incremental signal A | | **ams Datasheet** [v1-06] 2014-Oct-31 | Pin Number | Pin Name | Pin Type | Description | | |------------|----------|----------------|--|--| | 8 | W/PWM | Digital output | Commutation signal W or PWM-encoded output | | | 9 | V | Digital output | Commutation signal V | | | 10 | U | Digital output | Commutation signal U | | | 11 | VDD | Power supply | 5V power supply voltage for on-chip regulator | | | 12 | VDD3V3 | Power supply | 3.3V on-chip low-dropout (LDO) output. Requires an external decoupling capacitor (1µF) | | | 13 | GND | Power supply | Ground | | | 14 | I | Digital output | Incremental signal I (index) or PWM | | #### Note(s) and/or Footnote(s): - 1. Floating state of a digital input is not allowed. - 2. If SPI is not used, an Pull up resistor on CSn is required. - 3. If SPI is not used, an Pull down resistor on CLK is required. Page 4ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 # **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Electrical Characteristics" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Figure 5: Absolute Maximum Ratings | Symbol | Parameter | Min | Max | Units | Note | |-------------------|--|------|---------|-------|--| | VDD5 | DC supply voltage at VDD pin | -0.3 | 7.0 | V | | | VDD3 | DC supply voltage at VDD3V3 pin | -0.3 | 5.0 | V | | | V _{SS} | DC supply voltage at GND pin | -0.3 | 0.3 | V | | | V _{in} | Input pin voltage | | VDD+0.3 | V | | | I _{scr} | Input current
(latch-up immunity) | -100 | 100 | mA | Norm: AEC-Q100-004 | | ESD | Electrostatic discharge | ±2 | | kV | Norm: AEC-Q100-002 | | P _t | Total power dissipation (all supplies and outputs) | | 150 | mW | | | Ta5V0 | Ambient temperature 5V0 | -40 | 150 | °C | In the 5.0V power supply mode only | | Ta3V3 | Ambient temperature 3V3 | -40 | 125 | °C | In the 3.3V power supply mode if NOISESET = 0 | | TaProg | Programming Temperature | 5 | 45 | °C | Programming @
Roomtemperature (25°C ± 20°C) | | T _{strg} | Storage temperature | -55 | 150 | °C | | | T _{body} | Package body temperature | | 260 | °C | Norm: IPC/JEDEC J-STD-020 | | | Humidity non-condensing | 5 | 85 | % | | | | Moisture sensitivity level | | 3 | | Represents a maximum floor
lifetime of 168h | ams Datasheet Page 5 [v1-06] 2014-Oct-31 Document Feedback # **Electrical Characteristics** All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. Figure 6: Electrical Characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |---------------------|-----------------------------------|--|-----------|-----|-----------------------|-------| | VDD | Positive supply voltage | 5.0V operation mode | 4.5 | 5.0 | 5.5 | V | | VDD3V3 | Positive supply voltage | 3.3V operation mode;
only from -40 to
125°C | 3.0 | 3.3 | 3.6 | V | | VDD3V3_150 | Positive supply voltage | 3.3V operation mode;
only from -40 to
150°C (3V150°C Bit
has to be set) | 3.2 | 3.4 | 3.6 | V | | VDD_Burn | Positive supply voltage | Supply voltage
required for
programming in 3.3V
operation | 3.3 | | 3.5 | V | | V _{REG} | Regulated Voltage | Voltage at VDD3V3
pin if VDD ≠ VDD3V3 | 3.2 | 3.4 | 3.6 | V | | V _{porON} | Internal POR-ON level | 3V operation. Pin
VDD5 & VDD3
shorted | 2.3 | | 2.85 | V | | V _{porOFF} | Internal POR-OFF level | 3V operation. Pin
VDD5 & VDD3
shorted | 2.05 | | 2.65 | V | | V _{porh} | Internal POR hysteresis | | 150 | | 300 | mV | | I _{DD} | Supply current | | | | 15 | mA | | V _{IH} | High-level input
voltage | | 0.7 × VDD | | | V | | V _{IL} | Low-level input voltage | | | | 0.3 ×
VDD | V | | V _{OH} | High-level output
voltage | | VDD - 0.5 | | | V | | V _{OL} | Low-level output voltage | | | | V _{SS} + 0.4 | V | | I_Out | Current on digital output | | | | 1 | mA | | C_L | Capacitive load on digital output | | | | 50 | pf | Page 6ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 # **Magnetic Characteristics** Figure 7: **Magnetic Specifications** | Symbol | Parameter | Conditions | Min | Max | Unit | |--------|---|--|-----|-----|------| | Bz | Orthogonal magnetic field strength, normal operating mode | Required orthogonal component of the magnetic field strength measured at the die's surface along a circle of 1.1mm | 35 | 70 | mT | #### Note(s) and/or Footnote(s): 1. It is possible to operate the AS5147 below 35mT with reduced noise performance. # **System Characteristics** Figure 8: **System Specifications** | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |---------------------------|--|---|-----|-----|-------|--------| | RES | Core resolution | | | 14 | | bit | | RES_ABI | Resolution of the ABI interface | Programmable with register setting (ABIRES) | 10 | | 11 | bit | | INL _{OPT} @ 25°C | Non-linearity, optimum placement of the magnet | | | | ±0.8 | Deg | | INL _{OPT+TEMP} | Non-linearity optimum placement of the magnet over the full Temperature Range | | | | ±1 | Deg | | INL _{DIS+TEMP} | Non-linearity @
displacement of
magnet and
temperature -40°C to
150°C | Assuming N35H Magnet (D=8mm, H=3mm) 500um displacement in x and y z-distance @ 2000um | | | ±1.2 | Deg | | ONL | RMS output noise
(1 sigma). Not tested,
guaranteed by design. | Orthogonal component for the magnetic field within the specified range (Bz), NOISESET = 0 | | | 0.068 | degree | | ONH | RMS output noise
(1 sigma) on SPI, ABI
and UVW interfaces.
