

Basic Analog and Digital
Student Guide

VERSION 1.4

WARRANTY
Parallax, Inc. warrants its products against defects in materials and workmanship for a period of 90 days. If you
discover a defect, Parallax will, at its option, repair, replace, or refund the purchase price. Simply call for a Return
Merchandise Authorization (RMA) number, write the number on the outside of the box and send it back to Parallax.
Please include your name, telephone number, shipping address, and a description of the problem. We will return your
product, or its replacement, using the same shipping method used to ship the product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax, Inc. will refund the purchase price of the product, excluding shipping / handling costs. This does
not apply if the product has been altered or damaged.

COPYRIGHTS AND TRADEMARKS
This documentation is copyright 1999-2008 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication: the
text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated only for educational
purposes when used solely in conjunction with Parallax products, and the user may recover from the student only the
cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot, SumoBot, Toddler, and SX-Key are registered
trademarks of Parallax, Inc. HomeWork Board, Propeller, Parallax, and the Parallax logo are trademarks of Parallax
Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state that
"(trademark) is a (registered) trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each
printed document or web page. Other brand and product names are trademarks or registered trademarks of their
respective holders.

ISBN 10: 1-928982-04-2

ISBN 13: 9-781928-982456

1.4.0-08.05.13-SCP

DISCLAIMER OF LIABILITY
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, and any costs or recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax is also not responsible for any personal damage, including that to life and health, resulting
from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter how life-
threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

 Propeller Chip – This forum is for users of the multiprocessing Parallax Propeller chip.
 BASIC Stamp – This forum is widely utilized by engineers, hobbyists and students who share their

BASIC Stamp projects and ask questions.
 SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with Parallax

assembly language SX – Key® tools and 3rd party BASIC and C compilers.
 Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in Class

series in their courses. Students, educators and hobbyists are welcome to participate.
 Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is

programmed using a subset of Sun Microsystems’ Java® programming language.
 Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue for

robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-
Bot™, Toddler™, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

 HYDRA – A place for enthusiasts of the Propeller-based HYDRA game development system.
 Parallax Educators – A private forum exclusively for educators and those who contribute to the

development of Stamps in Class. Parallax created this forum for educators to provide feed back and to
obtain, develop, and share teaching materials.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an Errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents · Page i

Table of Contents

Preface...v
Audience and Teacher’s Guide ..v
Conditions of Duplication ... vi
Foreign Translations .. vi
Special Contributors .. vi

Chapter #1: Analog Voltage and Binary States ...1
Introduction to Analog and Digital...1

Parts Required ...2
Building the Analog and Digital Comparator ..7
Programming the Project ...9
What have I learned? ...15
Questions ...16
Challenge! ..16
Why did I learn it? ..17
How can I apply this? ...17

Chapter #2: Introduction to Bit Crunching ..19
Basic Comunication ..19

Parts Required ...19
Building the Circuit ...20
Programming the Project ...22
Parallel and Serial Transmission..30
Reprogramming to Receive Serial Data...31
What have I learned? ...37
Questions ...38
Challenge! ..38
Why did I learn it? ..39
How can I apply this? ...39

Chapter #3: Basic Analog to Digital Conversion...41
Build Your Own Digital DC Voltmeter ...41

Parts Required ...42
The Potentiometer - A Source of Variable Voltage ..42
The ADC0831 Integrated Circuit - An 8-bit Analog to Digital Converter43
Build It ..45
Program It ..45
Binary to Decimal Conversion Revisited ..52
Calculate Voltage ...54
Resolution ..61
Calibration ..62

Page ii · Basic Analog and Digital

What have I learned?...63
Questions...64
Challenge!..64
Why did I learn it? ..65
How can I apply this?...65

Chapter #4: Basic Digital to Analog Conversion .. 67
Build a Resistive Ladder Network...67

Parts Required ...68
Build It ..69
Program It ..70
Addressing ...76
The Voltage Follower ...81
What have I learned?...85
Questions...86
Challenge!..86
Why did I learn it? ..87
How can I apply this?...87

Chapter #5: Time Varying Signals.. 89
Parts Required ...90
Program It ..91
The Pulse Train..97
The Sine Wave and Pulse Width Modulation (PWM) ..100
Reprogram the Circuit for Musical Notes ...102
What have I learned?...104
Questions...105
Challenge!..105
Why did I learn it? ..106
How can I apply this?...106

Chapter #6: Recording Frequency Data .. 107
Parts Required ...107
Build It ..108
The Output ...111
Program It ..114
What have I learned?...119
Questions...120
Challenge!..120
Why did I learn it? ..121
How can I apply this?...121

Chapter #7: Digital to Analog the Easy Way using PWM................................... 123
Parts Required ...126

Table of Contents · Page iii

Build It ..127
Program It ..129
What have I learned? ...137
Questions ...138
Challenge! ..138
Why did I learn it? ..139
How can I apply this? ...139

Chapter #8: Light Meter Gizmo with R/C Time Constants..................................141
Parts Required ...144
Build It ..144
Program It ..146
Do the Math..150
What have I learned? ...152
Questions ...153
Challenge! ..153
Why did I learn it? ..154
How can I apply this? ...154

Appendix A: Parts Listing and Sources...157
Appendix B: Resistor Color Code...159
Index ..161

Page iv · Basic Analog and Digital

Preface · Page v

Preface

The personal computer brought in a whole new era of electronic sophistication. With it,
we have immense amounts of digital computing power located right at our desk.
Computers work well when they are connected to each other, and digital data can be
transferred quite reliably from machine to machine.

However, the minute you wish to connect a digital computer to some “real world” device
(such as a wind speed indicator or fuel level sensor) you need to design a circuit that
interfaces an analog device to the digital computer. In many cases, this involves the
conversion from an analog voltage to a digital representation of that voltage.

This set of Stamps in Class experiments will explore many of the basic principles of
interfacing analog devices to digital microcontrollers. Many times this involves the use
of easy-to-use commands built right into the BASIC Stamp, and at other times requires
the use of a an “analog to digital converter”.

Why should we be interested in converting from analog to digital? Many different aspects
of our lives are dependent upon this conversion process. Some are not too critical to our
survival like compact disc players, telephone systems, and music. Others, however, might
be critical. Medical equipment and sensors often require analog to digital and digital to
analog conversion.

The Basic Analog and Digital text will be revised and updated continually based on
feedback from students and educators. Version 1.4 was edited to change from a 100 kΩ
to a 10 kΩ potentiometer due to supply issues. Additionally, program listings
PL3_1R0.bs2 and PL4_1R0.bs2 were updated to accommodate modification for several
ADC0831 chips connected to the same CLK (clock) and D0 (data) lines. Pagination
remains similar if not identical to Version 1.3.

AUDIENCE AND TEACHERS GUIDE
The audience for this text is ages 17 and above. This guide can be used as a complete
book to introduce analog and digital concepts in a class, or as a reference to obtain
detailed explanations about hardware and techniques used in other Stamps in Class
Student Guides.

Page vi · Basic Analog and Digital

The answers to these experiments present no impossible or very difficult technical
hurdles, and could be solved with a bit of patience. Instructors could participate in an
Educator’s Forum to obtain support or Teacher’s Guides if they are available.

CONDITIONS OF DUPLICATION
Parallax grants the user a conditional right to download, duplicate, and distribute this text
without Parallax's permission. This right is based on the following conditions: the text, or
any portion thereof, may not be duplicated for commercial use; it may be duplicated only
for educational purposes when used solely in conjunction with Parallax products, and the
user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax, Inc. Because we print the text in
volume, the consumer price is often less than typical retail duplication charges.

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators which you may join. This will ensure
that you are kept current on our frequent text revisions.

SPECIAL CONTRIBUTORS
Version 1.0 of this text was written mostly by Andy Lindsay based on a manuscript
submitted by Matt Gilliland, original author of What's a Microcontroller? and the ever-
popular Microcontroller Application Cookbooks. Andy wrote this text during his senior
year at California State University, Sacramento, where he studied Electrical and
Electronic Engineering. This was his first of many Stamps in Class texts that he has
revised and/or authored. Andy is also is a contributing author of several papers that
address the topic of microcontrollers in pre-engineering curricula. When he’s not writing
educational material, Andy does product engineering for Parallax.

 Chapter 1: Analog Voltage and Binary States · Page 1

Chapter #1: Analog Voltage and Binary States

This series of experiments introduces analog and digital electronics. What does that
mean? In What’s a Microcontroller? we learned that analog is a “continuously variable
value”. Another way to think about it is that analog electronics is analogous to nature.

There are lots of continuously variable values in nature, such as motion, light level, and
sound. The position of a door as it swings open is a good example of a continuously
variable value. As a door swings from all the way closed to all the way open, it visits
every value in between. At one instant during its travel, it is 1/3 of the way open. At
another instant, it is 1/2 way open, and so on.

INTRODUCTION TO ANALOG AND DIGITAL
Digital simply means represented by digits. Think about how many times each day you
encounter analog values that are represented with digits. The temperature is 79.8 degrees.
The speed limit is 45 miles per hour, etc. Not surprisingly, digital electronics represents
values with digits.

The term digital is also used when referring to binary devices such as the circuitry that
makes a calculator work, the microprocessor in a computer, and the BASIC Stamp
microcontroller. It's true - they are all digital devices. Binary devices are digital devices
using two digits, 0 and 1.

The experiments in What’s a Microcontroller? introduced a variety of techniques for
interfacing with the outside world and other devices. These interfaces were mostly
binary. This series of experiments extends the capabilities of interfacing by introducing
several analog component interfaces and more component interface techniques.

