

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

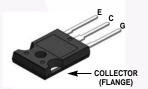
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

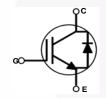
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

August 2014

FGH25T120SMD 1200 V, 25 A Field Stop Trench IGBT

Features


- FS Trench Technology, Positive Temperature Coefficient
- · High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 25 \text{ A}$
- 100% of The Parts Tested for I_{LM}(1)
- High Input Impedance
- RoHS Compliant


Applications

Solar Inverter, Welder, UPS & PFC Applications.

Using innovative field stop trench IGBT technology, Fairchild's new series of field stop trench IGBTs offer the optimum performance for hard switching application such as solar inverter, UPS, welder and PFC applications.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		1200	V	
V _{GES}	Gate to Emitter Voltage		±25	V	
*GES	Transient Gate to Emitter Voltage		±30	V	
I _C	Collector Current	$@ T_C = 25^{\circ}C$	50	A	
l C	Collector Current	$@ T_C = 100^{\circ}C$	25	A	
I _{LM} (1)	Clamped Inductive Load Current	$@ T_C = 25^{\circ}C$	100	A	
I _{CM} (2)	Pulsed Collector Current		100	A	
IF	Diode Continuous Forward Current	@ T _C = 25°C	50	A	
	Diode Continuous Forward Current	@ T _C = 100°C	25	A	
I _{FM}	Diode Maximum Forward Current		200	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	428	W	
' D	Maximum Power Dissipation	$@ T_C = 100^{\circ}C$	214	W	
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case		0.35	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case		1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		40	°C/W

- 1. Vcc = 600 V, V_{GE} = 15 V, I_C = 100 A, R_G = 23 Ω . Inductive Load 2. Limited by Tjmax

Package Marking and Ordering Information

Device Marking Device		Package	Reel Size	Tape Width	Quantity
FGH25T120SMD	FGH25T120SMD_F155	TO-247G03	-	-	30

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \text{ uA}$	1200	-	-	V
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}$, $V_{GE} = 0$ V	-	-	250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 25 \text{ mA}, V_{CE} = V_{GE}$	4.9	6.2	7.5	V
		$I_C = 25 \text{ A}, V_{GE} = 15 \text{ V}$ $T_C = 25^{\circ}\text{C}$	-	1.8	2.4	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 25 A, V _{GE} = 15 V, T _C = 175°C	-	1.9	-	V
Dynamic C	haracteristics					
C _{ies}	Input Capacitance		-	2800	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ f = 1MHz	-	105	-	pF
C _{res}	Reverse Transfer Capacitance	1 - 1101112	-	60	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	40	-	ns
t _r	Rise Time		-	45	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 25 \text{ A},$ $R_{G} = 23 \Omega, V_{GE} = 15 \text{ V},$	-	490	-	ns
t _f	Fall Time		-	12	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	1.74	-	mJ
E _{off}	Turn-Off Switching Loss		-	0.56	-	mJ
E _{ts}	Total Switching Loss		-	2.30	-	mJ
t _{d(on)}	Turn-On Delay Time		-	40	-	ns
t _r	Rise Time		-	48	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 25 \text{ A},$	-	520	-	ns
t _f	Fall Time	$R_G = 23 \Omega$, $V_{GE} = 15 V$,	-	64	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	2.94	-	mJ
E _{off}	Turn-Off Switching Loss		-	1.09	-	mJ
E _{ts}	Total Switching Loss		-	4.03	-	mJ
Qg	Total Gate Charge		-	225	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 600 \text{ V}, I_{C} = 25 \text{ A},$ $V_{GE} = 15 \text{ V}$	-	20	-	nC
Q _{gc}	Gate to Collector Charge	*GE = 10 *	-	128	-	nC

Electrical Characteristics of the DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 25 A, T _C = 25°C	-	2.8	3.7	V
1 101		I _F = 25 A, T _C = 175°C	-	2.1	-	V
t _{rr}	Diode Reverse Recovery Time	V _R = 600 V, I _F = 25 A,	-	60	-	ns
I _{rr}	Diode Peak Reverse Recovery Current	$di_F/dt = 200 \text{ A/us}, T_C = 25^{\circ}\text{C}$	-	6.6	-	Α
Q _{rr}	Diode Reverse Recovery Charge		-	197	=	nC
E _{rec}	Reverse Recovery Energy	$V_R = 600 \text{ V}, I_F = 25 \text{ A},$	-	330	-	uJ
t _{rr}	Diode Reverse Recovery Time	$di_F/dt = 200 \text{ A/us}, T_C = 175^{\circ}\text{C}$	-	325	-	ns
I _{rr}	Diode Peak Reverse Recovery Current		-	13	-	Α
Q_{rr}	Diode Reverse Recovery Charge		-	2113	-	nC