Not tested, guaranteed
by design. | Orthogonal
component for the
magnetic field within
the specified range
(Bz), NOISESET = 1 | | | 0.082 | degree | ams Datasheet Page 7 [v1-06] 2014-Oct-31 Document Feedback | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |-----------------------------|---|---|-----|-----|-------|--------| | ON_PWM | RMS output noise
(1 sigma) on PWM
interface | Orthogonal
component for the
magnetic field within
the specified range
(Bz) | | | 0.068 | degree | | t _{delay} | System propagation delay –core | Reading angle via SPI | 90 | | 110 | μs | | t _{delay_}
DAEC | Residual system propagation delay after dynamic angle error correction. | At ABI, UVW and SPI | 1.5 | | 1.9 | μs | | t _{sampl} | Sampling rate | Refresh rate at SPI | 202 | 222 | 247 | ns | | DAE ₁₇₀₀ | Dynamic angle error | At 1700 RPM constant speed | | | 0.02 | degree | | DAE _{max} | Dynamic angle error | At 14500 RPM
constant speed | | | 0.18 | degree | | DAE _{acc} | Dynamic angle error at constant acceleration (25krad/s²) | 25k radians/s ² constant acceleration | | | 0.175 | degree | | MS | Maximum speed | | | | 14500 | RPM | Reference magnet: N35H, 8mm diameter; 3mm thickness # **Timing Characteristics** Figure 9: Timing Specifications | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |------------------|---------------|-----------------------------------|-----|-----|-----|-------| | t _{pon} | Power-on time | Not tested, guaranteed by design. | | | 10 | ms | Page 8ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 #### **Detailed Description** The AS5147 is a Hall-effect magnetic sensor using a CMOS technology. The Hall sensors convert the magnetic field component perpendicular to the surface of the chip into a voltage. The signals from the Hall sensors are amplified and filtered by the analog front-end (AFE) before being converted by the analog-to-digital converter (ADC). The output of the ADC is processed by the hardwired CORDIC (coordinate rotation digital computer) block to compute the angle and magnitude of the magnetic vector. The intensity of the magnetic field (magnitude) is used by the automatic gain control (AGC) to adjust the amplification level for compensation of the temperature and magnetic field variations. The internal 14-bit resolution is available by reading a register through the SPI interface. The resolution on the ABI output can be programmed for 10 or 11 bits. The Dynamic Angle Error Compensation block corrects the calculated angle for latency using a linear prediction calculation algorithm. At constant rotation speed the latency time is internally compensated by the AS5147, reducing the dynamic angle error at the SPI, ABI and UVW outputs. The AS5147 allows selecting between a UVW output interface and a PWM-encoded interface on the W pin. At higher speeds, the interpolator fills in missing ABI pulses and generates the UVW signals with no loss of resolution. The non-volatile settings in the AS5147 can be programmed through the SPI interface without any dedicated programmer. #### **Power Management** The AS5147 can be either powered from a 5.0V supply using the on-chip low-dropout regulator or from a 3.3V voltage supply. The LDO regulator is not intended to power any other loads, and it needs a 1 μ F capacitor to ground located close to the chip for decoupling as shown in Figure 11. In 3.3V operation, VDD and VREG must be tied together. In this configuration, normal noise performance (ONL) is available at reduced maximum temperature (125°C) by clearing NOISESET to 0. When NOISESET is set to 1, the full temperature range is available with reduced noise performance (ONH). Figure 10: Temperature Range and Output Noise in 3.3V and 5.0V Mode | VDD (V) | NOISESET | Temperature Range (°C) | RMS Output Noise (degree) | |---------|----------|------------------------|---------------------------| | 5.0 | 0 | -40 to 150 | 0.068 | | 3.3 | 0 | -40 to 125 | 0.068 | | 3.3 | 1 | -40 to 150 | 0.082 | ams Datasheet Page 9 [v1-06] 2014-Oct-31 Document Feedback Figure 11: 5.0V and 3.3V Power Supply Options After applying power to the chip, the power-on time (t_{pon}) must elapse before the AS5147 provides the first valid data. #### **Dynamic Angle Error Compensation** The AS5147 uses 4 integrated Hall sensors which produce a voltage proportional to the orthogonal component of the magnetic field to the die. These voltage signals are amplified, filtered, and converted into the digital domain to allow the CORDIC digital block to