In this first experiment, we'll build a circuit that produces an analog voltage at its output.
Remember that analog voltage is continuously variable. The circuit will be adjustable so
that it can produce an output anywhere between 0 and 5 volts. We'll also build a circuit
called a voltage follower that uses this analog voltage to drive an LED circuit.

Page 2 · Basic Analog and Digital

Volt/Voltage: The volt is a fundamental unit of electrical measurement named after 18th
century physicist Allesandro Volta, and a measurement in volts is referred to as voltage.

Most of us encounter this unit of measurement when buying batteries such as the 9 volt
(DC) battery that can be used to power the Board of Education or BASIC Stamp HomeWork
Board. Inside a battery there are two chemical reactions, which are separated from each
other by a barrier. One of the reactions creates a surplus or electrons and the other creates
a shortage of them.

The electron surplus and shortage sides of the barrier are connected to the negative and
positive terminals of the battery respectively. If given a pathway around the barrier, the
electrons have the potential to do work to get from the negative to the positive terminal. The
volt is a measure of this potential to do work. The volt is also referred to as a unit of electric
potential.

The analog voltage will also be connected to one of the BASIC Stamp I/O pins set to
input mode. This binary input can actually be used to measure small variations in the
analog voltage. PBASIC will be used to program the BASIC Stamp to drive a binary
LED circuit, which will indicate when these variations have been detected.

The Debug Terminal is also a useful tool for displaying data the BASIC Stamp collects
and sends. It will be used to monitor the binary value that the input pin receives as the
analog voltage is varied.

Parts Required
For each experiment you will need a BASIC Stamp 2 microcontroller module on a Board
of Education platform or a BASIC Stamp HomeWork Board. Your board needs to be
connected to an IBM-compatible PC with Windows 2K/XP/Vista. You will need to
install the BASIC Stamp Editor v 2.4 or higher, which is available for free download
from www.parallax.com. (If you are using a USB board or a Parallax USB to Serial
Adapter, you will need the FTDI USB VCP driver software installed; it installs
automatically with the BASIC Stamp Editor v 2.4 or higher.) In addition, you'll need the
following parts for this experiment:

(2) 470 Ω resistors
(2) Red LEDs
(1) 10 kΩ potentiometer
(6) Jumper wires
(1) LM358 op-amp

 Chapter 1: Analog Voltage and Binary States · Page 3

Flat spot on
plastic part of
LED indicating
the cathode.

Throughout this series of experiments, we will build circuits from circuit schematics.
One of the keys to learning how to read circuit schematics is learning what each symbol
on the schematic means. It's also important to learn how to connect a part from the
Analog and Digital Parts Kit to the prototyping area (also called a breadboard) of your
Board of Education or HomeWork Board based on its circuit symbol in a schematic.

Circuit Schematic: Often referred to as a schematic, a circuit schematic is a map that uses
symbols to show the components in a circuit and how they are connected. The components
are represented by symbols such as the one that represents the LED in Figure 1-1.

Figure 1-1 shows the circuit symbol for an LED on the left and a drawing of an LED
from the parts kit on the right. It also shows how the pins on an LED correspond to the
terminals on the circuit symbol.

+_

LED

Figure 1-1
LED Circuit Symbol
Compared to the
Component

Figure 1-2 shows a drawing of a resistor below its circuit symbol. The circuit symbol
typically has the resistance value written below or next to it. The colored stripes on the
part drawn below the symbol indicate its value, which is measured in ohms. The omega
symbol (Ω) is used to denote the ohm. You can use Appendix B to convert the color
codes on the resistor to resistance values.

 470 Ω

Figure 1-2
Resistor Circuit Symbol and
Corresponding Component

Page 4 · Basic Analog and Digital

Current/Amp: Current happens when electrons travel from point A to point B. Direct
current is what happens when you give the surplus electrons in the negative terminal of a
battery a pathway to get to the positive terminal. The amp is the measurement of how many
electrons per second are traveling through the pathway.

Resistance/Ohm: Resistance is a property of a material in the pathway the electrons travel
through. The more difficult it is for the electrons to get from one end of the pathway to the
other, the higher the resistance. A resistor is just such a pathway, and its resistance is
measured in ohms (Ω).

Ohm's Law: When a resistor is used to provide a pathway between the negative and
positive terminals of a battery, you have an electric circuit with voltage, resistance, and
current. Ohm's Law relates the three quantities as follows:

V = I x R

V is the voltage measured in volts, I is the current measured in amps, and R is the
resistance measured in ohms.

The Other Guys: Ever wonder where the words volt, amp, and ohm come from? They are
all named after some of the people who made significant discoveries about electricity. We
already know who the volt is named for; what about the other guys? The amp, also called
the ampere, is named after 18th century physicist André Marie Ampère. The ohm is named
after 19th century physicist Georg Simon Ohm.

The Potentiometer - A Source of Variable Voltage
The potentiometer (pot) has 3 pins on its underside that get plugged into the breadboard.
On the topside, it has a knob you can twist to adjust it. In this experiment, we will use
variable resistance to get a variable voltage output. Figure 1-3 shows how the pins on the
underside of the pot from the parts kit correspond to the circuit symbol.

Pot

Figure 1-3
Potentiometer Circuit
Symbol and Component

 Chapter 1: Analog Voltage and Binary States · Page 5

Figure 1-4 shows what happens inside the pot as it is adjusted. The jagged line represents
a resistive element, typically made of carbon. One end of the resistive element is wired to
Vdd on your board, and the other end is wired to Vss. The middle of the three terminals is
connected to the “wiper”, and it’s where the variable output voltage is measured. The
wiper stays in contact with the carbon element as it moves.

As the wiper gets closer to Vdd, the voltage measured at the wiper terminal will approach
the value of Vdd, which is 5 volts. Likewise, when the wiper is closer to Vss, the voltage
at the wiper terminal will be closer to Vss, which is 0 volts. As the wiper terminal travels
between Vdd and Vss, the output measured at the wiper terminal varies between these
two values in a manner analogous to a door as it opens and closes.

Figure 1-4
Potentiometer Wiper

Showing how the wiper
in a potentiometer
travels along the surface
of the resistive element
as it’s adjusted.

The LM358 Op-amp
An op-amp (operational amplifier) is a building block commonly used in analog circuits.
Figure 1-5 shows the circuit symbol and block diagram for the LM358 op-amp used in
this experiment. The op-amp circuit used in this experiment is called a voltage follower
because the same voltage comes out as goes in. In other words, the voltage at the output
"follows" the voltage at the input. The reason it's used in the circuit in this experiment is
to electrically separate a potentiometer circuit from an LED circuit. We'll learn more
about the usefulness of a voltage follower in Chapter #4.

Page 6 · Basic Analog and Digital

Figure 1-5
LM358 op-amp

The circuit symbol has numbers
on each of its terminals that
correspond to the numbers on
the block diagram.

The block diagram is a top-view
of the part from your parts kit
with the circuit symbols for the
two op-amps in the part drawn in.

Make sure to note the location of
pin 1 (top left) and the index
mark when you place the LM358
on the breadboard. Improper
wiring can damage an op-amp.

IMPORTANT: Always disconnect your board’s power source while you build or modify
circuits.

The Board of Education and HomeWork Board Prototyping Area
Figure 1-6 shows the remaining circuit symbols used in the first experiment and where to
find them on your board’s prototyping area. The symbol for Vdd is the positive 5 volt
supply for the BASIC Stamp and board. There are 4 sockets along the top side of the
breadboard to the left for making connections to Vdd. Three sockets are for Vin, which is
the direct voltage from your battery or power supply.

Next, the ground symbol is used for Vss. This is the reference terminal for taking
measurements, and it's considered to be 0 volts compared to all other voltages on your
board. The four sockets for connecting jumper wires to Vss are along the top of the
breadboard to the right.

There is a row of sixteen sockets along the left side of the breadboard for connecting to
the BASIC Stamp I/O pins. Each I/O pin has a label. I/O pin P0 is connected to the
bottom left socket. Pin P1 is the next socket up, and above that socket is the connection to
pin P2, and so on through pin P15 at the top left.

 Chapter 1: Analog Voltage and Binary States · Page 7

X4
X3

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5

P3
P4

P2
P1
P0

Figure 1-6
Prototyping Area on the Board of
Education and HomeWork Board

Note the power header X3 provides
connections to Vdd (+5V), Vin (direct
battery or power supply voltage) and
Vss (0 V, ground.) Also shown is
how each row of 5 sockets on the
breadboard is electrically connected
underneath. BASIC Stamp I/O pins
are accessed via the X4 header.

Figure 1-6 also shows some samples of 5-socket-wide rows that are electrically
connected underneath the breadboard. There are 34 of these 5-socket-wide rows arranged
in the two columns on the breadboard. If you want to connect two jumper wires to each
other, you can just plug them into the same row of 5. Then the wires are electrically
connected. Likewise, if you want to connect one or more wires to the terminal of a part,
just plug them into the same row on the breadboard and they'll be connected.

Building the Analog and Digital Comparator
Build the circuit according to the schematic in Figure 1-7. This schematic is like a list of
connections between circuit symbols. Try to use this list to build the circuit. Here is a
partial list of the connections shown in the schematic:

√ The wiper terminal of the 10 kΩ pot is connected to pin 3 of the LM358 op-amp.
√ Pin 2 of the LM358 is connected to pin 1 of the LM358.
√ Pin P7 of the BASIC Stamp is connected to the wiper terminal of the pot.
√ Pin 8 of the LM358 is connected to Vdd on your board.
√ Pin 4 of the LM358 is connected to Vss on your board.

