

TS12A12511

SCDS248C - OCTOBER 2009-REVISED JANUARY 2015

TS12A12511 5-Ω Single-Channel SPDT Analog Switch With Negative Signaling Capability

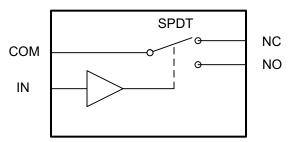
1 Features

- ±2.7-V to ±6-V Dual Supply
- 2.7-V to 12-V Single Supply
- 5-Ω (Typical) ON-State Resistance
- 1.6-Ω (Typical) ON-State Resistance Flatness
- 3.3-V, 5-V Compatible Digital Control Inputs
- · Rail-to-Rail Analog Signal Handling
- Fast t_{ON}, t_{OFF} Times
- Supports Both Digital and Analog Signal Applications
- Tiny 8-Lead SOT-23, 8-Lead MSOP, and QFN-8 Packages
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested per JESD 22
 - ±2000-V Human Body Model (A114-B, Class II)
 - ±1000-V Charged-Device Model (C101)

2 Applications

- Automatic Test Equipment
- Power Routing
- Communication Systems
- Data Acquisition Systems
- Sample-and-Hold Systems
- · Relay Replacement
- Battery-Powered Systems

3 Description


The TS12A12511 is a bidirectional, single-channel, single-pole double-throw (SPDT) analog switch that can pass signals with swings of 0 to 12 V or –6 V to 6 V. This switch conducts equally well in both directions when it is on. The device also offers a low ON-state resistance of 5 Ω (typical), which is matched to within 1 Ω between channels. The maximum current consumption is <1 μA and –3 dB bandwidth is >93 MHz. The TS12A12511 exhibits break-before-make switching action, preventing momentary shorting when switching channels. This device is available packaged in an 8-lead VSSOP, 8-lead SOT-23, and a 8-pin WSON.

Device Information⁽¹⁾

=		= =
PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT (8)	2.90 mm × 1.63 mm
TS12A12511	VSSOP (8)	3.00 mm × 3.00 mm
	WSON (8)	4.00 mm × 4.00 mm

 For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

Table of Contents

1	Features 1		8.1 Overview	14
2	Applications 1		8.2 Functional Block Diagram	14
3	Description 1		8.3 Feature Description	14
4	Revision History2		8.4 Device Functional Modes	14
5	Pin Configuration and Functions	9	Application and Implementation	15
6	Specifications4		9.1 Application Information	15
U	6.1 Absolute Maximum Ratings		9.2 Typical Application	15
	6.2 ESD Ratings	10	Power Supply Recommendations	17
	6.3 Recommended Operating Conditions	11	Layout	17
	6.4 Thermal Information		11.1 Layout Guidelines	
	6.5 Electrical Characteristics: ±5-V Dual Supply5		11.2 Layout Example	17
	6.6 Electrical Characteristics: 12-V Single Supply 6	12	Device and Documentation Support	
	6.7 Electrical Characteristics: 5-V Single Supply 7		12.1 Trademarks	
	6.8 Typical Characteristics		12.2 Electrostatic Discharge Caution	18
7	Parameter Measurement Information		12.3 Glossary	18
•	7.1 Test Circuits	13	Mechanical, Packaging, and Orderable	
8	Detailed Description		Information	18
•	Detailed Description			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (April 2011) to Revision C

Page

Changes from Revision A (May 2010) to Revision B

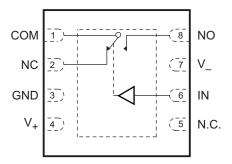
Page

5 Pin Configuration and Functions

DGK PACKAGE (TOP VIEW) COM 1 0 8 NO NC 2 7 V_ GND 3 6 IN V+ 4 5 N.C. DCN PACKAGE (TOP VIEW) COM 1 8 NO

DRJ PACKAGE (TOP VIEW)

□ V_


☐ IN

☐ N.C.

NC □

V₊ □

GND □

N.C. - Not internally connected

NC - Normally closed

NO - Normally open

The Exposed Thermal Pad must be electrically connected to V_ or left floating.

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
COM	1	I/O	Common. Can be an input or output.
GND	3	_	Ground (0 V) reference
IN	6	1	Logic control input
NC	2	I/O	Normally closed. Can be an input or output.
N.C.	5	_	No connect. Not internally connected.
NO	8	I/O	Normally open. Can be an input or output.
V _{CC}	4	I	Most positive power supply
-V _{CC}	7	1	Most negative power supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.

Copyright © 2009–2015, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

 $T_A = 25$ °C (unless otherwise noted).

