MAAM-011100

Broadband Variable Gain Amplifier (VGA) 400 MHz - 20 GHz

Rev. V2

Features

- 12 dB Gain
- 50 Ω Input / Output Match over Gain Range
- 30 dB Gain Control with 0 to -2 V Control
- +18 dBm Output Power
- +5 V, -0.5 V DC, 70 mA
- Lead-Free 1.5 x 1.2 mm 6-lead TDFN Package
- RoHS* Compliant and 260°C Reflow Compatible

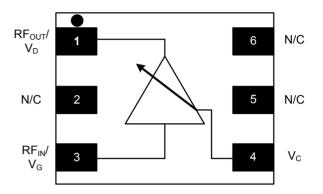
Description

The MAAM-011100 is an easy-to-use, broadband, general purpose variable gain amplifier. Its over 30 dB gain range is controlled by a single control pin and 50 Ω match is maintained over all settings.

The MAAM-011100 operates from 400 MHz to 20 GHz and features flat gain control from +10 dB to -20 dB. At maximum gain setting (V_C =Open) it delivers up to +18 dBm power and under 5 dB noise figure. Both reduce proportionally as gain is reduced with V_C . The input IP3 exceeds +15 dBm at max/min gain settings. The device is typically biased with a V_D = +5 V, V_G = -0.5 V, and a control of 0 V to -2 V. Typical current is 70 mA with V_G at -0.5 V

The MAAM-011100 is ideally suited for use as a power amplifier driver, gain trimming block, or temperature compensation in the receive or transmit mode. Typical applications include Wi-Fi, LTE. Point-to-Point, IMS, EW, and A&D systems.

This device is assembled in a leadless 1.5 X 1.2 mm package that can be handled and placed with standard pick and place assembly equipment.


Ordering Information^{1,2}

Part Number	Package
MAAM-011100	bulk quantity
MAAM-011100-TR1000	1000 piece reel
MAAM-011100-001SMB	Sample board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Function	
1	RF _{OUT} /V _D	RF Output	
2	N/C	No Connection	
3	RF _{IN} /V _G	RF Input	
4	V _C	Voltage Control	
5	N/C	No Connection	
6	N/C	No Connection	
7	Paddle ³	Ground	

^{3.} The exposed paddle centered on the package bottom must be connected to RF and DC ground.

1

Rev. V2

Electrical Specifications (unless otherwise noted):

Freq = 10 GHz, T_A = +25°C, V_D = +5 V, V_G = -0.5 V, V_C = Open, Z_{IN} = Z_{OUT} = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Highest Gain	V_C = open @ 400 MHz V_C = open @ 10 GHz V_C = open @ 20 GHz	dB	8	12 10 11	_
Lowest Gain	$V_C = -2 \text{ V } @ 400 \text{ MHz}$ $V_C = -2 \text{ V } @ 10 \text{ GHz}$ $V_C = -2 \text{ V } @ 20 \text{ GHz}$	dB	_	-33 -23 -25	-18
Gain Control	V _C = 0 to -2 V	dB	_	30	_
Isolation	All States	dB	_	28	_
Input Return Loss	All States	dB	_	14	_
Output Return Loss	All States	dB	_	12	_
Noise Figure	At maximum gain	dB	_	5	_
P1dB	At maximum gain @ 10 GHz	dBm	_	+15	_
Input IP3	At maximum or minimum gain	dBm	_	+15	_
Stability	Any Load	-		unconditional	
Voltage Supply	External Choke	V	_	5	_
Bias Current	$V_D = +5 \text{ V}$ $V_G = -0.5 \text{ V}$	mA	_	75 0.01	_

Absolute Maximum Ratings^{4,5,6}

Parameter	Absolute Max.	
Input Power	+15 dBm	
Operating Voltage	+8 Volts	
Operating Current	110 mA	
Junction Temperature ⁷	+150°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +150°C	

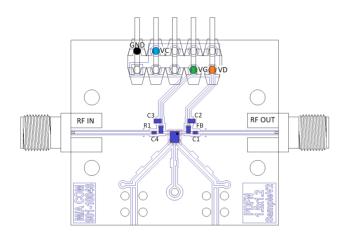
- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 6. Operating at nominal conditions with $T_J \le 150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- 7. Junction Temperature (T_J) = T_C + Θ _{JC} * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ _{JC}) = 67°C/W
 - a) For $T_C = 25^{\circ}C$,