Keep following the schematic like a list and you'll have the circuit built in no time.

Page 8 · Basic Analog and Digital

Pot with
analog

output from
wiper

terminal

Op-Amp
voltage

follower circuit

Analog LED
output

Binary
LED

output.

Figure 1-7
Circuit Schematic.

Remember to treat
this schematic like
a list of
connections for
building your
circuit.

Although this circuit
only has a few
parts, it actually
has 4 separate sub
circuits, and each
has a different
function as shown

The potentiometer is what makes the analog output. The op-amp is wired to function as a
voltage follower. The voltage follower drives the analog LED output. Then there's a
separate circuit that uses a BASIC Stamp I/O pin to drive an LED.

Figure 1-8 shows a breadboard example of the schematic from Figure 1-7. For extra tips
on building circuits on the breadboard, consult What’s a Microcontroller?

 Chapter 1: Analog Voltage and Binary States · Page 9

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5

P3
P4

P2
P1
P0

X2

X3

LM
358

Figure 1-8
Breadboard Example

Compare this breadboard example to the
schematic from Figure 1-7. Is the LM358
connected right? Does Vdd go to pin 8 and
does Vss go to pin 4?

It turns out that the answer to both questions is
yes. Vss is connected by a wire to the lower
right terminal on the pot. Then another wire
connects from that pot terminal to pin 4 on the
LM358.

Since you can follow a wire all the way from pin
4 on the LM358 to the Vss terminal, that means
it is in fact connected directly to Vss.

IMPORTANT: Pay careful attention to placing the LM358 so that the index mark (half-circle
notch) is to the top, as shown on this breadboard example. If you place it in reverse, the op-
amp will be ruined after the battery or power supply is connected to your board.

Programming the Project
The program State_of_P7.bs2 below shows how PBASIC can be used to instruct the
BASIC Stamp to do several tasks. First, the BASIC Stamp monitors the state its I/O pin
P7, which is set to function as an input. Remember, P7 is connected to the wiper terminal
of the pot.

Depending on the analog voltage level at pin P7, the BASIC Stamp interprets the input as
low or high (binary 0 or 1). As soon as the input to P7 receives the high signal, the
BASIC Stamp sends a high signal to the LED circuit via pin P12. When the input is low,
a low signal is sent to P12. The Debug Terminal is also used to monitor the state of pin
P7.

Enter Program State_of_P7.bs2 into the BASIC Stamp Editor, and save it under a
convenient name, such as State_of_P7_1_1R0.bs2. This stands for Program Listing 1.1
Revision 0. Make sure the programming cable is properly connected to your board, and to
the serial or USB port on your computer. Also make sure that a battery or power supply is
properly connected, then run the program by clicking the BASIC Stamp Editor’s Run
button “►”, or Ctrl-R.

Page 10 · Basic Analog and Digital

' Basic Analog and Digital - State_of_P7.bs2
' Check the state of P7 and show it on the Debug Terminal.
' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG CLS
INPUT 7
OUTPUT 12

DO
 OUT12 = IN7
 DEBUG HOME, "The state of P7 is ", BIN IN7
LOOP

About the Code
The first lines start with an apostrophe. This means that they’re comments and not
PBASIC commands. The first line reminds you of the book and file name, for future
reference.

' Basic Analog and Digital - State_of_P7.bs2

The second comment is a description of the program. What does the program do?
' Check the state of P7 and show it on the Debug Terminal.

The next two lines are special comments. We call them compiler directives and they are
intended to identify the BASIC Stamp and the PBASIC version we are using. For
example if you’re following this manual with a BASIC Stamp 2 SX, you might replace
the compiler directive “'{$STAMP BS2}” with “'{$STAMP BS2SX}”. (Hint: use the
toolbar buttons to insert these compiler directives.)

' {$STAMP BS2}
' {$PBASIC 2.5}

It's good to start the Debug Terminal and clear it before using it to display data. This way
you will avoid inadvertently displaying outputs from previous programs that were in the
BASIC Stamp module's memory. The Debug Terminal starts automatically the first time
it encounters the DEBUG command in a PBASIC program. This DEBUG command clears
the Debug Terminal after it is opened:

DEBUG CLS

The BASIC Stamp needs to be told how to treat the I/O pins connected to the circuit.
They can either be set to function as inputs or outputs.

 Chapter 1: Analog Voltage and Binary States · Page 11

This PBASIC command sets BASIC Stamp I/O pin P7 to function as an input pin:
INPUT 7

Likewise, I/O pin P12 functions as output with this command:
OUTPUT 12

The rest of the program should be done over and over again, so this is a good place to put
a DO…LOOP loop. So, at the point we want to start to repeat the code we put:

DO

Later in the program, the command LOOP is entered. Each time the program gets to the
LOOP command, it returns to DO and starts executing instructions all over again.

The next task is to make the LED connected to pin P12 light up when the voltage at P7 is
high enough to qualify as a binary high signal. In other words, if the input value
measured at P7 is a binary-1, then the output at P12 should be set to binary-1. Although
there are several ways to accomplish this, the easiest way is to set the binary output value
of pin P12 equal to the binary input value of pin P7.

 OUT12 = IN7

The DEBUG command can be used to display the signal levels received by an I/O pin
functioning as an input in the Debug Terminal. The DEBUG command below prints three
different items. When printing more than one item with a DEBUG command, always
separate each of the items with commas.

 DEBUG HOME, "The state of P7 is ", BIN IN7

The first item listed using the DEBUG command is HOME, and it sends the cursor to the top-
left "home" position in the Debug Terminal. Note how HOME is followed by a comma to
separate it from the next item. The next item is a message in quotes: "The state of
pin P7 is ". Whenever you want to display a text message in the Debug Terminal,
use quotes. The third item is BIN IN7, which tells the Debug Terminal to display the
binary input value measured at pin P7.

We want the BASIC Stamp keep checking the voltage at P7 over and over again. We also
want the BASIC Stamp to automatically update the LED and the Debug Terminal with
the latest information from P7. This is accomplished by repeatedly sending the program
back to the DO command we created earlier.

Page 12 · Basic Analog and Digital

To send the program back to the DO statement to start the process all over again, use the
command:

LOOP

Troubleshooting
Here are a few tips on things to check if your program doesn't work as expected.

• It often takes a few tries to catch all of the wiring mistakes and programming
errors.

• The most common mistake is a program entry error. In some cases the BASIC

Stamp Editor will tell you there is a mistake. For example if you misspelled a
command, the BASIC Stamp Editor will not understand it, and it will tell you
which term it didn't understand by highlighting it and displaying a brief message.

• In other cases the program will run even though a line of code was typed

incorrectly. For example you might have typed 13 when you meant to type 12.
With a mistake like this, when you try to run the program, the LED connected to
pin P12 won't light up when you expect it to because the high signal gets sent to
pin P13 instead.

• Another common mistake is to plug a wire into the wrong socket on the

breadboard. If an LED is not turning on and off the way it should, and there are
no programming errors, check the wiring. Also check to make sure the cathode
and anode of the LED are connected to the proper places. When an LED is
hooked up backwards it won't emit light.

• If the information in the Debug Terminal appears garbled or nonsensical, try

closing the Debug Terminal and running the program again.

 Chapter 1: Analog Voltage and Binary States · Page 13

The Output
As you adjust the potentiometer knob, note how the LED at the voltage follower's analog
output varies in brightness. Meanwhile the LED circuit driven by P12 either turns on or
off. This characterizes the difference between analog voltage and digital (binary) voltage.

The output displayed in the Debug Terminal should resemble the output shown in Figure
1-9. The state of P7 will either be 0 or 1. Correspondingly, the LED circuit driven by P12
will either be off or on.

Figure 1-9
Debug Terminal
Output for Program

Adjust the potentiometer until you have found the threshold voltage. You will know
when you've found it because the Debug Terminal will indicate that the state of P7 skips
back and forth between 0 and 1 with just the slightest adjustment of the pot. Note the
position of the potentiometer. After we build a DC voltmeter in Chapter #3, we can find
out how close we are to 1.4 volts, which is the actual threshold voltage of a BASIC
Stamp I/O pin when it's functioning as an input.

Page 14 · Basic Analog and Digital

About the Comparator
Using PBASIC, we programmed the BASIC Stamp to function as a comparator. A
comparator is so named because it's a circuit that compares its input voltage to a
particular voltage, also called the threshold voltage. If the input voltage is higher than the
threshold voltage, the comparator sends a high signal at its output. If the input to the
comparator is below the threshold voltage, it sends a low signal.

In the case of our circuit and program, when the analog voltage at pin P7 is below 1.4
volts, the BASIC Stamp sends a low signal (0 volts) at pin P12. When the analog voltage
at pin P7 is above 1.4 volts a high signal (5 volts) is sent from pin P12. As you can see in
the Debug Terminal, the BASIC Stamp interprets analog input below 1.4 volts as low
(binary 0) and input above 1.4 volts as high (binary 1).

Operating a comparator near the threshold voltage is interesting because you can make a
small change in voltage at a BASIC Stamp input pin, say from 1.3 to 1.5 volts, and it
results in a fairly large change, from 0 to 5 volts at the output.

 Chapter 1: Analog Voltage and Binary States · Page 15

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

carbon

op-amp

analog

threshold

output

schematic

breadboard

A __________ shows circuit symbols connected to each other by lines.
Each circuit symbol corresponds to a component and the lines connecting
the symbols work like a list of connections that can be used to guide the
construction of a working circuit on a __________.