			MIN	MAX	UNIT
V _{CC} to -V _{CC}			0	13	V
V _{CC} to GND			-0.3	13	V
-V _{CC} to GND			-6.5	0.3	V
V _{I/O}	Analog inputs	NC, NO, or COM	-V _{CC} - 0.5	V _{CC} + 0.5	V
I _{IN}	Digital inputs			±30	mA
	Peak current	NC, NO, or COM		±100	mA
I _{I/O}	Continuous current	NC, NO, or COM		±50	mA
T _A	Operating temperature		-40	85	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
V _{CC}	0	12	V
-V _{CC}	-6	0	V
V _{I/O}	-V _{CC}	V_{CC}	V
V _{IN}	0	V_{CC}	V

6.4 Thermal Information

			TS12A12511		
	THERMAL METRIC ⁽¹⁾	DCN	DGK	DRJ	UNIT
			8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	218.4	184.5	47.8	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	89.9	71.0	48.6	
$R_{\theta JB}$	Junction-to-board thermal resistance	144.4	104.5	24.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	7.8	11.3	1.2	*C/vv
Ψ_{JB}	Junction-to-board characterization parameter	141.7	103.3	24.4	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	9.0	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics: ±5-V Dual Supply

 V_{CC} = 5 V ± 10%, $-V_{CC}$ = -5 V ± 10%, T_A = -40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		T _A = 25°C		T _A = -40°C to 85°C			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
ANALOG S	SWITCH								
	Analog signal range					-V _{CC}		V_{CC}	V
R _{ON}	ON-state resistance	V_{NC} = -4.5 V to +4.5 V or V_{NO} = -4.5 V to 4.5 V, I_{COM} = -10 mA; see Figure 12		5			5	8	Ω
ΔR_{ON}	ON-state resistance match between channels	$V_{NC} = -4.5 \text{ V to } +4.5 \text{ V}$ or $V_{NO} = -4.5 \text{ V to } +4.5 \text{ V},$ $I_{COM} = -10 \text{ mA}$		1	1.2			1.6	Ω
$R_{\text{ON(flat)}}$	ON-state resistance flatness	$V_{NC} = -3.3 \text{ V to } +3.3 \text{ V}$ or $V_{NO} = -3.3 \text{ V to } +3.3 \text{ V},$ $I_{COM} = -10 \text{ mA}$		1.6	2.2			2.2	Ω
LEAKAGE	CURRENTS								
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	V_{NC} = -4.5 V to +4.5 V or V_{NO} = -4.5 V to +4.5 V V_{COM} = -4.5 V to +4.5 V; see Figure 13	-1	±0.5	1	-50		50	nA
I _{NC(ON)} , I _{NO(ON)}	ON leakage current	V_{NC} = -4.5 V to +4.5 V or V_{NO} = -4.5 V to +4.5 V V_{COM} = open; see Figure 14	-1	±0.5	1	-50		50	nA
DIGITAL IN	IPUTS								
V _{INH}	High-level input voltage					2.4		V _{CC}	V
V_{INL}	Low-level input voltage					0		0.8	V
$I_{\text{INL}},I_{\text{INH}}$	Input current	$V_{IN} = V_{INL}$ or V_{INH}		0.005		-1		1	μA
C _{IN}	Control input capacitance			2.5					pF
DYNAMIC ⁽	1)								
t _{ON}	Turn-ON time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V;$ see Figure 16		80	95			115	ns
t _{OFF}	Turn-OFF time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V$		41	50			56	ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V;$ see Figure 17		36		18			ns
$Q_{\mathbb{C}}$	Charge injection	$V_{NC} = V_{NO} = 0 \text{ V}, R_{GEN} = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 18		26					pC
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 19		-70					dB
X _{TALK}	Channel-to-channel crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 20		-70					dB
BW	Bandwidth -3 dB	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21		93					MHz
THD	Total harmonic distortion	$R_L = 600 \Omega$, $C_L = 15pF$, $VNO = 1V_{RMS}$, $f = 20 \text{ kHz}$; see Figure 22		0.004%					
$\begin{matrix} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{matrix}$	NC, NO OFF capacitance	f = 1 MHz; see Figure 15		14					pF
$C_{\text{COM(ON)}}, \\ C_{\text{NC(ON)}}, \\ C_{\text{NO(ON)}}$	COM, NC, NO ON capacitance	f = 1 MHz; see Figure 15		60					pF
SUPPLY									
I _{CC}	Positive supply current			0.03				1	μA

⁽¹⁾ Specified by design, not subject to production test.

6.6 Electrical Characteristics: 12-V Single Supply

 $V_{CC} = 12 \text{ V} \pm 10\%$, $-V_{CC} = 0 \text{ V}$, GND = 0 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