Figure 1. Typical Output Characteristics

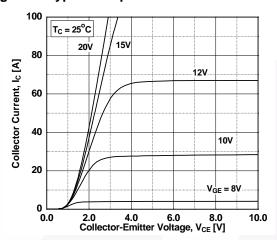


Figure 3. Typical Saturation Voltage Characteristics

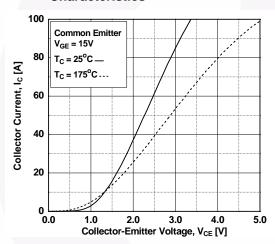
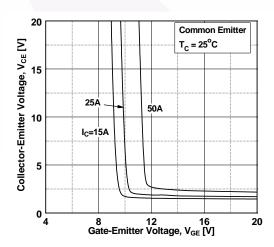



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

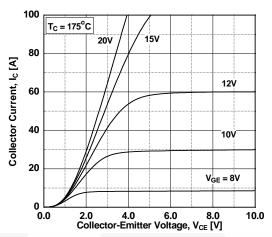


Figure 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

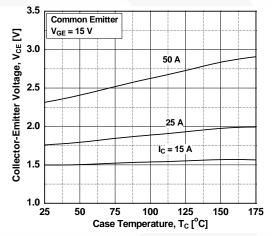


Figure 6. Saturation Voltage vs. V_{GE}

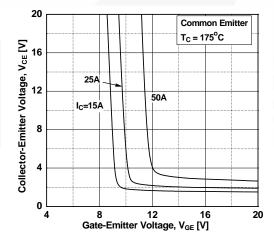


Figure 7. Capacitance Characteristics

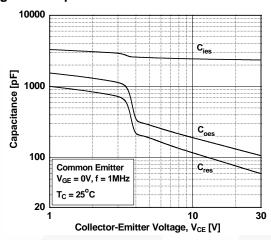


Figure 9. Turn-on Characteristics vs.

Gate Resistance

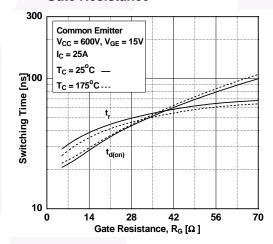
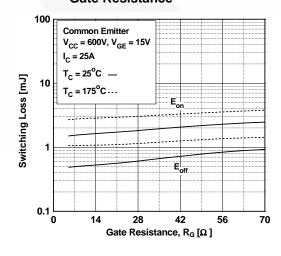



Figure 11. Swithcing Loss vs.