An __________ is an analog building block that was used in this
experiment as a voltage follower.

In this experiment, the potentiometer was used as a source of __________
voltage.
The voltage at the wiper terminal of the potentiometer can be made to vary
depending on where the wiper is in contact with the __________ element.

 A comparator is a device that sends a binary output that depends on
whether its analog input is above or below a certain __________ voltage.
A comparator can react to a small change in input voltage with a
comparatively large change in __________ voltage.

Page 16 · Basic Analog and Digital

Questions
1. Circle the word that makes the sentence true: The input for a voltage follower is

at the (inverting / non-inverting) terminal of the op-amp in this experiment.

2. How do you tell the difference between the cathode and the anode on an LED
from your parts kit?

3. If the threshold for a comparator is 2.5 volts, and the input is at 1.5 volts, what's

the output going to be?

4. Explain what the command DEBUG HOME does. What has to be done to display
more than one item using a single DEBUG command?

5. What command would you use to set pin P8 to function as an input?

Challenge!
1. Add another LED to the circuit to your board and use pin P11 to drive it in an

inverted state. In other words, when one LED is on, the other off. Hint: Add 1
to the output value at P11 to invert it.

2. Modify the code from Program State_of_P7.bs2 so that the LED output flashes

on and off when the potentiometer output is above the threshold voltage of the
BASIC Stamp input pin. Hint: You can use the command pause 500 to make the
program pause for half a second.

3. Modify State_of_P7.bs2 to cause one LED to light up when the input voltage at

pin P7 is above the threshold voltage and the other LED to light up when the
voltage at pin P7 is below threshold voltage.

 Chapter 1: Analog Voltage and Binary States · Page 17

Why did I learn it?
In this experiment, we compared a binary LED output to an analog LED output. Aside
from knowing that the voltage at the wiper terminal had just crossed the threshold
voltage, there was no way of indicating the potentiometer's position or the LEDs
brightness. On the other hand, in the neighborhood of the threshold voltage, fine
variations in analog voltage could be detected.

Even with the limited amount of analog information provided by a binary input, we were
able to develop a device called a comparator, which has many applications in electronics
design. As we'll discover in a later experiment, the 555 timer chip in you’re A & D parts
kit can do some pretty amazing things. This is due in part to two microscopic
comparators in the chip.

How can I apply this?
In later experiments, we'll use the threshold voltage to measure the frequency of sound
for record and playback purposes. We can also build another type of analog to digital
converter using a very simple circuit, the BASIC Stamp and the concept of threshold
voltage. We'll use this technique to measure light intensity as well as values for
capacitors from the Analog and Digital parts kit.

Page 18 · Basic Analog and Digital

Chapter 2: Introduction to Bit Crunching · Page 19

Chapter #2: Introduction to Bit Crunching

An important step in learning how to make the BASIC Stamp process analog data is
learning how to make it send and receive binary numbers. It's also important to
understand how binary numbers work, and how to convert from a binary number to a
decimal number.

BASIC COMMUNICATION
This experiment introduces some techniques for transmitting and receiving binary
numbers using the BASIC Stamp. In this experiment, we'll make a binary keypad for
transmitting binary numbers to the BASIC Stamp. The BASIC Stamp will also be
programmed to process and display the binary numbers it receives. The binary numbers
will be displayed by LEDs as well as by the Debug Terminal. The Debug Terminal will
also come in handy for monitoring and displaying the binary numbers in decimal form.

In What’s a Microcontroller?, we learned that binary is the number system used by
microcontrollers, and that it works with two digits, 0 and 1. The BASIC Stamp is part of
an entire class of digital electronic devices that can interpret 0 volts as binary-0 and 5
volts as binary-1.

Binary is useful for describing both states and numbers. In terms of states, the two digits
in the binary number system (0 and 1) can be used to describe off/on, closed/open,
no/yes, etc. Combinations of binary digits can be used to describe numbers. For example,
the binary numbers 101, 110, and 111 describe the decimal numbers 5, 6, and 7. These
numbers can in turn be used to describe analog information, such the position of a door as
it swings open and closed.

Parts Required

(2) 470 Ω resistors
(2) 220 Ω resistors
(2) 10 kΩ resistors
(2) Pushbutton switches
(2) Red LEDs
(misc.) Jumper wires

Page 20 · Basic Analog and Digital

The Pushbutton
There's just one new part and circuit symbol to introduce for this experiment, the
pushbutton in Figure 2-1. Note how each terminal on the circuit symbol corresponds to
two pins on the part. If you want to connect to a particular terminal shown on the symbol,
you can connect to either (or both) of the two corresponding pins on the part.

The open space in the circuit symbol indicates that the switch is normally open. When the
two terminals of a switch are not connected, the switch is referred to as an open circuit.
Under normal circumstances (when the pushbutton is not pressed), the circuit is open,
thus the name normally open.

Figure 2-1
Pushbutton Circuit
Symbol Compared to
the Component

Building the Circuit
Figure 2-2 shows the schematic for this experiment. Remember to think of a schematic as
a list of components and connections. For example, the anode of the right LED is
connected to the BASIC Stamp I/O pin P5 socket on your board. The cathode is
connected to one terminal of a 470 Ω resistor. The other pin on that same resistor is
connected to the Vss terminal on your board, and so on. Follow schematics faithfully
when constructing circuits.

Chapter 2: Introduction to Bit Crunching · Page 21

Vss

Vdd

P0

10 kΩ
220 Ω

Vss

Vdd

P1

10 kΩ

220 Ω

Vss

LED

470 Ω

P4

Vss

LED

470 Ω

P5

Figure 2-2
Schematic featuring two
pushbutton circuits and
two LED circuits.

Before making a PBASIC program telling the BASIC Stamp how to interface with this
circuit, it's essential to understand how the circuit works. The LEDs are pretty
straightforward. Set P4 high and the LED lights up; set P4 low and the LED goes dark
again. The LED circuit connected to P5 works the same way.

Now, what about the pushbuttons? Let's look at what pin P0 sees when the pushbutton is
pressed, then not pressed. When the pushbutton is pressed, P0 gets connected directly to
Vdd, which is 5 volts. P0 sees a high signal. When the pushbutton is not pressed, P0 is
connected to Vss (0 volts) through the 10 kΩ resistor. Then P0 sees a low signal. This
concept applies to both pushbuttons shown in Figure 2-2.

Figure 2-3 shows a breadboard example of the circuit schematic. Of the two BASIC
Stamp I/O pins used for the pushbuttons, the lower pin (P0) is connected to the right
pushbutton. Likewise, the right pin (P1) is connected to the lower pushbutton. The reason

Page 22 · Basic Analog and Digital

the wires for the pushbuttons cross relates to the way binary numbers are written, which
will be explained later in this experiment.

P
15

P
14

P
13

P
12

P
11

P
10

P
9

P
8

P
7

P
6

P
3

P
2

P
5

P
4

P
1

P
0

X
2 X3

V
dd

V
ss

Vin

Figure 2-3
Breadboard Example

Entering binary numbers on the pushbuttons will
be easiest if you orient your board as shown.

Note that the left button is connected to pin P1,
and the right button is connected to P0.

Program Listing 2.1 makes the left LED in Figure 2-3 light up when the left pushbutton is
pressed. Likewise, the right LED lights up when the right pushbutton is pressed. The
program also displays the activity of the pushbuttons in the Debug Terminal.

Programming the Project
Here is a more precise description of the program specifications for the pushbuttons and
LEDs.

• When P0 receives a low signal, P5 should send a low signal.
• When P0 receives a high signal, P5 should send a high signal.
• When P1 receives a low signal, P4 should send a low signal.
• When P1 receives a high signal, P4 should send a high signal.

The Debug Terminal can be used to display what the BASIC Stamp receives at pins P0
and P1. DEBUG commands are used to display the binary values the BASIC Stamp
receives as well as their decimal equivalents in the Debug Terminal.

Let's see how this can be done using PBASIC. Enter the Program Listing 2.1 into the
BASIC Stamp Editor, and save it as PL2_1R0.bs2. This stands for Program Listing 2.1
Revision 0. Make sure that your board has power and the programming cable is properly
connected, then run the program.

Chapter 2: Introduction to Bit Crunching · Page 23

' Basic Analog and Digital - PL2_1R0.bs2
' Program Listing 2.1 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

a VAR Bit
b VAR Bit
d VAR Nib

INPUT 0
INPUT 1
OUTPUT 4
OUTPUT 5

DEBUG CLS

DO
 a = IN0
 b = IN1
 OUT4 = b
 OUT5 = a
 d = (2*b) + (1*a)
 DEBUG HOME, "State of pin P0 is ", BIN a, CR
 DEBUG "State of pin P1 is ", BIN B, CR, CR
 DEBUG "2-bit binary number: ", CR
 DEBUG "P1 P0", CR
 DEBUG " ", BIN b, " ", BIN a, CR, CR
 DEBUG "Decimal equivalent: ", DEC1 d, CR
LOOP

The Output
Here's how the program should work. When no pushbuttons are pressed, the Debug
Terminal output should match Figure 2-4, and both LEDs should be off. Try pressing the
right button (in Figure 2-3). Did the right LED light up? Did the state of P0 in the Debug
Terminal change to 1? Is the decimal equivalent 1? If so, it looks like your circuit and
program are working well so far.