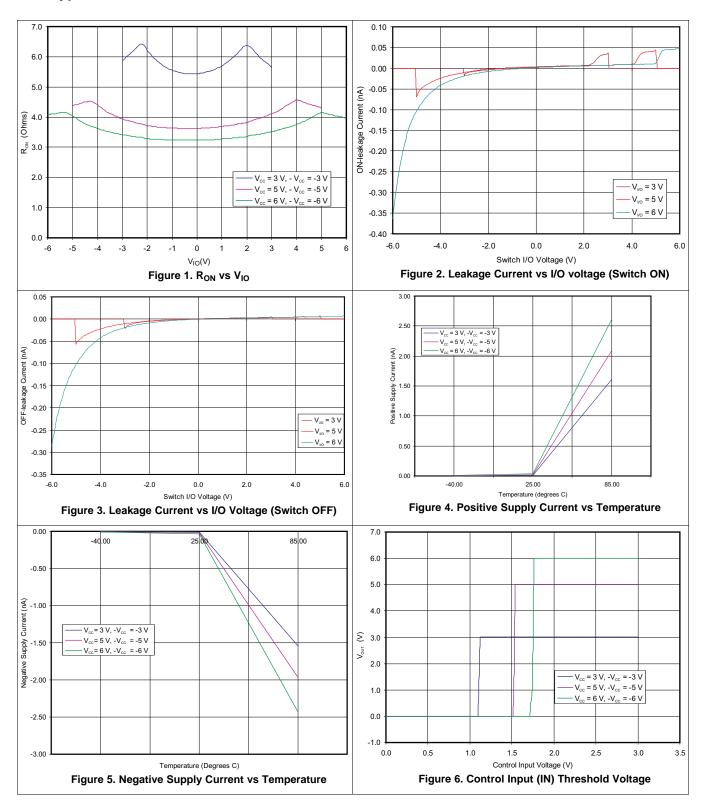
	DADAMETER	TEST CONDITIONS		T _A = 25°C T _A = -			10°C to 8	5°C	UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
ANALOG SW	/ITCH							•	
	Analog signal range					0		V _{CC}	V
R _{on}	ON-state resistance	$V_{NC} = 0 \text{ V to } 10.8 \text{ V or } V_{NO} = 0 \text{ V to}$ 10.8 V, $I_{COM} = -10 \text{ mA, see Figure } 12$		5			5	8	Ω
ΔR_{on}	ON-state resistance match between channels	V _{NC} = 0 V to 10.8 V or V _{NO} = 0 V to 10.8 V, I _{COM} = -10 mA		1.6	2.4			2.6	Ω
R _{on(flat)}	ON-state resistance flatness	$V_{NC} = 3.3$ V to 7V or $V_{NO} = 3.3$ V to 7 V, $I_{COM} = -10$ mA		1.7			1.8	3.2	Ω
LEAKAGE C	URRENTS								
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	V_{NC} = 0 V to 10.8 V or V_{NO} = 0 V to 10.8 V, V_{COM} = 0 V to 10.8 V; see Figure 13	-10	±0.5	10	– 50		50	nA
I _{NC(ON)} , I _{NO(ON)}	ON leakage current	V _{NC} = 0 V to 10.8V or V _{NO} = 0 V to 10.8 V, V _{COM} = open; see Figure 14	-10	±0.5	10	-50		50	nA
DIGITAL INP	UTS				I				
V _{INH}	High-level input voltage					5		V _{CC}	V
V _{INL}	Low-level input voltage					0		0.8	V
I _{INL} , I _{INH}	Input current	$V_{IN} = V_{INL}$ or V_{INH}		±0.005		-0.1		0.1	μA
C _{IN}	Digital input capacitance			2.7					pF
DYNAMIC (1)					I				
t _{ON}	Turn-ON time	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V;$ see Figure 16		56	85			110	ns
t _{OFF}	Turn-OFF time	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V;$ see Figure 16		25	30			31	ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V; \ see Figure 17$		30		19			ns
Q_C	Charge injection	$\begin{aligned} R_{\text{GEN}} &= V_{\text{NC}} = V_{\text{NO}} = 0 \text{ V, } R_{\text{GEN}} = 0 \\ \Omega, C_{\text{L}} &= 1 \text{ nF;} \\ \text{see Figure 18} \end{aligned}$		491					рС
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19		-70					dB
X _{TALK}	Channel-to-channel crosstalk	$R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz,$ see Figure 20		-70					dB
BW	Bandwidth –3 dB	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 21		122					MHz
THD	Total harmonic distortion	$R_L = 600 \ \Omega, C_L = 15 pF, V_{NO} = 1$ $V_{RMS}, f = 20 \ kHz; see Figure 22$		0.04%					
C _{NC(OFF)} , CI _{NO(OFF)}	NC, NO OFF capacitance	f = 1 MHz, see Figure 15		14					pF
C _{COM(ON)} , C _{NC(ON)} , C _{NO(ON)}	COM, NC, NO ON capacitance	f = 1 MHz, see Figure 15		55					pF
SUPPLY		-							
I _{CC}	Positive supply current			0.07				1	μA

⁽¹⁾ Specified by design, not subject to production test.