Gate Resistance

Figure 8. Gate Charge Characteristics

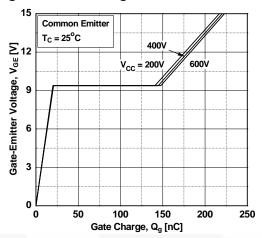


Figure 10. Turn-off Characteristics vs.
Gate Resistance

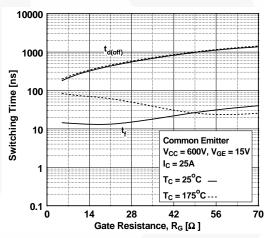


Figure 12. Turn-on Characteristics vs. Collector Current

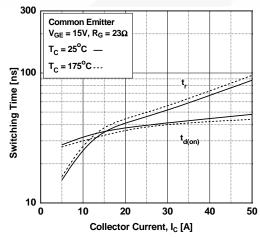


Figure 13. Turn-off Characteristics vs. Collector Current

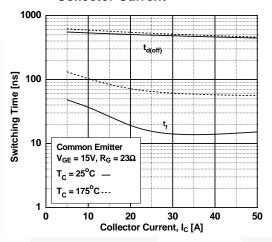


Figure 15. Load Current vs. Frequency

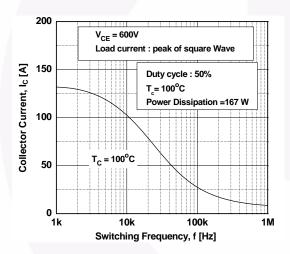


Figure 17. Forward Characteristics

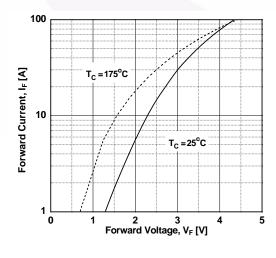


Figure 14. Swithcing Loss vs. Collector Current

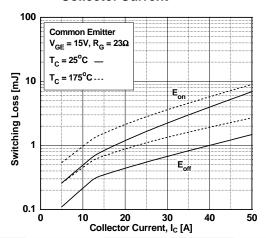


Figure 16. SOA Characteristics

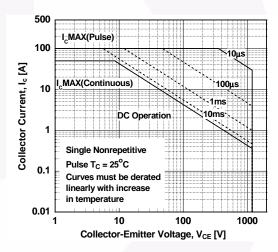


Figure 18. Reverse Recovery Current

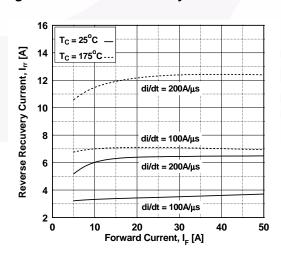


Figure 19. Reverse Recovery Time

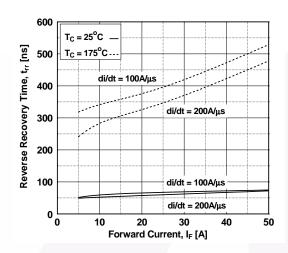


Figure 20. Stored Charge

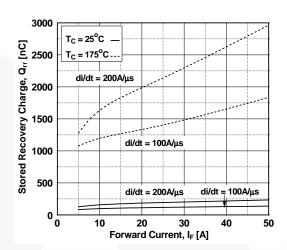


Figure 21. Transient Thermal Impedance of IGBT

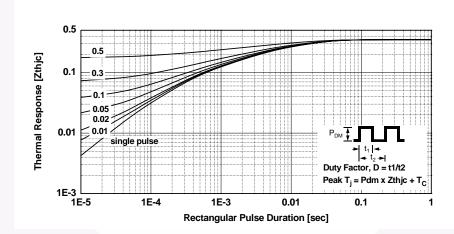
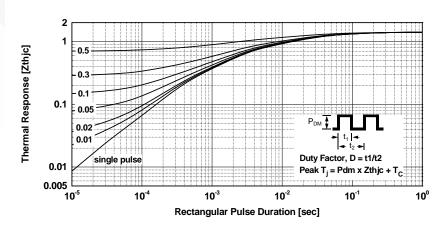



Figure 22. Transient Thermal Impedance of Diode

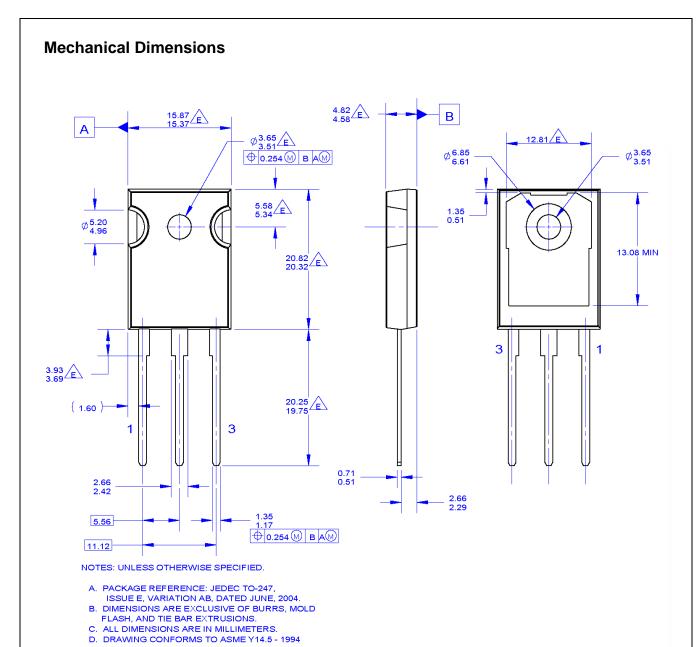


Figure 23. TO-247, MOLDED, 3 LEAD, JEDEC AB LONG LEADS (Active)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN TO247-0A3

DOES NOT COMPLY JEDEC STANDARD VALUE
F. DRAWING FILENAME: MKT-TO247G03_REV01

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerTM
AX-CAP[®]*
BitSiCTM
Build it NowTM
CorePLUSTM
CorePOWERTM

CorePOWERTM

CROSSVOLTTM

CTLTM

Current Transfer LogicTM

DEUXPEED®

Dual CoolTM

EcoSPARK®

EfficentMaxTM

FSBC™

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series™
FACT[®]
FAST[®]
FastvCore™

FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™
e-Series™

Gmax[™]
GTO[™]
IntelliMAX[™]
ISOPLANAR[™]
Marking Small Speakers Sound Louder
and Better[™]

F-PFS™

MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC®

OPTOPLANAR®

PowerTrench®
PowerXS™
Programmable Active Droop™
OFET®

QS[™] Quiet Series[™] RapidConfigure[™]

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax[™]
SMART START[™]
Solutions for Your Success[™]
SPM[®]

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTOTM
TinyPower™
TinyPWMTM
TinyPWMTM
TranSiCTM
TriFault Detect™
TRUECURRENT®*

SerDes*
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
仙童™

μSerDes™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 168

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FGH25T120SMD_F155

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331