Page 24 · Basic Analog and Digital

Figure 2-4
Debug Terminal
Output for Program
Listing 2.1

So how do you count from decimal-0 to decimal-3 using the binary pushbuttons? The
two-bit binary equivalent of decimal-0 is 00. When you don’t press either of the
pushbuttons, the decimal output is 0 in the Debug Terminal. When you press the right
button, you get 01, which has a decimal equivalent of 1. When you press the left button,
you get 10, which has a decimal equivalent of 2. When you press both pushbuttons, you
get 11, which has a decimal equivalent of 3.

About the Code
As with the program of the previous chapter, the first lines start with an apostrophe, so
they are comments and compiler directives, and the BASIC Stamp ignores them.

' Basic Analog and Digital - PL2_1R0.bs2
' Program Listing 2.1 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

Chapter 2: Introduction to Bit Crunching · Page 25

Next, three variables are defined. Variables can be used to store values while the
program is running. The letters a and b are defined as variables that store 1-bit each. So,
the variable a can store a single binary digit, likewise with the variable b. The letter d is
defined to be a variable that stores a "nibble" of binary information.

a VAR Bit
b VAR Bit
d VAR Nib

Memory and Food: A bit of memory can store one binary digit, either a 0 or a 1.

A nibble of memory stores 4 bits.

A byte (pronounced bite) stores 8 bits.

A word stores 16 bits.

Since a bit, a nibble, and a byte, all sound like references to eating food, perhaps a better
name for 16 bits might have been "dinner".

This segment of code uses commands introduced in the last chapter. First, two I/O pins
are declared inputs and two more pins are declared outputs. Then the Debug Terminal is
opened and cleared.

INPUT 0
INPUT 1
OUTPUT 4
OUTPUT 5
DEBUG CLS

We want the BASIC Stamp keep checking the inputs over and over again. We also want
the BASIC Stamp to automatically update the LEDs and the Debug Terminal with the
latest information on the pushbuttons. The way to accomplish this is to keep repeating the
program inside a DO…LOOP loop. To define the start point of the loop we use DO and to
send the program back to this point we’ll use the LOOP command.

DO

Next, we need to check the state of the pushbuttons by checking the input at pins P0 and
P1. The first of these two commands sets the bit variable a equal to the state measured at
pin P0. The second command sets the bit variable b equal to the state measured at pin P1.

 a = IN0
 b = IN1

Page 26 · Basic Analog and Digital

Next, we need to set the output at pin P4 equal to the input taken at pin P1. The left LED
which is connected to P4 will light up when the left button, which is connected to P1, is
pressed. Likewise, we need to set the output at pin P5 equal to the input measured at pin
P0.

Since the input values were set to the variables, a and b, we can use a and b to dictate the
output values at pins P4 and P5.

 OUT4 = b
 OUT5 = a

We could just as easily have used the commands OUT4=IN1 and OUT5=IN0; however,
using variables to store the values in memory has advantages as the programs get more
complicated. In the next experiment, it will be necessary to use variables to store values.

The reason we used variables in this program is because they can be manipulated
arithmetically, and the next task is to convert from binary to decimal. To do this, multiply
the variable b by 2 and the variable a by 1 and add them together. The nibble variable d is
used to store this new value. This is the method for converting a 2-bit binary number to a
decimal number. The next section shows how to do this for a binary number of any size.

 d = (2*b) + (1*a)

BASIC Stamp Memory:

RAM: The BASIC Stamp has 26 bytes of RAM (random access memory) that can be used
for storing variable values. Another 6 bytes of RAM is used to interface the BASIC Stamp
with its I/O pins.

EEPROM: Short for Electrically Erasable Programmable Read Only Memory, EEPROM is
used mainly to store the PBASIC programs. EEPROM can also be used to store data values
that do not change frequently.

In the calculation we just did using PBASIC, the parentheses are necessary to maintain
the normal algebraic order of operation. This is because the BASIC Stamp performs its
math beginning at the left. Then, it performs each operation it encounters while checking
the line from left to right.

Without the parentheses, d would be set equal to the value ((2 x b + 1) x a) because that's
the order in which the operators (+, -,*, /, etc) are encountered. When parentheses are
used, the BASIC Stamp completes operations within parentheses first, and then it does its
sweep of operations from left to right.

Chapter 2: Introduction to Bit Crunching · Page 27

Six DEBUG commands are used to display all the measured states and the calculated
binary values in the Debug Terminal. The first DEBUG command below displays four
different items. Remember, each item in a single DEBUG command must be separated by a
comma.

The DEBUG HOME command sends the cursor to the top-left "home" position in the Debug
Terminal. Note that it is followed by a comma to separate it from the next item. The next
item is a message in quotes: "State of pin P1 is ".

Whenever you want to print a text message to the Debug Terminal, use quotes. The third
item is BIN a, which tells the Debug Terminal to print the binary value of the variable a.
The fourth item is CR, which makes the Debug Terminal print a carriage return.

 DEBUG HOME, "State of pin P0 is ", BIN a, CR

A similar message is printed for the variable b, without the HOME command. The HOME
command works well when it's used once per loop. Remember that DEBUG HOME sends the
cursor to the top-left corner of the Debug Terminal. If we used HOME more than once in
the loop, the information displayed after the first HOME command would be overwritten by
the information following the second HOME command.

 DEBUG "State of pin P1 is ", BIN B, CR, CR

Next, two DEBUG commands are used. Each prints a message in quotes followed by two
carriage returns.

 DEBUG "2-bit binary number: ", CR

Next, another message in quotes is printed followed by a single carriage return.
 DEBUG "P1 P0", CR

In this next command, the quotes contain spaces. The first pair of quotes just contains one
space (the space bar on the keyboard was pressed once). Then the binary value of b is
printed, followed by another two spaces in quotes, followed by the binary value of a, then
two more carriage returns.

 DEBUG " ", BIN b, " ", BIN a, CR, CR

Page 28 · Basic Analog and Digital

Here's something new. The modifier DEC was used to print the decimal value of the
variable d. Because this is the last instruction we want to repeat, it’s followed by the
LOOP command.

 DEBUG "Decimal equivalent: ", DEC1 d, CR
LOOP

Counting in Binary
Table 2-1 shows how to count from 0 to 3 using 2-bit binary numbers and how to count
from 0 to 7 using 3-bit binary numbers.

Note that four numbers (decimal 0 through 3) can be represented with a 2-bit binary
number. Eight numbers (0 through 7) can be represented with a 3-bit binary number. 4
bits can describe 16 different numbers, 5 bits can describe 32 different numbers and so
on.

Table 2-1:Measured voltages during charge cycle

Decimal number 2-bit binary
representation

3-bit binary
representation

0 00 000
1 01 001
2 10 010
3 11 011
4 100

5 101

6 110

7 111

You can always determine how many counting numbers (combinations of 0s and 1s) can
come from a given number of bits by using this formula:

 combinations = 2bits

This means the number of combinations equals two raised to the power of the number of
bits. For 2 bits, the number of combinations is 22 = 4. For 3 bits, the number of
combinations is 23 = 8, and so on.

Chapter 2: Introduction to Bit Crunching · Page 29

Converting from binary to decimal takes two steps. The first step is to multiply each bit
by its power of two. Table 2-2 shows the powers of two for up to 8 bits. When you
multiply each bit by its value from Table 2-2, you end up with a series of decimal values.
The second step is to add up all the decimal values.

Table 2-2: Bit Multipliers for an 8-bit Binary Number
Bit 7 6 5 4 3 2 1 0
Multiplier 128 64 32 16 8 4 2 1

Bit multipliers and Powers of Two: Bit-0 is the least significant bit (LSB) and bit-7 is the
most significant bit (MSB). That’s because bit-0 makes the smallest contribution to the
number and bit-7 makes the largest contribution. Thinking about a binary number as starting
on the left with bit-7 and ending on the right with bit-0 is useful because these numbers
indicate the power of 2 for each digit.

Examples:

The multiplier for bit-0 is 1, which equals 20.

The multiplier for bit-1 is 2, which equals 21.

The multiplier for bit-7 is 128, which equals 27.

Note: You can use powers of two to extend Table 2-2 to any number of bits!

As an example, let’s convert binary-1011 to decimal. First, multiply each bit by its power
of two from Table 2-2.

8 × 1 = 8
4 × 0 = 0
2 × 1 = 2
1 × 1 = 1

Second, add all 4 of the decimal values:
8 + 0 + 2 + 1 = 11

Now we know the binary number 1011 is equal to the decimal number 11.

Page 30 · Basic Analog and Digital

Parallel and Serial Transmission
Program Listing 2.1 repeats the entire check and report on the pushbutton states routine
over and over again. Because the BASIC Stamp checks for input over and over again
without waiting for some kind of signal that the data is ready, we are sending the binary
numbers to the BASIC Stamp asynchronously.

Asynchronous means not synchronized. In the case of our binary keypad, it means that
we change the binary values whenever we want to without waiting for permission from the
BASIC Stamp to do so. Likewise, the BASIC Stamp checks the signals at P0 and P1 as fast
as it can without waiting for a signal from us that says the data is ready to be checked.

We are also sending the binary bits across two separate data lines at the same time. This
means we are sending our data bits to the BASIC Stamp in parallel.

The BASIC Stamp has a 16 I/O pins. We could actually send a word-size binary number
to the BASIC Stamp in parallel. The problem is that we wouldn't have any pins left for
outgoing signals or other input data. When dealing with larger binary numbers, sending
serial data instead of parallel data can be useful because it reduces the number of BASIC
Stamp I/O pins used to receive data.

When sending serial data, there has to be some way of letting the BASIC Stamp know
when each new bit is ready. The BASIC Stamp has built-in functions for sending
asynchronous as well as synchronous serial data.