Submit Documentation Feedback

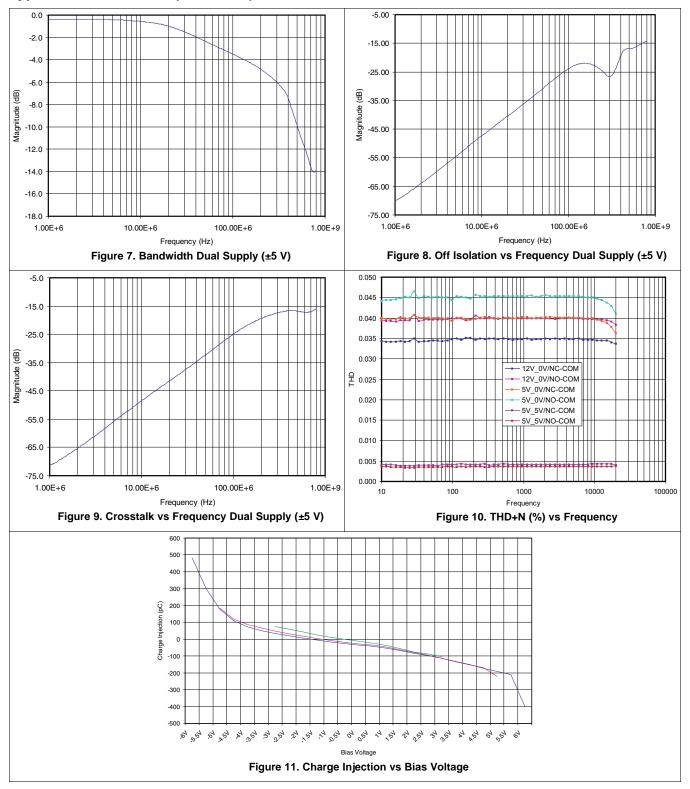
Copyright © 2009–2015, Texas Instruments Incorporated

6.7 Electrical Characteristics: 5-V Single Supply


 V_{CC} = 5 V ± 10%, $-V_{CC}$ = 0 V, GND = 0 V, T_A = $-40^{\circ}C$ to 85°C (unless otherwise noted)

	DADAMETED	$T_A = 25^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to }85^{\circ}$		T _A = 25°C	= 25°C T _A = -40°C to 85°C			5°C	LINUT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
ANALOG SWI	ITCH								
	Analog signal range					0		V_{CC}	V
R _{on}	ON-state resistance	V _{NC} =0 V to 4.5 V or V _{NO} = 0 V to 4.5 V, I _{COM} = -10 mA; see Figure 12		8	10			12.5	Ω
ΔR_{on}	ON-state resistance match between channels	$ \begin{aligned} &V_{NC} = 0 \text{ V to } 4.5 \text{ V or } V_{NO} = 0 \text{ V to} \\ &4.5 \text{ V,} \\ &I_{COM} = -10 \text{ mA} \end{aligned} $		1	1.1			1.5	Ω
R _{on(flat)}	ON-state resistance flatness	V_{NC} =0 V to 4.5 V or V_{NO} = 0 V to 4.5 V, I_{COM} = -10 mA		1.3			1.3	2	Ω
LEAKAGE CU	JRRENTS								
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	$V_{NC} = 0 \text{ V to } 4.5 \text{ V or } V_{NO} = 0 \text{ V to } 4.5 \text{ V,} V_{COM} = 0 \text{ V to } 4.5 \text{ V; see Figure 13}$	-1	±0.5	1	-50		50	nA
I _{NC(ON)} , I _{NO(ON)}	ON leakage current	$V_{NC} = 0 \text{ V to } 4.5 \text{V or } V_{NO} = 0 \text{ V to}$ 4.5 V, $V_{COM} = \text{open}; \text{ see Figure } 14$	-1	±0.5	1	-50		50	nA
DIGITAL INPU	JTS								
V _{INH}	High-level input voltage					2.4		V_{CC}	V
V _{INL}	Low-level input voltage					0		0.8	V
I _{INL} , I _{INH}	Input current	$V_{IN} = V_{INL}$ or V_{INH}		0.01		-0.1		0.1	μΑ
C _{IN}	Digital input capacitance			2.8					pF
DYNAMIC(1)									
t _{ON}	Turn-ON time	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{COM} = 3.3 V$; see Figure 16		119	145			178	ns
t _{OFF}	Turn-OFF time	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{COM} = 3.3 V$; see Figure 16		38	47			95.2	ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V;$ see Figure 17		79		44			ns
Q_C	Charge injection	$\begin{aligned} &V_{GEN}=V_{NC}=V_{NO}=0 \text{ V, } R_{GEN}=0\\ &\Omega, C_L=1 \text{ nF;}\\ &\text{see Figure 18} \end{aligned}$		65					рС
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19		-70					dB
X _{TALK}	Channel-to-channel crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 20		-70					dB
BW	Bandwidth -3 dB	$R_L = 50 \Omega$, see Figure 21		152					MHz
THD	Total harmonic distortion	R_L = 600 Ω , C_L = 15 pF, V_{NO} = 1 VRMS, f = 20 kHz; see Figure 22		0.04%					
$\begin{matrix} C_{NC(OFF)}, \\ C_{NO(OFF)} \end{matrix}$	NC, NO OFF capacitance	f = 1 MHz, see Figure 15		15					pF
$\begin{array}{c} C_{COM(ON)}, \\ C_{NC(ON)}, \\ I_{NO(ON)} \end{array}$	COM, NC, NO ON capacitance	f = 1 MHz, see Figure 15		55					pF
POWER REQ	UIREMENTS								
Icc	Positive supply current	V _{IN} = 0 V or V _{CC}	-	0.02		-		1	μA

⁽¹⁾ Specified by design, not subject to production test.