calculate the angle of the magnetic vector. Propagation of these signals through the analog front-end and digital back-end generates a fixed delay between the time of measurement and the availability of the measured angle at the outputs. This latency generates a dynamic angle error represented by the product of the angular speed (ω) and the system propagation delay $(t_{\mbox{\scriptsize delay}})$: $$DAE = \omega \times t_{delay}$$ The dynamic angle compensation block calculates the current magnet rotation speed (ω) and multiplies it with the system propagation delay (t_{delay}) to determine the correction angle to reduce this error. At constant speed, the residual system propagation delay is t_{delay} DAEC. The angle represented on the PWM interface is not compensated by the Dynamic Angle Error Compensation algorithm. it is also possible to disable the Dynamic Angle Error Compensation with the DAECDIS setting. Disabling the Dynamic Angle Error Compensation gives a noise benefit of 0.016 degree rms. This setting can be advantageous for low speed (under 100 RPM) respectively static positioning applications. Page 10 Document Feedback [v1-06] 2014-Oct-31 #### SPI Interface (slave) The SPI interface is used by a host microcontroller (master) to read or write the volatile memory as well as to program the non-volatile OTP registers. The AS5147 SPI only supports slave operation mode. It communicates at clock rates up to 10 MHz. The AS5147 SPI uses mode=1 (CPOL=0, CPHA=1) to exchange data. As shown in Figure 12, a data transfer starts with the falling edge of CSn (SCL is low). The AS5147 samples MOSI data on the falling edge of SCL. SPI commands are executed at the end of the frame (rising edge of CSn). The bit order is MSB first. Data is protected by parity. #### **SPI Timing** The AS5147 SPI timing is shown in Figure 12. Figure 12: SPI Timing Diagram ams Datasheet Page 11 [v1-06] 2014-Oct-31 Document Feedback #### Figure 13: **SPI Timing** | Parameter | Description | Min | Max | Units | |-------------------|--|--------|-----|-------| | t _L | Time between CSn falling edge and CLK rising edge | 350 | | ns | | t _{clk} | Serial clock period | 100 | | ns | | t _{clkL} | Low period of serial clock | 50 | | ns | | t _{clkH} | High period of serial clock | 50 | | ns | | t _H | Time between last falling edge of CLK and rising edge of CSn | tclk/2 | | ns | | t _{CSn} | High time of CSn between two transmissions | 350 | | ns | | t _{MOSI} | Data input valid to falling clock edge | 20 | | ns | | t _{MISO} | CLK edge to data output valid | | 51 | ns | | t _{OZ} | Release bus time after CS rising edge. | | 10 | ns | #### **SPI Transaction** An SPI transaction consists of a 16-bit command frame followed by a 16-bit data frame. Figure 14 shows the structure of the command frame. Figure 14: **SPI Command Frame** | Bit | Name | Description | |------|------|---| | 15 | PARC | Parity bit (even) calculated on the command frame | | 14 | R/W | 0: Write
1: Read | | 13:0 | ADDR | Address to read or write | Page 12 ams Datasheet **Document Feedback** [v1-06] 2014-Oct-31 To increase the reliability of communication over the SPI, an even parity bit (PARC) must be generated and sent. A wrong setting of the parity bit causes the PARERR bit in the error flag register to be set. The parity bit is calculated from the 16-bit command frame. The 16-bit command specifies whether the transaction is a read or a write and the address. Figure 15 shows the read data frame. Figure 15: SPI Read Data Frame | Bit | Name | Description | |------|------|--| | 15 | PARD | Parity bit (even) for the data frame | | 14 | EF | 0: No command frame error command occurred 1: Error occurred | | 13:0 | DATA | Data | The data is sent on the MISO pin. The parity bit PARD is calculated by the AS5147 for the 16-bit data frame. If an error is detected in the previous SPI command frame, the EF bit is set high. The SPI read is sampled on the rising edge of CSn and the data is transmitted on MISO with the next read command, as shown in Figure 16. Figure 16: SPI Read ams Datasheet Page 13 [v1-06] 2014-Oct-31 Document Feedback Figure 17: SPI Write Data Frame | Bit | Name | Description | |------|------|-------------------| | 15 | PARD | Parity bit (even) | | 14 | 0 | Always low | | 13:0 | DATA | Data | The parity bit PARD must be calculated from the 16-bit data. In an SPI write transaction, the write command frame (e.g. Write ADD[n]) is followed by a data frame (e.g. DATA [x]). In addition to writing an address