In this next example, the same two pushbuttons are used to send the BASIC Stamp a
nibble (4 bits) of serial, synchronous data. The result is displayed in the Debug Terminal.

Parallel means the data bits are sent across more than one data line at the same time. We
just finished using the pushbuttons to send two parallel bits.

Serial: Instead of sending data in parallel along multiple data lines, a single data line can be
used and the data bits can be sent one after another.

Synchronous: Sending data synchronously means we are sending the data in a time-
coordinated manner (in sync). Technically, it means that the sender and receiver of the data
bits do so according to signals from the same clock

Chapter 2: Introduction to Bit Crunching · Page 31

Reprogramming to Receive Serial Data
Enter Program Listing 2.2 into the BASIC Stamp Editor, and save it under the name
PL2_2R0.bs2.

' Basic Analog and Digital - PL2_2R0.bs2
' Program Listing 2.2 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

n VAR Nib
d VAR Nib

INPUT 0
INPUT 1

FOR n = 1 TO 4

 DO
 'Wait for high
 LOOP UNTIL IN1=1

 DO
 'Wait for low
 LOOP UNTIL IN1=0

 d = d << 1
 d = d + IN0
 DEBUG HOME, "Shifting in bits: ", BIN4 d
NEXT

DEBUG CR, CR, "Done shifting.", CR, CR
DEBUG "Decimal value: ", DEC2 d, CR, CR

The Output
The Debug Terminal will initially show a blank screen when you run the program.
Follow these instructions carefully to send the synchronous, serial data. First, press and
hold the right button. Then press and release the left button. The output should look like
Figure 2-5 below.

Page 32 · Basic Analog and Digital

Figure 2-5
Debug Terminal
Output for Program
Listing 2.2.

Next, release the right button, and press and release the left button again. The output
should change so that it looks like Figure 2-6.

Figure 2-6
Debug Terminal
Output for Program
Listing 2.2.

Chapter 2: Introduction to Bit Crunching · Page 33

Press and hold the right button, then press and release the left button twice. Then the
output should look like Figure 2-7.

Figure 2-7
Debug Terminal
Output for Program
Listing 2.2.

If your program worked as shown, you just synchronously shifted 4 serial bits into the
BASIC Stamp's RAM. In addition, it was verified that the decimal value of binary-1011
really is 11 in the decimal number system.

Figure 2-8 shows how these events occurred (from left to right) in a timing diagram. The
left pushbutton was the clock signal. The clock signal consisted of a series of clock
pulses. Each clock pulse was the press and release of the left pushbutton. This sent a low-
high-low signal to P1. Each time the left pushbutton was released, the BASIC Stamp
checked the state of the data line, which was the state of the right pushbutton (P0). The
BASIC Stamp is programmed to read the input data after the clock signal's transition
from high to low. This transition is referred to as the negative edge of the clock pulse.

Page 34 · Basic Analog and Digital

 Read Input Read Input Read Input Read Input

Clock
signal from
left
pushbutton
to P1

Data signal
from right
pushbutton
to P0

1 0 1 1

Figure 2-8: Timing Diagram.

About the Code
Like Program Listing 2.1, we use a comment to include some information about the
program at the beginning. Remember, as soon as an apostrophe appears in a line of
PBASIC code, everything to the right of the apostrophe is ignored by the BASIC Stamp.
Next the two nibble variables are defined, and I/O pins P0 and P1 are set to function as
inputs. One of those nibble variables, n, is used by the FOR…NEXT loop.

The main portion of the code is in a FOR…NEXT loop, which has the following syntax:

FOR Counter = StartValue TO EndValue

In the example code snippet below, n is the Counter, 1 is the StartValue argument and 4 is
the EndValue argument of the FOR…NEXT command.

FOR n = 1 TO 4
 DEBUG DEC n, CR
NEXT

DEBUG “Done!”

Chapter 2: Introduction to Bit Crunching · Page 35

This FOR…NEXT loop executes the PBASIC command between the FOR command and the
NEXT command four times. The first time through the loop the value of n is 1, the second
time through the value of n increments to 2, and so on until n gets to 4. After completing
the 4th pass, the program skips out of the loop and continues on to the line of code after
the NEXT command.

Program Listing 2.2 has a more complicated set of commands that gets repeated within
its FOR…NEXT loop, and it is different from what we've seen before. It starts with a
DO…LOOP conditional loop. This loop is used to check the value at pin P0. If the value of
P0 is low, LOOP UNTIL IN1=1 sends the program back to DO. If the value at pin P1 is
high, then the program executes the next line, after the LOOP instruction.

FOR n = 1 TO 4
 DO
 'Wait for high
 LOOP UNTIL IN1=1

The same technique is applied with the next two lines of code (and one comment), which
repeat themselves until a low signal is received.

 DO
 'Wait for low
 LOOP UNTIL IN1=0

The command d=d<<1 shifts all the bits in d left by 1. When values are shifted, the
vacant space in the rightmost bit (the LSB) is automatically filled with a zero. Then the
bit value at pin P0 is loaded into the LSB position in the nibble. This is done using the
d=d+IN0 command, which adds the single bit measured at P0 to the value of the nibble
variable d. The second time through the loop, the value that was placed in the LSB gets
shifted left by one, so it ends up in bit-1. Meanwhile the next value sampled at P0 is
placed in the LSB slot. The shift and add process is repeated four times as each bit is
shifted into the byte.

 d = d << 1
 d = d + IN0

Each time a new bit is shifted in, we use the DEBUG command to display the new value.
Each time the program gets to the NEXT command it returns to the FOR n = 1 TO 4
command, and the value of n is incremented, until it gets to 4. Finally the program breaks
out of the loop.

Page 36 · Basic Analog and Digital

 DEBUG HOME, "Shifting in bits: ", BIN4 d
NEXT

Once the FOR…NEXT loop is finished and all the bits are shifted into the d variable, two
messages are printed. The second of the two DEBUG commands has a new modifier, DEC2.
This modifier is used to make the Debug Terminal display the value of d as two decimal
digits.

DEBUG CR, CR, "Done shifting.", CR, CR
DEBUG "Decimal value: ", DEC2 d, CR, CR

While Chapter 1 introduced analog voltage, this chapter introduced the basics of sending
and receiving binary numbers. In the next experiment, we'll combine these topics to build
a digital DC voltmeter, which is a device that measures analog voltage and displays the
measurement as a digital value.

Chapter 2: Introduction to Bit Crunching · Page 37

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

largest

word

decimal

BASIC Stamp

synchronously

LSB

PBASIC

byte

binary
numbers

The _____________ can be used to process information about analog
measurements using _____________ . Before working with analog to
digital interfaces, it's important to understand how the BASIC Stamp
sends, receives, and stores binary data. It's also important to be able to
use _____________ to program the BASIC Stamp to send, receive, and
store binary data.

When converting a binary number to its _____________ equivalent, each
bit should be multiplied by a particular power of two. The
_____________ is the rightmost bit in a binary number, and it makes the
smallest contribution to the value of that number. It is also referenced as
bit-0. The MSB is the leftmost bit. It makes the _____________
contribution to the value of a binary number. The bit just to the left of
the LSB is bit-1, the bit 2 bits to the left of LSB is bit-2 and so on.

The BASIC Stamp can store a single bit, a nibble, which is 4 bits, a
_____________, which is 8 bits, or a _____________, which is 16 bits.
To save I/O pins, the BASIC Stamp can send and receive serial data as
opposed to parallel data, which uses multiple data lines. Binary data can
also be sent _____________ or asynchronously.

Page 38 · Basic Analog and Digital

Questions
1. Determine the decimal equivalents of these binary numbers: 1010, 1111, 0010,

and 0100.

2. The command d = d<<1 was used to shift the bits in the variable d to the left by
1. What command do you think would be used to shift the bits to the right? What
command would you use to shift the bits by, say, 3 to the left?

3. Explain the difference between serial and parallel data.

4. Explain the difference between synchronous and asynchronous data

transmission.

Challenge!
1. Program Listing 2.1 is used to count to three. Write a program that uses three

parallel bits (use pin P2 for the third bit) and counts to 7. You can check your
work by connecting the input pin P2 to Vdd for a high signal and to Vss for a
low signal (using a 1 kΩ resistor).

2. Modify Program Listing 2.2 so that it displays the clock pulses you apply to the

left pushbutton with the left LED.

3. Modify Program Listing 2.2 so that it shifts the bits back out, displaying them
with the right LED.

Chapter 2: Introduction to Bit Crunching · Page 39

Why did I learn it?
The goal in this series of experiments is to demonstrate how a device such as the BASIC
Stamp, which processes binary data, can be used to interface with the analog world.
Binary numbers and states form the foundation for how microcontrollers,
microprocessors and an entire class of binary circuits process data.

Analog data can be effectively processed with binary numbers using the techniques in
this experiment. Learning the basics of processing binary data will help make a myriad
of electronic circuits easier to understand. This is also the foundation for how the home
computer processes data. Understanding data at the binary level ("bit crunching") also
makes various programming languages easier to understand.

How can I apply this?
In some of the upcoming experiments, we will process analog data using serial and
parallel data. We will also use synchronous and asynchronous communication. The
BASIC Stamp can be connected to other integrated circuits and exchange binary data.
The BASIC Stamp can also be programmed to convert the binary data to a meaningful
decimal form.

We'll use these techniques to measure voltage, sound, light, etc.