TEXAS INSTRUMENTS

6.8 Typical Characteristics

Typical Characteristics (continued)

Copyright © 2009–2015, Texas Instruments Incorporated

7 Parameter Measurement Information

7.1 Test Circuits

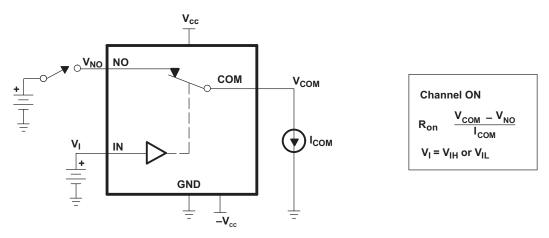


Figure 12. ON-State Resistance

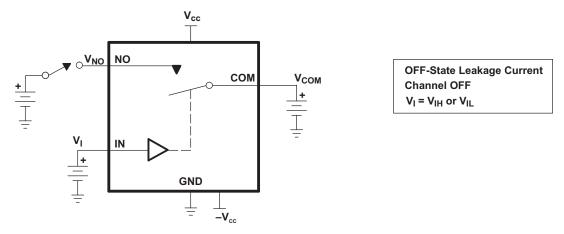


Figure 13. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)})

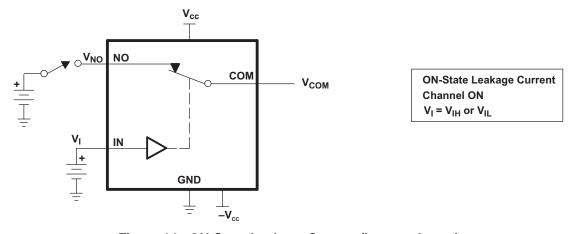


Figure 14. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)})

Test Circuits (continued)

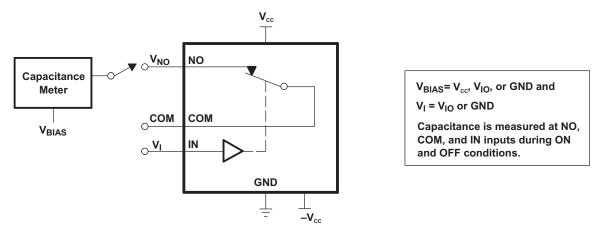
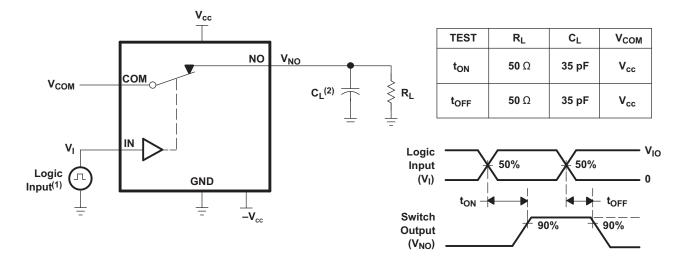



Figure 15. Capacitance ($C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NC(ON)}$)

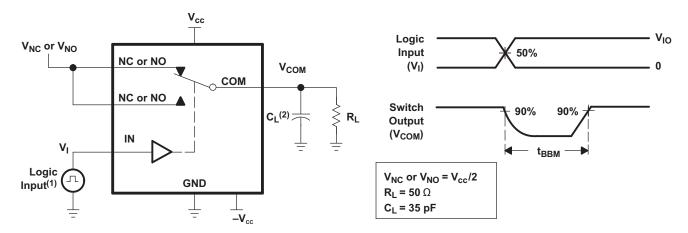
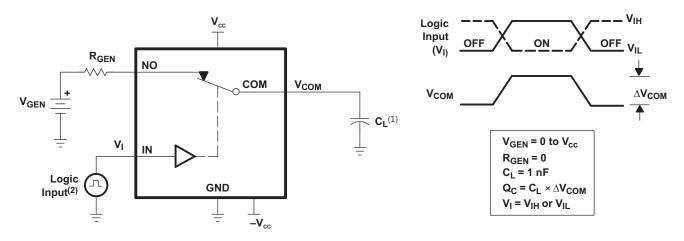

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- (2) C_L includes probe and jig capacitance.

Figure 16. Turn-ON (t_{ON}) and Turn-OFF Time (t_{OFF})

Copyright © 2009–2015, Texas Instruments Incorporated


TEXAS INSTRUMENTS

Test Circuits (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns.
- (2) C_L includes probe and jig capacitance.

Figure 17. Break-Before-Make Time Delay (t_{BBM})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns. $t_f < 5$ ns.