in the AS5147, a write command frame causes the old contents of the addressed register (e.g. DATA [y]) to be sent on MISO in the following frame. This is followed by the new contents of the addressed register (DATA [x]) as shown in Figure 19. Figure 18: SPI Write Transaction Page 14 Document Feedback [v1-06] 2014-Oct-31 # **Volatile Registers** The volatile registers are shown in Figure 19. Each register has a 14-bit address. Figure 19: **Volatile Register Table** | Address | Name | Default | Description | |---------|----------|---------|---| | 0x0000 | NOP | 0x0000 | No operation | | 0x0001 | ERRFL | 0x0000 | Error register | | 0x0003 | PROG | 0x0000 | Programming register | | 0x3FFC | DIAAGC | 0x0180 | Diagnostic and AGC | | 0x3FFD | MAG | 0x0000 | CORDIC magnitude | | 0x3FFE | ANGLEUNC | 0x0000 | Measured angle without dynamic angle error compensation | | 0x3FFF | ANGLECOM | 0x0000 | Measured angle with dynamic angle error compensation | Reading the NOP register is equivalent to a nop (no operation) instruction for the AS5147. Figure 20: ERRFL (0x0001) | Name | Read/Write | Bit Position | Description | |---------|------------|--------------|---| | PARERR | R | 2 | Parity error | | INVCOMM | R | 1 | Invalid command error: set to 1 by reading or writing an invalid register address | | FRERR | R | 0 | Framing error: is set to 1 when a non-compliant SPI frame is detected | Reading the ERRFL register automatically clears its contents (ERRFL=0x0000). ams Datasheet Page 15 Document Feedback Figure 21: PROG (0x0003) | Name | Read/Write | Bit Position | Description | |---------|------------|--------------|---| | PROGVER | R/W | 6 | Program verify: must be set to 1 for verifying the correctness of the OTP programming | | PROGOTP | R/W | 3 | Start OTP programming cycle | | OTPREF | R/W | 2 | Refreshes the non-volatile memory content with the OTP programmed content | | PROGEN | R/W | 0 | Program OTP enable: enables reading / writing the OTP memory | The PROG register is used for programming the OTP memory. (See programming the zero position.) Figure 22: DIAAGC (0x3FFC) | Name | Read/Write | Bit Position | Description | |------|------------|--------------|---| | MAGL | R | 11 | Diagnostics: Magnetic field strength too low; AGC=0xFF | | MAGH | R | 10 | Diagnostics: Magnetic field strength too high; AGC=0x00 | | COF | R | 9 | Diagnostics: CORDIC overflow | | LF | R | 8 | Diagnostics: Loops Finished LF=0:internal offset loops not ready regulated LF=1:internal offset loop finished | | AGC | R | 7:0 | Automatic gain control value | #### Note(s) and/or Footnote(s): 1. LF = Loops Finished Figure 23: MAG (0x3FFD) | Name | Read/Write | Bit Position | Description | |------|------------|--------------|------------------------------| | CMAG | R | 13:0 | CORDIC magnitude information | Figure 24: ANGLE (0x3FFE) | Name | Read/Write | Bit Position | Description | |-----------|------------|--------------|--| | CORDICANG | R | 13:0 | Angle information without dynamic angle error compensation | Page 16ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 Figure 25: ANGLECOM (0x3FFF) | Name | Read/Write | Bit Position | Description | |---------|------------|--------------|---| | DAECANG | R | 13:0 | Angle information with dynamic angle error compensation | # Non-Volatile Registers (OTP) A nonvolatile memory (One-Time Programmable) is used store the zero position of the magnet and custom settings. Figure 26: Non-Volatile Register Table | Address | Name | Default | Description | |---------|-----------|---------|-----------------------------------| | 0x0016 | ZPOSM | 0x0000 | Zero position MSB | | 0x0017 | ZPOSL | 0x0000 | Zero position LSB/ MAG diagnostic | | 0x0018 | SETTINGS1 | 0x0000 | Custom setting register 1 | | 0x0019 | SETTINGS2 | 0x0000 | Custom setting register 2 | | 0x001A | RED | 0x0000 | Redundancy register | Figure 27: ZPOSM (0x0016) | Name | Read/Write/Program | Bit Position | Description | |-------|--------------------|--------------|--| | ZPOSM | R/W/P | 7:0 | 8 most significant bits of the zero position | Figure 28: ZPOSL (0x0017) | Name | Read/Write/Program | Bit Position | Description | |-----------------|--------------------|--------------|--| | ZPOSL | R/W/P | 5:0 | 6 least significant bits of the zero position | | comp_l_error_en | R/W/P | 6 | This bit enables the contribution of MAGH (Magnetic field strength too high) to the system_error | | comp_h_error_en | R/W/P | 7 | This bit enables the contribution of MAGL (Magnetic field strength too low) to the system_error | ams Datasheet Page 17 [v1-06] 2014-Oct-31 Document Feedback Figure 29: SETTINGS1 (0x0018) | Name | Read/Write/Program | Bit Position | Description | |------------|--------------------|--------------|--| | IWIDTH | R/W/P | 0 | Width of the index pulse I