The BASIC Stamp has commands which automate the serial data transmit and receive
processes in both asynchronous and synchronous modes. We will encounter the serial,
synchronous method in Chapter #3. The BASIC Stamp also has features available to
simplify the sending and receiving of parallel data, as we'll discover in Chapter #4 where
asynchronous parallel data is transmitted.

Page 40 · Basic Analog and Digital

Chapter 3: Basic Analog to Digital Conversion · Page 41

Chapter #3: Basic Analog to Digital Conversion

BUILD YOUR OWN DIGITAL DC VOLTMETER
A digital DC voltmeter (DC DVM) is a handy tool for measuring voltage between two
contact points. In this experiment, we will build a DVM for measuring DC voltage in the
0 to 5 volt range. A common use for a DC DVM is testing the voltage (potential) between
the two terminals on a battery.

A digital voltmeter is so named because it displays its measurements with digits. The
digits 0 through 9 and a decimal point are used to display the voltage measurements as
decimal values. The digits 0 and 1 could be used. It would still be a "digital" voltmeter,
but it would have binary display instead of a decimal display. Making sense out of each
measurement would be time consuming. Since our DVM processes its measurements in
binary, we'll start with a binary display and then modify it to a more conventional and
easy to read decimal display.

In Chapter #1, we used an LED circuit to display changes in analog voltage level applied
to a circuit. As a “continuously variable value”, analog voltage varies within a continuous
range. We'll use the potentiometer as we did in Chapter #1 to make a range of voltages
that can vary continuously between 0 and 5 volts.

Although information about analog voltage can be processed efficiently with binary
devices, the voltage has to be sampled and described using binary numbers first. The
ADC0831 is a common integrated circuit that does this job. It describes the analog
information with binary numbers for devices that process binary information, such as the
BASIC Stamp.

In this experiment, we will make a DVM using the BASIC Stamp together with the
ADC0831 integrated circuit. A pot will be wired to your Board of Education or
HomeWork Board and adjusted to make analog output voltage. The DVM will then be
used to measure samples from the pot’s continuous range of voltage outputs.

Continuous range: A minimum value, a maximum value, and everything in between. When
a source of voltage varies over a continuous range, it is considered an analog voltage.

We will use our DVM to sample voltages over a continuous range, from 0 to 5 volts. So, the
voltage we measure might be 1.234 volts or 3.857564… volts, or 4.9999… volts, etc.

Page 42 · Basic Analog and Digital

Parts Required
(1) ADC0831
(1) 10 kΩ potentiometer
(10) Jumper wires, give or take a few

The Potentiometer, a Source of Variable Voltage
There is a reason why the voltage at the wiper terminal of a pot changes when you turn
the knob. The wiper terminal makes the single resistive element in the pot work like two
resistors in series. Figure 3-1 shows two resistors in series. When input voltage is applied
and output voltage is measured as shown in Figure 3-1, the circuit is referred to as a
voltage divider. R1 and R2 are the resistances between the wiper and the other two
terminals on the pot, and their values change as the pot is adjusted. Since the pot causes
the R1 and R2 to vary, we can call our wiper terminal the output of a variable voltage
divider.

Vdd

Vss

Voutput

Vinput
=Vdd

R1

R2

Figure 3-1
Voltage Divider Circuit

A Voltage Divider Circuit shows how the wiper
in a potentiometer makes the single resistive
element look like two resistors in series.

Voutput is the voltage measured at the wiper
terminal.

Resistor Values: When you know the value of the two resistors in Figure 3-1, you can
predict the output voltage using this equation.

21

2
inputoutput RR

R
VV

+
×=

Not surprisingly, it’s called the voltage divider equation, and this technique for scaling down
an input voltage is commonly referred to as using a voltage divider.

Chapter 3: Basic Analog to Digital Conversion · Page 43

Resistors in Series: A chain of resistors connected end to end. Three resistors in series
are shown below. The three resistors can be viewed as a single resistance whose value is:

Rseries=R1+R2+R3

R1 R2 R3

The ADC0831 Integrated Circuit - An 8-bit Analog to Digital Converter
The ADC0831 is an integrated circuit referred to as an 8-bit analog to digital converter
(A/D converter) with synchronous serial output. Let's look at what each of these terms
mean:

• An integrated circuit (IC) is a circuit with microscopic components implanted on
the surface of a silicon wafer. The Analog and Digital Parts Kit has three chips
used in these experiments. Each chip is a black casing with eight pins. The black
casing houses and protects an integrated circuit.

• An A/D converter measures an analog voltage sample and returns a binary

number that describes the sample.

• 8-bit is the number of binary digits the ADC0831 uses to describe the analog
voltage it samples. 8-bit is also the resolution of the A/D converter. You can
count from 0 to 255 (decimal) using an 8-bit binary number. This means that the
ADC0831 can approximate the voltage it measures as one of 256 levels. A
higher resolution converter, such as 12-bit, would break the same voltage range
into 4096 levels because you can count from 0 to 4095 with 12 binary bits.

• Synchronous and serial are terms we learned about in Chapter #2. We sent serial

binary digits (bits) to the BASIC Stamp using one pushbutton and the bits were
synchronized to a second pushbutton that was used to send a clock signal. The
ADC0831 works in a similar way. The difference is that the ADC0831 depends
on a clock signal sent by the BASIC Stamp to time the sending of each serial
output bit.

The BASIC Stamp will be programmed to read and store the 8 serial bits transmitted by
the ADC0831. We’ll also program the BASIC Stamp to display the decimal equivalent of
the binary output. Next, we’ll use this decimal equivalent to calculate and displays the

Page 44 · Basic Analog and Digital

measured voltage in decimal form (our DVM output). The BASIC Stamp must also be
programmed to send binary control signals to make the ADC0831 do its job.

Figure 3-2 shows a pin map of the ADC0831. Each pin has a number and a label. The
number is important for getting the wires connected to the right pins when constructing
your circuit. The labels indicate the function of each pin.

Binary control signal: A voltage signal with two possible states, low or high, that is sent to
tell a device how or when to do something. The ADC0831 requires control signals to activate
it and a clock signal to synchronize the sending of each of its output bits.

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd
1

7

6

2

4

3

8 5

1

2

4

3

8

7

5

6

GND

Vin (-)

Vin (+)

/CS

Vref

D0

CLK

Vcc

ADC0831

Figure 3-2
ADC0831 Circuit Symbol and Pin Map

The pin map on the right shows the pins and
labels according to where they are on the chip.
The circuit symbol on the left also shows the
pins and their labels, but it's typically drawn in a
way that most conveniently fits into the
schematic.

The notation for the ADC0831's inputs and outputs works as follows: Vin(+) is the
analog input, and D0 is the serial output. VREF and Vin(-) are used to bias the IC. Vcc
and GND are used for supplying power to the IC. Vcc is essentially the same term as Vdd
on the Board of Education or HomeWork Board, and GND corresponds to Vss. /CS
stands for active low chip select, and CLK stands for clock. Both are inputs for binary
control signals.

Bias: A method of applying specific voltage levels at certain places in a circuit to calibrate or
tune it.

To prime the ADC0831 for taking a measurement, the /CS pin has to receive a signal
from the BASIC Stamp that starts high, then goes low. This signal has to stay low for the
duration of the conversion. Then the CLK input must receive a single clock pulse (a term
introduced in Chapter #2, Figure 2-8) to signify that the conversion should start at the
next clock pulse. For this IC, a clock pulse starts low, goes high, and then goes low again.
It takes 8 more clock pulses to complete the conversion. Each time a clock pulse is
received by the CLK input, another of the serial bits is sent by the D0 output.

Chapter 3: Basic Analog to Digital Conversion · Page 45

Electronics designers use data sheets to find the kind of information just discussed. Each
IC manufacturer publishes data sheets for the integrated circuits they make. The
information just covered on the pin map and control signals was condensed from a data
sheet published by National Semiconductor, the maker of the ADC0831. Of course all of
the datasheets are available on the manufacturer's web sites.

Build It
Figure 3-3 shows the schematic for this experiment. This is a fairly simple circuit to
build, so let's try it without the breadboard example. Hopefully you're getting the hang of
the list of connections described by a schematic. Remember, when working with the
connections to an IC, use the index mark on the chip along with the pin map to figure out
the pin numbers!

Figure 3-3
Schematic

List of connections made on this schematic:
• Pin 1 on the ADC0831 is connected to I/O

pin P0 on the BASIC Stamp.
• The wiper terminal of the pot is connected

to pin 2 on the ADC0831.
• Of the two remaining terminals on the pot,

one is connected to Vdd on your board,
and the other is connected to Vss.

• Pins 3 and 4 on the ADC0831 are
connected to Vss.

• Pins 5 and 8 on the ADC0831 are
connected to Vdd.

• Pins 7 and 6 on the ADC0831 are
connected BASIC Stamp I/O pins P1 and
P2 respectively.

Program It
Program Listing 3.1 is the first step to a functional DC voltmeter. This program displays
the 8-bit serial output of the ADC0831. Enter the code and save it as P3_1R0.bs2. There
will be three revisions of this program listing, so it will become important to keep track
of your source code versions.

We'll modify the code so that it also displays the decimal conversion of the 8-bit binary
number. Next we'll add some more code to adjust the number to a 5 volt scale. Make sure

Page 46 · Basic Analog and Digital

your circuit is constructed correctly and your programming cable and power source are
connected, then run the program.

' -----[Title]---
' Basic Analog and Digital - PL3_1R0.bs2
' Program Listing 3.1 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
adcBits VAR Byte
v VAR Byte
r VAR Byte
v2 VAR Byte
v3 VAR Byte

' -----[Initialization]--
CS PIN 0
CLK PIN 1
DataOutput PIN 2

DEBUG CLS 'Start display.

