General Description

The MAX9381 differential data, differential clock D flipflop is pin compatible with the ON Semiconductor MC100EP52, with the added benefit of a wider supplyvoltage range from 2.25V to 5.5V and 25% lower supply current. Data enters the master part of the flip-flop when the clock is low and is transferred to the outputs upon a positive transition of the clock. Interchanging the clock inputs allows the part to be used as a negative edge-triggered device. The MAX9381 utilizes input clamping circuits that ensure the stability of the outputs when the inputs are left open or at V_{EE}.

The MAX9381 is offered in an 8-pin SO package and the smaller 8-pin μMAX package.

_Applications

Precision Clock and Data Distribution Central Office DSLAM DLC Base Station ATE

_Features

- ♦ 3.0GHz Guaranteed Operating Clock Frequency
- 0.2ps_{RMS} Added Random Jitter
- ♦ 328ps Typical Propagation Delay
- PECL Operation from V_{CC} = 2.25V to 5.5V with V_{EE} = 0V
- ECL Operation from VEE = -2.25V to -5.5V with VCC = 0V
- Input Safety Clamps Ensure Output Stability when Inputs are Open or at VEE
- ±2kV ESD Protection (Human Body Model)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9381ESA	-40°C to +85°C	8 SO
MAX9381EUA*	-40°C to +85°C	8 µMAX

*Future product—contact factory for availability.

Functional Diagram

Maxim Integrated Products 1

ith ures MAX9381

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

$V_{CC} - V_{EE}$ 0.3V to +6.0V Input Voltage (D, \overline{D} , CLK, \overline{CLK})(V _{EE} - 0.3V) to (V _{CC} + 0.3V) Differential Input VoltageSmaller of IV _{CC} - V _{EE} I or 3.0V Output Current (Q, \overline{Q})
Continuous
8-Pin μMAX+221°C/W 8-Pin SO+170°C/W
Maximum Continuous Power Dissipation 8-Pin μMAX (derate 4.5mW/°C above +70°C)362mW 8-Pin SO (derate 5.9mW/°C above +70°C)471mW

Junction-to-Ambient Thermal Resistance with 500LFPM Airflow	
8-Pin μΜΑΧ	+155°C/W
8-Pin SO	+99°C/W
Junction-to-Case Thermal Resistance	
8-Pin µMAX	+39°C/W
8-Pin SO	+40°C/W
Operating Temperature Range	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model	±2kV
Soldering Temperature (10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.25V \text{ to } 5.5V (T_A = +25^{\circ}C \text{ to } +85^{\circ}C), V_{CC} - V_{EE} = 2.375V \text{ to } 5.5V (T_A = -40^{\circ}C \text{ to } +25^{\circ}C), \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0V, \text{ unless otherwise noted}. Typical values are at V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted}.$ (Notes 1, 2, and 3)

DADAMETED				-40°C			+25°C			+85°C			
PARAMETER SYMBOL		CONDITIONS		MIN	ТҮР	МАХ	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
INPUTS (D, \overline{D} , CL	K, CLK)												
Differential Input High Voltage	VIHD	Figure 1		V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		Vcc	V
Differential Input Low Voltage	VILD	Figure 1		V _{EE}		V _{CC} - 0.15	VEE		V _{CC} - 0.15	V _{EE}		V _{CC} - 0.15	V
Differential Input Voltage	VID	Figure 1	V _{CC} - V _{EE} < 3.0V	0.15		V _{CC} - V _{EE}	0.15		V _{CC} - V _{EE}	0.15		V _{CC} - V _{EE}	V
			V _{CC} - V _{EE} ≥ 3.0V	0.15		3.0	0.15		3.0	0.15		3.0	
Single-Ended Input Current	I _{IH} , I _{IL}	D, D, CLK, or CLK = V _{IHD} or V _{ILD}		-10		+200	-10		+200	-10		+200	μA
OUTPUTS (Q, \overline{Q})													•
Output High Voltage	V _{OH}	Figure 1		V _{CC} - 1.145		V _{CC} - 0.895	V _{CC} - 1.145		V _{CC} - 0.895	V _{CC} - 1.145		V _{CC} - 0.895	V
Output Low Voltage	V _{OL}	Figure 1		V _{CC} - 1.945		V _{CC} - 1.695	V _{CC} - 1.945		V _{CC} - 1.695	V _{CC} - 1.945		V _{CC} - 1.695	V
Differential Output Voltage	V _{OD}	V _{OH} - V _{OL} , Figure 1		550			550			550			mV
POWER SUPPLY													
Power-Supply Current (Note 4)	IEE				17	35		20	35		22	35	mA

MIXI/M

2

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} - V_{EE} = 2.25V \text{ to } 5.5V (T_A = +25^{\circ}C \text{ to } +85^{\circ}C), V_{CC} - V_{EE} = 2.375V \text{ to } 5.5V (T_A = -40^{\circ}C \text{ to } +25^{\circ}C), \text{ outputs terminated with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2.0V, \text{ } \text{f}_{CLK} \leq 3.0\text{GHz}, \text{ input transition time} = 125\text{ps} (20\% \text{ to } 80\%), V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}, V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.15V, V_{IHD} - V_{ILD} = 0.15V \text{ to smaller of } IV_{CC} - V_{EE} \text{ or } 3V, \text{ unless otherwise noted}. Typical values are at } V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, \text{ unless otherwise noted}.) (Notes 1, 5)$

PARAMETER	SYMBOL	CONDITIONS	-40°C		+25°C			+85°C			UNITS	
PARAMETER	STMBUL	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Propagation Delay CLK, \overline{CLK} to Q, \overline{Q}	tphl tplh	Figure 2			370		328	405			490	ps
Maximum Clock Frequency	fclkmax	V _{OD} ≥ 300mV	3.0			3.0			3.0			GHz
Setup Time	ts	Figure 2	100			100			100			ps
Hold Time	t _H	Figure 2	50			50			50			ps
Added Random Jitter (Note 6)	t _{RJ}			0.2	0.8		0.2	0.8		0.2	0.8	ps (RMS)
Differential Output Rise/Fall Time	t _R /t _F	20% to 80%, Figure 2	70	120	170	80	120	180	90	120	200	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.