(0 = 3LSB, 1 = 1LSB) | | NOISESET | R/W/P | 1 | Noise setting | | DIR | R/W/P | 2 | Rotation direction | | UVW_ABI | R/W/P | 3 | Defines the PWM Output
(0 = ABI is operating, W is used as PWM
1 = UVW is operating, I is used as PWM) | | DAECDIS | R/W/P | 4 | Disable Dynamic Angle Error Compensation
(0 = DAE compensation ON, 1 = DAE
compensation OFF) | | Dataselect | R/W/P | 6 | This bit defines which data can be read form address 16383dec (3FFFhex). 0->DAECANG 1->CORDICANG | | PWMon | R/W/P | 7 | enables PWM (setting of UVW_ABI Bit necessary) | Figure 30: SETTINGS2 (0x0019) | Name | Read/Write/Program | Bit Position | Description | |--------|--------------------|--------------|--| | UVWPP | R/W/P | 2:0 | UVW number of pole pairs
(000 = 1, 001 = 2, 010 = 3, 011 = 4, 100 = 5, 101 = 6,
110 = 7, 111 = 7) | | HYS | R/W/P | 4:3 | Hysteresis for 11 Bit ABI Resolution: (00=3LSB, 01=
2LSB,10=1LSB,11=no hysteresis)
Hysteresis for 10 Bit ABI Resolution: (00=2LSB, 01=
1LSB,10=no Hysteresis LSB,11=3LSB) | | ABIRES | R/W/P | 5 | Resolution of ABI (0 = 11 bits, 1 = 10 -bits) | The hysteresis (Figure 35)is in terms of the chosen resolution (11 bits vs. 10 bits). The ABIRES resolution does not affect the UVW signals. Page 18ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 Figure 31: RED (0x001A) | Name | Read/Write/
Program | Bit
Position | Description | |------------|------------------------|-----------------|---| | REDUNDANCY | R/W/P | 4:0 | Redundancy bits. This field enables with force to high one bit of the Non-Volatile register map after a non-successful burning. For more details please refer to the application note "AN5000 – AS5147_Redundancy_Bits" | #### **ABI Incremental Interface** The AS5147 can send the angle position to the host microcontroller through an incremental interface. This interface is available simultaneously with the other interfaces. By default, the incremental interface is set to work at the highest resolution (11 bits), which corresponds to 2048 steps per revolution or 512 pulses per revolution (ppr). This resolution can be cut in half using the OTP bit ABIRES, which results in 1024 steps per revolution or 256 pulses per revolution. The phase shift between the A and B signals indicates the rotation direction: e.g. DIR-Bit = 0, clockwise (A leads, B follows) or counterclockwise (B leads, A follows) as viewed from above the magnet and AS5147. The DIR bit can be used to invert the sense of the rotation direction. The IWIDTH setting programs the width of the index pulse from 3 LSB (default) to 1 LSB. Figure 32: ABI Signals at 11-Bit Resolution N = 2048 for 11-bit resolution, and N = 1024 for 10-bit resolution. The Figure 32 shows the ABI signal flow if the magnet rotates in clockwise direction, placing the magnet on the top of the AS5147 and looking at the magnet from the top (DIR=0). With the bit DIR, it is possible to invert the rotation direction. ams Datasheet Page 19 [v1-06] 2014-Oct-31 Document Feedback #### **UVW** Commutation Interface The AS5147 can emulate the UVW signals generated by the three discrete Hall switches commonly used in BLDC motors. The UVWPP field in the SETTINGS register selects the number of pole pairs of the motor (from 1 to 7 pole pairs). The UVW signals are generated with 14-bit resolution. During the start-up time, after power on of the chip, the UVW signals are low. Figure 33: UVW Signals Figure 33 shows the UVW signals for a magnet rotating clockwise, as viewed from above the magnet and the AS5147.The (DIR=0) bit can be used to invert the sense of the rotation direction. Page 20 Document Feedback [v1-06] 2014-Oct-31 #### **PWM** The PWM can be enabled with the bit setting PWMon. The PWM encoded signal is displayed on the pin W or the pin I. The bit setting UVW_ABI defines which output is used as PWM. The PWM output consists of a frame of 4119 PWM clock periods, as shown in Figure 34. The PWM frame has the following sections: - 12 PWM Clocks for INIT - 4 PWM Clocks for Error detection - 16 PWM clock periods high - 4095 PWM clock periods of data - 8 PWM clock periods low The angle is represented in the data part of the frame with a 12-bit resolution. One PWM clock period represents 0.088 degree and has a typical duration of 444 ns. If the embedded diagnostic of the AS5147 detects any error the PWM interface displays only 12 clock periods high (0.3% duty-cycle). Figure 34: Pulse Width Modulation Encoded Signal ams Datasheet Page 21 [v1-06] 2014-Oct-31 Document Feedback #### Hysteresis The hysteresis can be programmed in the HYS bits of the SETTINGS register. The hysteresis can be 1, 2, or 3 LSB bits, in which the LSB is defined by the ABI resolution setting (ABIRES). Figure 35: Hysteresis Settings | HYS | HYSTERESIS with 11BIT ABI