Figure 18. Charge Injection (Q_C)

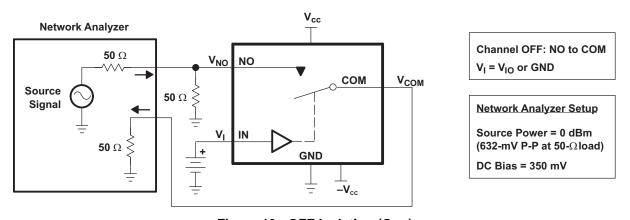


Figure 19. OFF Isolation (O_{ISO})

Test Circuits (continued)

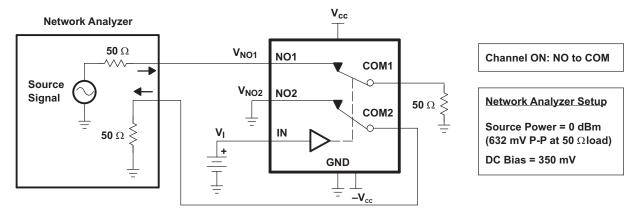


Figure 20. Channel-to-Channel Crosstalk (X_{TALK})

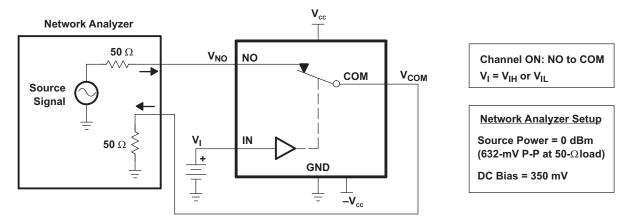
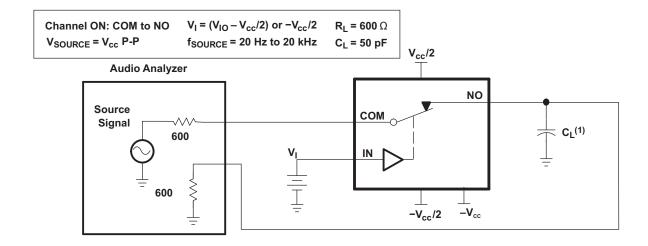
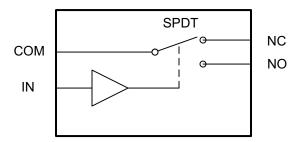



Figure 21. Bandwidth (BW)

(1) C_L includes probe and jig capacitance.

Figure 22. Total Harmonic Distortion



8 Detailed Description

8.1 Overview

The TS12A12511 is a bidirectional, single channel, single-pole double-throw (SPDT) analog switch that can pass signals with swings of 0 to 12 V or -6 V to 6 V. This switch conducts equally well in both directions when it is on. It also offers a low ON-state resistance of 5 Ω (typical), which is matched to within 1 Ω between channels. The max current consumption is < 1 μ A and -3 dB bandwidth is > 93 MHz. The TS12A12511 exhibits break-before-make switching action, preventing momentary shorting when switching channels. This device is available packaged in an 8-lead MSOP, 8-lead SOT-23, and a 8-pin QFN.

8.2 Functional Block Diagram

8.3 Feature Description

The TS12A12511 can pass signals with swings of 0 to 12 V or -6 V to 6. The device is great for applications where the AC signals do not have a common mode voltage since both the positive and negative swing of the signal can be passed through the device with little distortion.

8.4 Device Functional Modes

Table 1. Truth Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	On	Off
Н	Off	On

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Analog signals that range over the entire supply voltage (V_{CC} to GND) or (V_{CC} to - V_{CC}) can be passed with very little change in ON-state resistance. The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

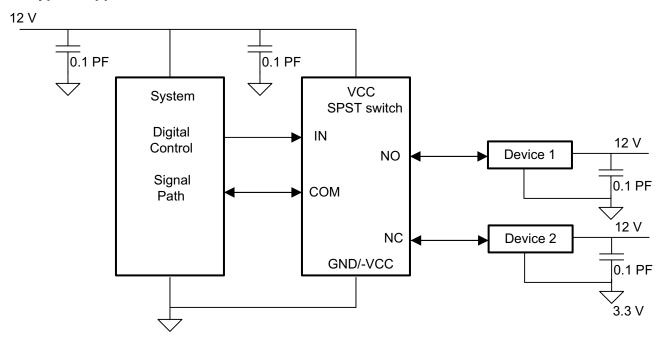


Figure 23. Typical Application Schematic

9.2.1 Design Requirements

Pull the digitally controlled input select pin IN to VCC or GND to avoid unwanted switch states that could result if the logic control pin is left floating.

9.2.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch since the TS12A12511 input/output signal swing of the device is dependant of the supply voltage V_{CC} and $-V_{CC}$.

Typical Application (continued)

9.2.3 Application Curve

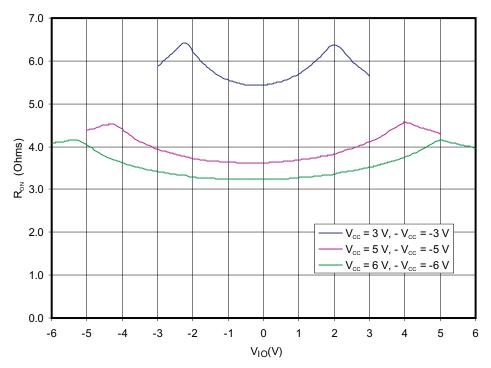


Figure 24. R_{ON} vs V_{IO}

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VCC and -VCC on first, followed by NO, NC, or COM.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A 0.1-µF capacitor, connected from VCC to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

It is recommended to place a bypass capacitor as close to the supply pins, VCC and -VCC, as possible to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum. Minimize trace lengths and vias on the signal paths in order to preserve signal integrity.