Note 4: All pins floating except V_{CC} and V_{EE}.

Note 5: Guaranteed by design and characterization, and are not production tested. Limits are set to ±6 sigma.

Note 6: Device jitter added to the input clock.

Typical Operating Characteristics

2.5

3.0

 $(V_{CC} - V_{EE} = 3.3V)$, outputs loaded with $50\Omega \pm 1\%$ to $V_{CC} - 2V$, $V_{IH} = V_{CC} - 1V$, $V_{IL} = V_{CC} - 1.5V$, $f_{CLK} = 3GHz$, $f_D = f_{CLK}/2$ input transverse transv sition time = 125ps (20% to 80%), unless otherwise noted.)

M/IXI/M

_Pin Description

MAX938

PIN	NAME	FUNCTION	
1	D	Noninverting D Input to the Flip-Flop. Internally pulled down with a 75k Ω resistor to V _{EE} .	
2	D	Inverting D Input to the Flip-Flop. Internally pulled down with a 75k Ω resistor to V _{EE} .	
3	CLK	Noninverting Clock Input to the Flip-Flop. Internally pulled down with a 75k $\!\Omega$ resistor to V_{EE}	
4	CLK	Inverting Clock Input to the Flip-Flop. Internally pulled down with a 75k Ω resistor to V _{EE} .	
5	VEE	Negative Supply	
6	Q	Inverting Q Output from the Flip-Flop. Terminate with a 50 Ω resistor to V _{CC} - 2V or equivalent.	
7	Q	Noninverting Q Output from the Flip-Flop. Terminate with a 50 Ω resistor to V _{CC} - 2V or equivalent.	
8	V _{CC}	Positive Supply. Bypass from V_{CC} to V_{EE} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.	

Detailed Description

The MAX9381 D flip-flop transfers the logic level at the D input to the Q output on a rising edge transition of the clock, provided the minimum setup and hold times are met. By interchanging the CLK and CLK inputs, the flip-flop functions as a falling-edge triggered flip-flop.

The input signals (D, \overline{D} and CLK, \overline{CLK}) are differential and have a maximum differential input voltage of 3.0V or V_{CC} - V_{EE}, whichever is less. To ensure that the outputs remain stable when the inputs are left open, each of the inputs is driven low by a 75k Ω bias resistor connected to V_{EE}. If the D and \overline{D} inputs are left open or at V_{EE}, the output is guaranteed to be a differential low on the next low-to-high transition of the clock. If the CLK and \overline{CLK} inputs are left open or at V_{EE}, the outputs remain unchanged (Table 1). Terminate the outputs (Q, \overline{Q}) through 50 Ω to V_{CC} - 2V or an equivalent Thevenin termination (see the *Output Termination* section).

ECL/PECL Operation

Output levels are referenced to V_{CC} and are considered PECL or ECL, depending on the level of the V_{CC}

Table 1. Truth Table*

D, \overline{D}	CLK, CLK	Q , Q
L	\uparrow	L
Н	\uparrow	Н
Open or V _{EE}	\uparrow	L
Х	Open or V _{EE}	No change

*Where logic states are differential, \uparrow is a low-to-high transition and X signifies a don't care state.

supply. With V_{CC} connected to a positive supply and V_{EE} connected to GND, the outputs are PECL. The outputs are ECL when V_{CC} is connected to GND and V_{EE} is connected to a negative supply.

Applications Information

T Flip-Flop

The MAX9381 can be configured as a T flip-flop by connecting Q to \overline{D} and \overline{Q} to D. This configuration provides an output at half the frequency of the clock. The maximum operating frequency is determined by the sum of the setup time, the propagation delay of the

Figure 1. Input and Output Voltage Definitions

Figure 2. CLK-to-Q Propagation Delay and Transition Timing Diagram

device and any added delay by circuit board traces. The minimum supply voltage is 2.375V and is determined by input and output voltage range.

Output Termination

Terminate the outputs through 50Ω to V_{CC} - 2V or use equivalent Thevenin terminations. Terminate each Q and \overline{Q} outputs with identical termination on each for the lowest output distortion. When a single-ended signal is taken from the differential output, terminate both Q and \overline{Q} .

Ensure that output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

Bypass VCC to VEE with high-frequency surface-mount ceramic 0.1μ F and 0.01μ F capacitors. Place the capacitors as close to the device as possible with the 0.01μ F capacitor closest to the device pins.

Use multiple vias when connecting the bypass capacitors to ground. This reduces trace inductance, which lowers power-supply bounce when drawing high transient currents.

Circuit Board Traces

Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity.

Signal reflections are caused by discontinuities in the 50 Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners, or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Chip Information

TRANSISTOR COUNT: 375 PROCESS: Bipolar

6

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Printed USA

© 2002 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331