Resolution | HYSTERESIS with 10BIT ABI
Resolution | |-----|---|---| | 00 | 3 | 2 | | 01 | 2 | 1 | | 10 | 1 | 0 | | 11 | 0 | 3 | # Automatic Gain Control (AGC) and CORDIC Magnitude The AS5147 uses AGC to compensate for variations in the magnetic field strength due to changes of temperature, air gap between the chip and the magnet, and demagnetization of the magnet. The automatic gain control value can be read in the AGC field of the DIAAGC register. Within the specified input magnetic field strength (Bz), the Automatic Gain Control keeps the CORDIC magnitude value (MAG) constant. Below the minimum input magnetic field strength, the CORDIC magnitude decreases and the MAGL bit is set. #### **Diagnostic Features** The AS5147 supports embedded self-diagnostics. MAGH: magnetic field strength too high, set if AGC = 0x00. This indicates the non-linearity error may be increased. MAGL: magnetic field strength too low, set high if AGC = 0xFF. This indicates the output noise of the measured angle may be increased. COF: CORDIC overflow. This indicates the measured angle is not reliable. LF: offset compensation completed. At power-up, an internal offset compensation procedure is started, and this bit is set when the procedure is completed. Page 22 Document Feedback [v1-06] 2014-Oct-31 #### LF Error / COF Error In case of an LF or COF error, all outputs are changing into a safe state: SPI Output: Information in the DIAAGC (0x3FFC) register. The angle information is still valid. PWM Output: PWM Clock Period 13 - 16 of the first 16 PWM Clock Periods = low. Additional there is no angle information valid (all 4096 clock periods = low) ABI Output: The state of ABI is frozen to ABI = 111 UVW Output: The state of UVW is frozen to UVW = 000 #### **MAGH Error /MAGL Error** Default diagnostic setting for MAGH error /MAGL error: In case of a MAGH error or MAGL error, there is no safe state on the PWM,ABI or UVW outputs if comp_h_error_en= 0 & comp_h_error_en = 0. The device is operating with the performance as explained. The error flags can be read out with the DIAAGC (0x3FFC) register. Enhanced diagnosis setting for MAGH error / MAGL error: In case of a MAGH error or MAGL error, the PWM,ABI or UVW outputs are going into a safe state if comp_h_error_en = 1 & comp_h_error_en = 1. SPI Output: Information in the DIAAGC (0x3FFC) register. The angle information is still valid, if the MAGH or MAGL error flag is on. PWM Output: PWM Clock Period 13 - 16 of the first 16 PWM Clock Periods = low. Additional there is no angle information valid (all 4096 clock periods = low) ABI Output : The state of ABI is frozen to ABI = 111 UVW Output: The state of UVW is frozen to UVW = 000 **Important:** When comp_(h/l)_error_en is enabled a marginal magnetic field input can cause toggling of MAGH or MAGL which will lead to toggling of the ABI/UVW outputs between operational mode and failure mode. ams Datasheet Page 23 [v1-06] 2014-Oct-31 Document Feedback # **Application Information** # **Burn and Verification of the OTP Memory** Step-by-step procedure to permanently program the non-volatile memory (OTP): Figure 36: Minimum Programming Diagram for the AS5147 in 5 V Operation #### Note(s) and/or Footnote(s): 1. In terms of EMC and for remote application, additional circuits are necessary. Page 24ams DatasheetDocument Feedback[v1-06] 2014-Oct-31 Figure 37: Minimum Programming Diagram for the AS5147 in 3.3V Operation #### Note(s) and/or Footnote(s): 1. In terms of EMC and for remote application, additional circuits are necessary. Figure 38: Programming Parameter | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--------------------|----------------------------|---|-----|-----|-----|-------| | T _{aProg} | Programming
temperature | Programming @ Room
Temperature
(25°C +-20°C | 5 | | 45 | °C | | V _{DD} | Positive supply voltage | 5 V operation mode. Supply
voltage during
programming | 4.5 | 5 | 5.5 | V | | V _{DD} | Positive supply voltage | 3.3 V operation mode.