11.2 Layout Example

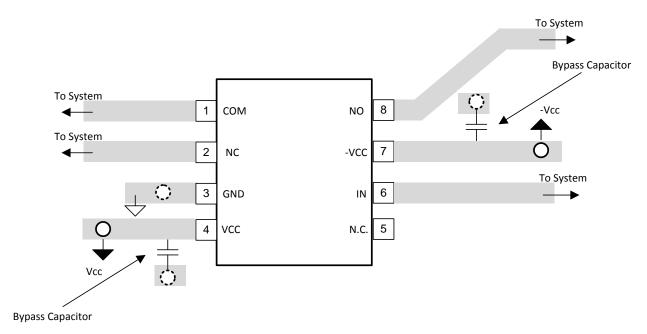


Figure 25. Layout Schematic

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

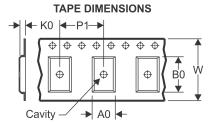
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

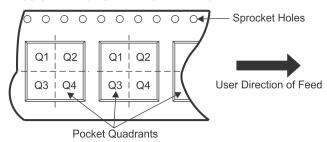
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

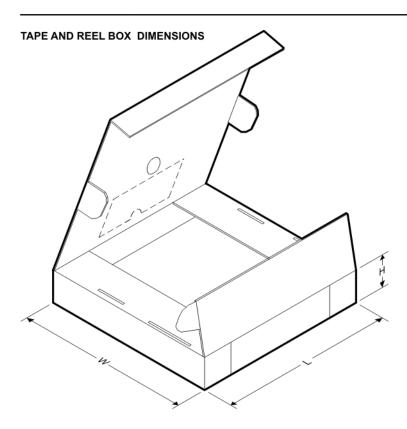

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Oct-2014


TAPE AND REEL INFORMATION

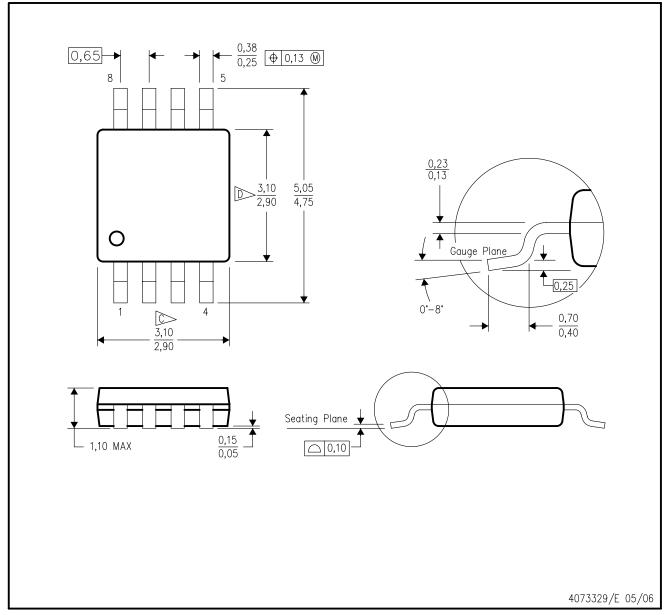
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ľ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are normal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS12A12511DCNR	SOT-23	DCN	8	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS12A12511DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS12A12511DRJR	SON	DRJ	8	1000	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 30-Oct-2014

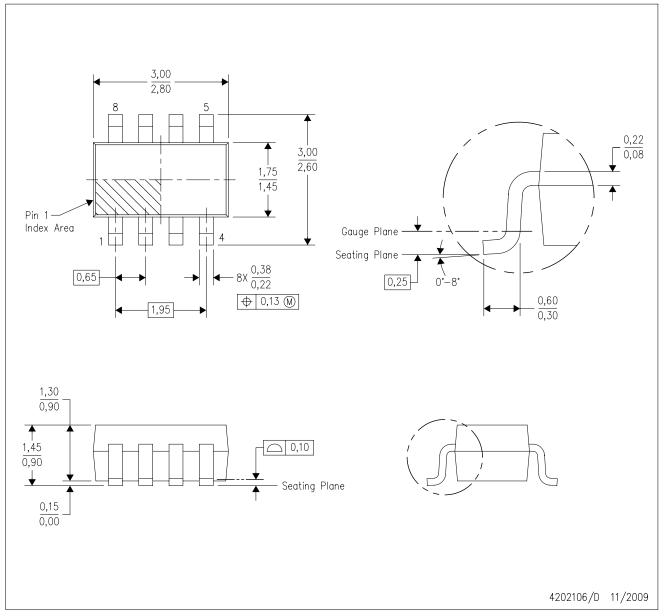


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS12A12511DCNR	SOT-23	DCN	8	3000	202.0	201.0	28.0
TS12A12511DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TS12A12511DRJR	SON	DRJ	8	1000	210.0	185.0	35.0

DGK (S-PDSO-G8)