 T_J = 47°C @ 5 V, 70 mA, P_{OUT} = 15 dBm, P_{IN} = $\,6$ dBm b) For T_C = 85°C,

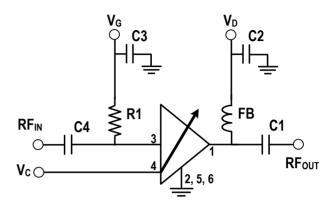
 $T_J = 107^{\circ}C @ 5 V$, 70 mA, $P_{OUT} = 15 dBm$, $P_{IN} = 6 dBm$

Handling Procedures

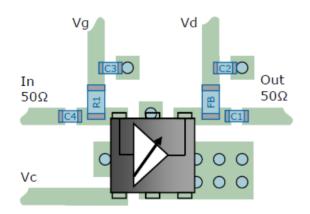
Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.



Rev. V2


Evaluation Board

Application Schematic

Recommended PCB Layout

Application Information for DC & pins

For proper MAAM-011100 operation a DC voltage must be applied at the V_G (-0.5V) and V_D (+5V) pins in that order. Adjusting V_G from -0.2 V to -0.6 V will change the quiescent current which can effect power and linearity if set below or above 70 mA.

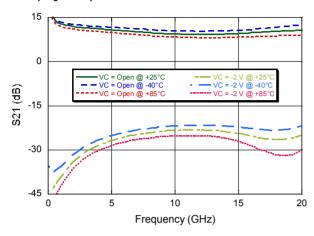
The gain of the MAAM-011100 is controlled with the $V_{\rm C}$ pin. The gain reduction is almost linear with $V_{\rm C}$ between 0 V to -2 V. Below -2 V internal ESD protection diodes will draw increasing current. The nominal open circuit voltage at the $V_{\rm C}$ pin is +1 V and produces maximum gain and power. Limiting applications and zero crossing adjustment can be done by adjusting the $V_{\rm G}$ and $V_{\rm C}$ pins together.

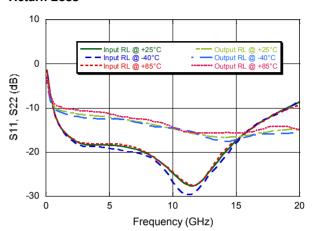
To bias properly, a DC voltage must be applied at the output pin. Typically this is done with a 2 element bias network that consists of a choke and a DC blocking capacitor. We recommend a ferrite bead for the main bias choke and quality capacitor for the DC block. A simple 1 K Ω resistor can be used as a RF choke for the negative V $_{\rm G}$ as applied to the input pin.

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200- μ m) diameter vias under the device, assuming an 8-mil (200- μ m) thick RF layer to ground

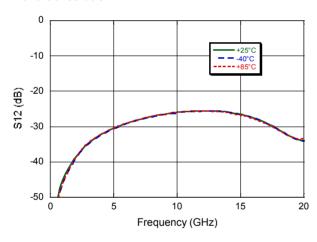
Parts List

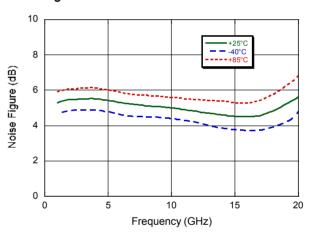
Component	Value	Package
C1, C4	0.22 μF	0201
C2, C3	0.22 μF	0402
FB ⁸	407 Ω	0402
R1	1 ΚΩ	0402