Supply voltage during
programming | 3.3 | | 3.5 | V | | I _{Prog} | Current for programming | max current during OTP burn procedure. | | | 100 | mA | ams Datasheet Page 25 [v1-06] 2014-Oct-31 Document Feedback The programming can either be performed in 5V operation using the internal LDO (1uF on regulator output pin), or in 3V Operation but using a supply voltage between 3.3V and 3.5V. - 1. Power on cycle - 2. Write the SETTINGS1 and SETTINGS2 registers with the Custom settings for this application - 3. Position the magnet at the desired zero position - 4. Read out the measured angle from the ANGLE register - 5. Write ANGLE [5:0] into the ZPOSL register and ANGLE [13:6] into the ZPOSM register - 6. Read reg(0x0016) to reg(0x0019) \rightarrow Read register step1 - 7. Comparison of written content (settings and angle) with content of read register step1 - 8. If point 7 is correct, enable OTP read / write by setting PROGEN = 1 in the PROG register - 9. Start the OTP burn procedure by setting PROGOTP = 1 in the PROG register - Read the PROG register until it reads 0x0000 (Programming procedure complete) - 11. Clear the memory content writing 0x00 in the whole non-volatile memory - 12. Enable OTP read / write by setting PROGEN = 1 in the PROG register - 13. Set the PROGVER = 1 to set the Guard band for the guard band test⁽¹⁾. - 14. Refresh the non-volatile memory content with the OTP content by setting OTPREF = 1 - 15. Read reg(0x0016) to reg(0x0019) \rightarrow Read register step2 - Comparison of written content (settings and angle) with content of read register step2. Mandatory: guard band test - 17. New power on cycle, if **point 16** is correct. If **point 16** fails, the test with the guard band test¹ was not successful and the device is incorrectly programmed. A reprogramming is not allowed! - 18. Read reg(0x0016) to reg(0x0019) \rightarrow Read register step3 - 19. Comparision of written content (settings and angle) with content of read register step3. - 20. If **point 19** is correct, the programming was successful. If **point 19** fails, device is incorrectly programmed. A reprogramming is not allowed. Page 26 Document Feedback [v1-06] 2014-Oct-31 ^{1.} Guard band test: ⁻ Restricted to temperature range: 25 °C \pm 20 °C ⁻ Right after the programming procedure (max. 1 hour with same ⁻ Conditions $25^{\circ}\text{C} \pm 20^{\circ}\text{C}$) ⁻ Same VDD voltage The guard band test is only for the verification of the burned OTP fuses during the programming sequence. A use of the guard band in other cases is not allowed. amu Figure 39: OTP Memory Burn and Verification Flowchart ams Datasheet Page 27 [v1-06] 2014-Oct-31 Document Feedback Figure 40: **Minimum Circuit Diagram for the AS5147** #### Note(s) and/or Footnote(s): 1. In terms of EMC and for remote application, additional circuits are necessary. Page 28 ams Datasheet [v1-06] 2014-Oct-31 # **Package Drawings & Markings** The axis of the magnet must be aligned over the center of the package. Figure 41: Package Outline Drawing | Symbol | Min | Nom | Max | |--------|------|----------|------| | Α | - | - | 1.20 | | A1 | 0.05 | - | 0.15 | | A2 | 0.80 | 1.00 | 1.05 | | b | 0.19 | - | 0.30 | | С | 0.09 | - | 0.20 | | D | 4.90 | 5.00 | 5.10 | | E | - | 6.40 BSC | - | | E1 | 4.30 | 4.40 | 4.50 | | е | - | 0.65 BSC | - | | L | 0.45 | 0.60 | 0.75 | | L1 | = | 1.00 REF | - | | Symbol | Min | Nom | Max | |--------|------|--------|-----| | R | 0.09 | - | - | | R1 | 0.09 | - | - | | S | 0.20 | - | - | | Θ1 | 0° | - | 8° | | Θ2 | - | 12 REF | - | | Θ3 | - | 12 REF | - | | aaa | - | 0.10 | - | | bbb | - | 0.10 | - | | ссс | - | 0.05 | - | | ddd | - | 0.20 | - | | N | | 14 | | #### Note(s) and/or Footnote(s): - 1. Dimensioning and tolerancing conform to ASME Y14.5M 1994. - 2. All dimensions are in millimeters. Angles are in degrees. - 3. N is the total number of terminals. ams Datasheet Page 29 [v1-06] 2014-Oct-31 Document Feedback Figure 42: **Package Marking** Figure 43: **Packaging Code** | YY | ww | M | ZZ | @ | |-------------------------------------|--------------------|------------------|------------------------------------|-------------------| | Last two digits of the current year | Manufacturing week | Plant identifier | Free choice /