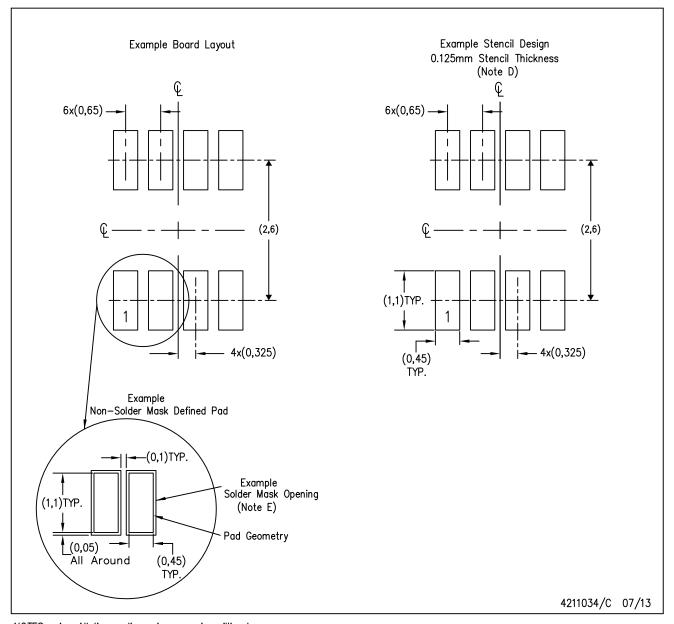
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DCN (R-PDSO-G8)

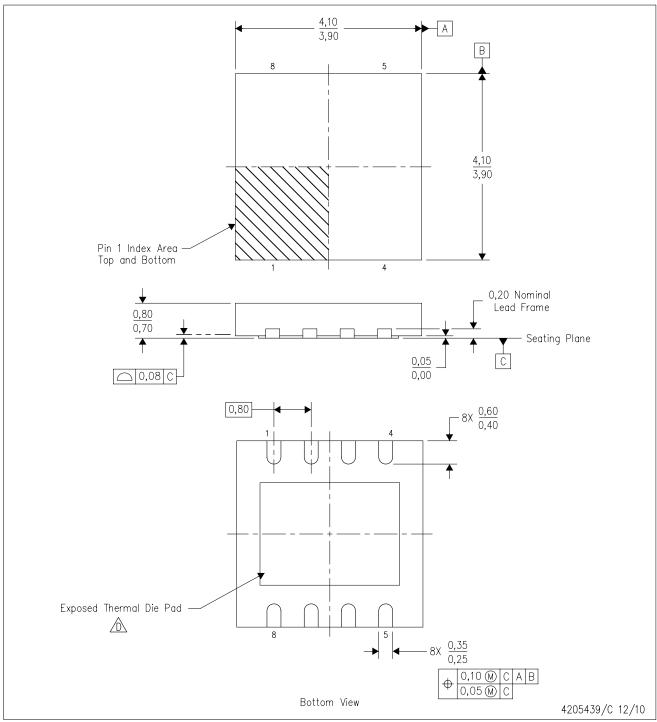
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DRJ (S-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

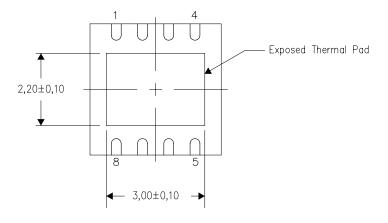
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Package complies to JEDEC MO-229 variation WGGB.

DRJ (S-PWSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

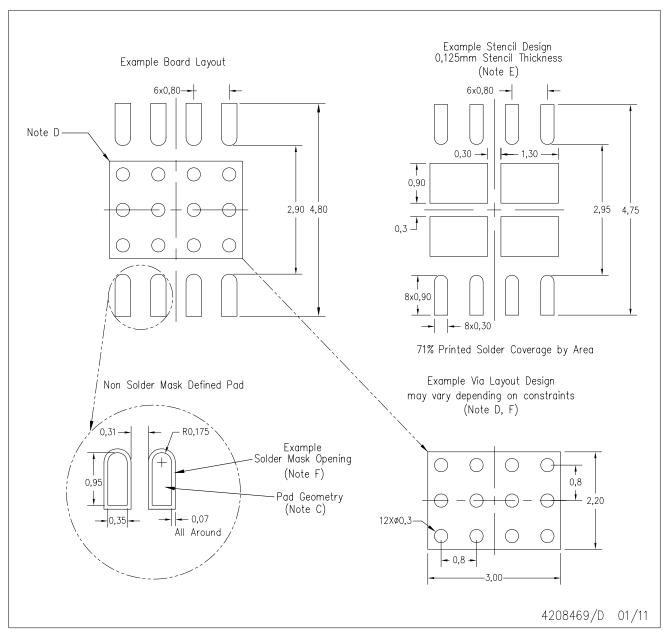
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206882/F 01/11

NOTE: All linear dimensions are in millimeters

DRJ (S-PWSON-N8)

SMALL PACKAGE OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
- E. Laser cutting apertures with electropolish and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances and vias tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331