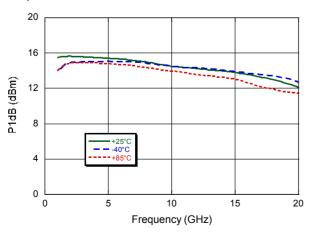

8. MACOM recommends using Murata part BLM15GG471.

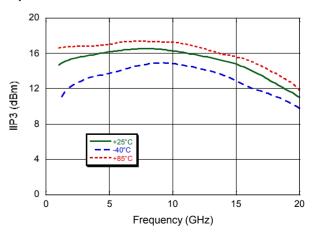

Rev. V2

Typical Performance Curves over Temperature


Gain, $V_C = 0 V, -2 V$


Return Loss


Reverse Isolation

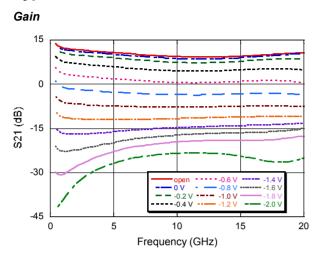

Noise Figure

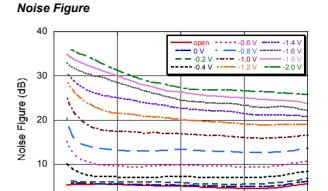
Output P1dB

Input IP3

4

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

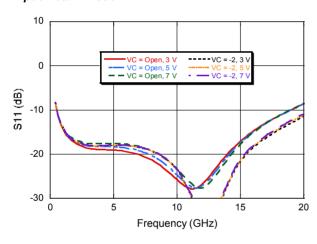

Visit www.macomtech.com for additional data sheets and product information.



Rev. V2

20

Typical Performance Curves vs. Control Voltage

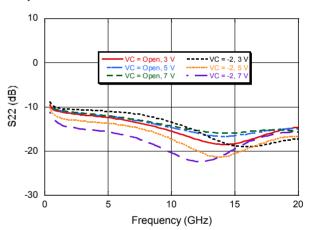


10

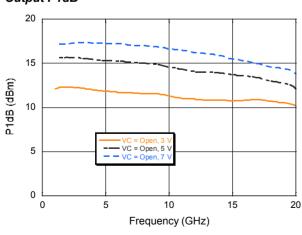
Frequency (GHz)

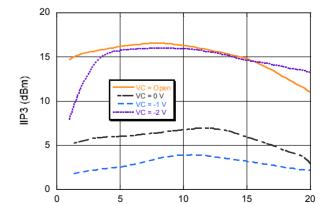
15

Input Return Loss


Output Return Loss

5

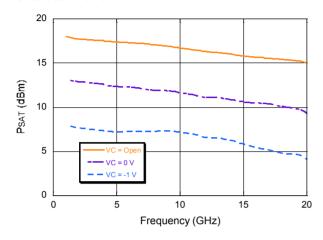

0

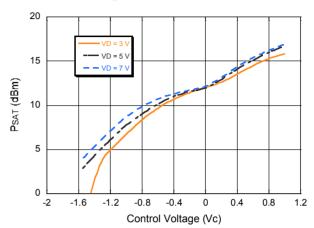

Input IP3

0

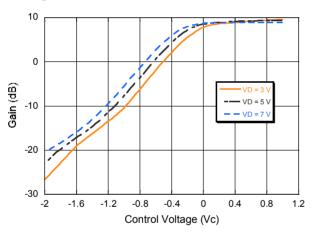
Output P1dB

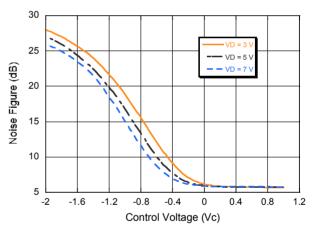
Frequency (GHz)

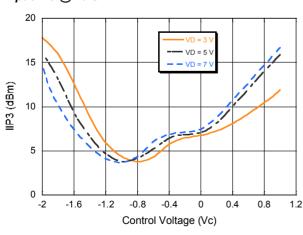

5

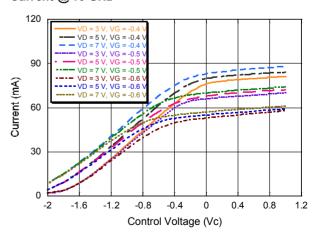

Rev. V2

Typical Performance Curves

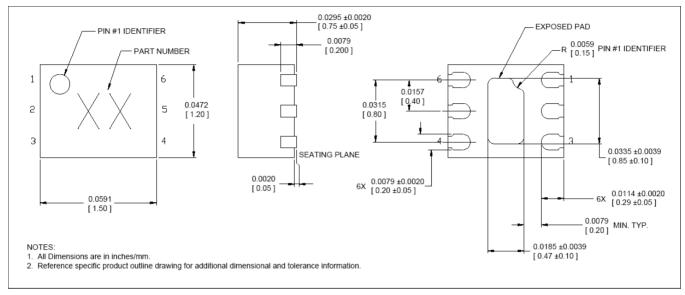

Saturated Power


Saturated Power @ 10 GHz


Gain @ 10 GHz


Noise Figure @ 10 GHz

Input IP3 @ 10 GHz


Current @ 10 GHz

Rev. V2

Lead-Free 1.5 x 1.2 mm 6-lead TDFN

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is matte tin over Copper.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331