traceability code | Sublot identifier | Page 30 ams Datasheet [v1-06] 2014-Oct-31 # **Mechanical Data** Figure 44: Angle Detection by Default (no Zero Position Programmed) # **Ordering & Contact Information** Figure 45: Ordering Information | Ordering
Code | Package | Marking | Delivery Form | Delivery
Quantity | |------------------|----------|---------|-----------------------------|----------------------| | AS5147-HTST | TSSOP-14 | AS5147 | 13" Tape & Reel in dry pack | 4500 | | AS5147-HTSM | TSSOP-14 | AS5147 | 7" Tape & Reel in dry pack | 500 | Online product information is available at: www.ams.com/AS5147 Buy our products or get free samples online at: www.ams.com/ICdirect Technical Support is available at: www.ams.com/Technical-Support Provide feedback about this document at: www.ams.com/Document-Feedback For further information and requests, e-mail us at: ams_sales@ams.com For sales offices, distributors and representatives, please visit: www.ams.com/contact #### Headquarters ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe Tel: +43 (0) 3136 500 0 Website: www.ams.com Page 32 Document Feedback [v1-06] 2014-Oct-31 ### **RoHS Compliant & ams Green Statement** **RoHS:** The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes. ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material). **Important Information:** The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. ams Datasheet Page 33 **Document Feedback** #### **Copyrights & Disclaimer** Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed. ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services. Page 34 Document Feedback [v1-06] 2014-Oct-31 # **Document Status** | Document Status | Product Status | Definition | |--------------------------|-----------------|--| | Product Preview | Pre-Development | Information in this datasheet is based on product ideas in
the planning phase of development. All specifications are
design goals without any warranty and are subject to
change without notice | | Preliminary Datasheet | Pre-Production | Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice | | Datasheet | Production | Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade | | Datasheet (discontinued) | Discontinued | Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs | ams Datasheet Page 35 [v1-06] 2014-Oct-31 Document Feedback # **Revision Information** | Changes from 1-04 (2014-Jun-27) to current revision 1-06 (2014-Oct-31) | Page | |--|-------| | Added Notes under Figure 4 | 3 | | Updated Figure 6 | 6 | | Updated Figure 8 | 7 | | Updated Figure 9 | 8 | | Updated Figure 13 | 12 | | Updated text under ABI Incremental Interface section | 19 | | Updated text under Figure 32 | 19 | | Updated text under Figure 33 | 20 | | Added Figures 36, 37 and 38 | 24;25 | #### Note(s) and/or Footnote(s): - 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision. - $2. \ Correction \ of \ typographical \ errors \ is \ not \ explicitly \ mentioned.$ Page 36 ams Datasheet **Document Feedback** [v1-06] 2014-Oct-31 #### **Content Guide** - 1 General Description - 1 Key Benefits & Features - 2 Applications - 2 Block Diagram - 3 Pin Assignment - 5 Absolute Maximum Ratings - **6 Electrical Characteristics** - 7 Magnetic Characteristics - 7 System Characteristics - 8 Timing Characteristics #### 9 Detailed Description - 9 Power Management - 10 Dynamic Angle Error Compensation - 11 SPI Interface (slave) - 11 SPI Timing - 12 SPI Transaction - 15 Volatile Registers - 17 Non-Volatile Registers (OTP) - 19 ABI Incremental Interface - 20 UVW Commutation Interface - 21 PWM - 22 Hysteresis - 22 Automatic Gain Control (AGC) and CORDIC Magnitude - 22 Diagnostic Features - 23 LF error / COF error - 23 MAGH error /MAGL error #### 24 Application Information - 24 Burn and Verification of the OTP Memory - 29 Package Drawings & Markings - 31 Mechanical Data - 32 Ordering & Contact Information - 33 RoHS Compliant & ams Green Statement - 34 Copyrights & Disclaimer - 35 Document Status - 36 Revision Information ams Datasheet Page 37 [v1-06] 2014-Oct-31 Document Feedback Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331