' -----[Main Routine]--
DO
 GOSUB ADC_Data
 GOSUB Calc_Volts
 GOSUB Display
LOOP

' -----[Subroutines]---
ADC_Data:
 LOW CLK
 LOW CS
 PULSOUT CLK, 210
 SHIFTIN DataOutput,CLK,MSBPOST,[adcBits\8]
 HIGH CS
RETURN

Calc_Volts:
RETURN

Display:
 DEBUG HOME
 DEBUG "8-bit binary value: ", BIN8 adcBits
RETURN

Chapter 3: Basic Analog to Digital Conversion · Page 47

The Output
If the pot is adjusted somewhere in the middle of its range, the output displayed in the
Debug Terminal should look similar to Figure 3-4. As you adjust the pot, the zeros and
ones should change rapidly. At one end of the pot’s range of movement, you should get
all 0’s; at the other end you should get all 1’s.

Figure 3-4
Debug Terminal
Output for Program
Listing 3.1.

If your Debug Terminal responds this way, it’s likely your circuit and program are
working right. If it doesn’t do this, check the wiring on your circuit. Also make sure code
is entered correctly. Sometimes just one wrong letter will cause the program not to work
properly. The Debug Terminal could also be hidden from view. It can be accessed from
the menus by selecting Run/Debug/New Terminal in the BASIC Stamp Editor.

About the Code
The first few lines of text in this program are comments that begin with apostrophes, and
they don't have any function in the program aside from explaining it to someone reading
the code, and identifying the BASIC Stamp model and PBASIC version.

' -----[Title]--
' Basic Analog and Digital - PL3_1R0.bs2
' Program Listing 3.1 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

Page 48 · Basic Analog and Digital

The next section is called the variable declarations section, and it begins with a comment
explaining that this is the declarations section. This program uses just the adcBits
variable at present. We'll add code that will make use of the other four variables, v, R,
v2, and v3.

' -----[Declarations]---------------------------------------
adcBits VAR Byte
v VAR Byte
r VAR Byte
v2 VAR Byte
v3 VAR Byte

Following is a new type of declaration we haven't used before. Three constants are
defined using the PIN directive. After we define these constants, we can use CS in place
of the number 0, CLK in place of the number 1, and DataOutput in place of the number
2. The names for the pin identifications were chosen to correspond with the ADC0831's
pin labels. The numbers were chosen based on BASIC Stamp I/O pin numbers.

' -----[Initialization]-------------------------------------
CS PIN 0
CLK PIN 1
DataOutput PIN 2

Next there's the main routine section containing three GOSUB commands. The DO…LOOP
loop runs 3 different subroutines over and over again. The subroutines are named
ADC_Data, Calc_Volts, and Display.

Subroutine is a small program that does a specific task within a larger program.

' -----[Main Routine]---------------------------------------
DO
 GOSUB ADC_Data
 GOSUB Calc_Volts
 GOSUB Display
LOOP

So, how does a GOSUB command work? As shown in the flow diagram in Figure 3-5,
GOSUB ADC_Data means go to the subroutine labeled ADC_Data and come back when
finished. The program jumps to the ADC_Data label and starts executing commands. As
soon as it gets to the RETURN command, the program jumps back to the command just
after GOSUB ADC_Data. In this case, the next command is another GOSUB command,
GOSUB Calc_Volts.

Chapter 3: Basic Analog to Digital Conversion · Page 49

Figure 3-5
Flow Diagram

A subroutine sends the
program to the specified label.
In this case the label is
ADC_DATA. Then the program
continues executing
commands until it encounters
the return command. The
return command sends the
program back to the
command immediately after
the GOSUB command. In this
case it's another GOSUB
command.

The subroutine ADC_Data sends control signals to and collects output data from the
ADC0831. This subroutine is where the usefulness of the PIN directive really shows. P0
on the BASIC Stamp is connected to the /CS pin on the ADC0831. Likewise, pins P1 and
P2 are connected to CLK and D0. When sending signals to the /CS pin, we can enter a
command like HIGH CS instead of HIGH 0. It makes more sense when writing the code
and it makes deciphering the code easier too. It's also easier to change one definition in
the top of the program should you decide to connect the ADC0831 to a different BASIC
Stamp I/O pin

The LOW CLK command is necessary so that the clock pulses take the right form. Using
this command guarantees a PULSOUT command a little later in the subroutine will send a
clock pulse that has the right shape, low-high-low. The command LOW CS “enables” the
ADC0831. You can have several ADC0831 chips connected to the same CLK (clock)
and D0 (data) lines. The BASIC Stamp then sets only one ADC0831 chip’s /CS low at a
time to get its voltage measurement. The ADC0831 that’s getting the low signal to its
/CS pin is the one that will reply to pulses from the BASIC Stamp to its CLK pin by
transmitting binary values that report the voltage measurement with its D0 pin. All the
rest of the ADC0831’s with high signals to their /CS pins would ignore the clock pulses.

ADC_Data:
 LOW CLK
 LOW CS

Page 50 · Basic Analog and Digital

The PULSOUT CLK, 210 command sends a clock pulse to the ADC0831's CLK input.
This is the first clock pulse, and all it does is tell the ADC0831 to start converting on the
next clock pulse. Because of this, we don't need to check for input from D0 after this first
clock pulse.

 PULSOUT CLK, 210

Since we set the clock low before this command, PULSOUT sends the desired low-high-
low signal. The duration of the high segment is twice the number specified in the
PULSOUT command, in two microsecond (µs) units. 1 µs = 1/1,000,000 of a second.
Therefore the duration of this high signal is 2 µs × 210 = 420 µs.

The command SHIFTIN D0,CLK,msbpost,[adcBits\8] is a powerful instruction that
takes care of all the synchronous serial communication so that we don't have to program
it as we did in Chapter #2. In effect, this command sends clock pulses to the ADC0831’s
CLK input and reads output bits from ADC0831’s D0 output. This command also loads
each of the ADC 0831’s output bits into the adcBits byte.

SHIFTIN DataOutput,CLK,MSBPOST,[adcBits\8]

The SHIFTIN command is discussed in more detail in the BASIC Stamp Manual, but the
general format for the command is:

SHIFTIN data_ pin, clock_pin, mode, [variable\bits]

In our case, the data pin is DataOutput, a constant equal to the number 2. This constant
is used to reference BASIC Stamp I/O pin P2 in this program. Likewise, the clock pin is
CLK, which is a constant equal to the number 1, and it references BASIC Stamp I/O pin
P1. The mode in this case is MSBPOST, and it's one of four transmission modes that can be
used in this command. It indicates that the ADC0831's output bits are ready after the
clock pulse's negative edge, the transition from high to low. It also indicates that the bits
are transmitted in descending order, starting with the MSB. [adcbits\8] means the data
is shifted into the adcBits variable, and 8 bits are expected.

A low signal had to be sent to the ADC0381’s /CS pin near the beginning of the
subroutine to enable it. Now that the subroutine is done getting the measurement, the
ADC0831’s /CS should be left high with HIGH CS to disable it. (The / to the left of CS
indicates “active low”, and CS is the abbreviation of Chip Select.)

 HIGH CS

Chapter 3: Basic Analog to Digital Conversion · Page 51

The Calc_Volts subroutine is empty right now, but we will develop the code for this
subroutine shortly. The subroutine will calculate the measured voltage to the hundredth’s
decimal place.

Calc_Volts:
RETURN

At present, the Display subroutine just displays the binary output for each analog
voltage sample taken by the ADC0831. It will be modified to display the decimal
equivalent of the 8-bit binary value. It will also be modified to display the voltage
measurement.

The following DEBUG commands send the cursor to the top-left "home" position in the
Debug Terminal. Then it prints the message in quotes. The modifier BIN8 makes it so the
value of the adcBits variable is displayed as 8 binary digits.

 DEBUG HOME
 DEBUG "8-bit binary value: ", BIN8 adcBits

If the number of digits displayed is likely to vary, when using the DEBUG HOME
command, always specify how many digits the numeric outputs should have with
modifiers like BIN8, DEC3, etc. When DEBUG CLS is used, it’s OK to skip specifying
the number of digits, so modifiers such as BIN and DEC can be used instead.

The DEBUG HOME command is better for programs that cycle through loops where the
Debug Terminal display is updated frequently and rapidly. When DEBUG CLS is used
under these circumstances, the repeated clearing the Debug Terminal causes a flicker that
makes the display difficult to read.

The RETURN command sends the program back to the line immediately following the
GOSUB Display command.

We will modify the Display subroutine to display the decimal equivalent of the binary
contents of adcBits in the Debug Terminal. Code will also be added to make the Debug
Terminal display our DVM reading.

Page 52 · Basic Analog and Digital

Interpreting the Output
The ADC0831 measures an analog voltage at its input. Then it sends the BASIC Stamp a
binary number describing the value it measured. For now, we’ll focus on a voltage scale
that starts with 0 volts and ends at 5 volts.

With an 8-bit binary number, you can start counting with 00000000 and count all the way
up to 11111111. Translated to decimal numbers, it's the same as counting from 0 to 255.
When applied to a 5 volt scale that starts at 0 volts, it’s the same as counting from 0 to 5
volts using 255 voltage steps.
For the 5 volt scale, when the ADC0831 measures 0 volts, you get 00000000. When it
measures 5 volts, the output is 11111111. It turns out that the Debug Terminal output
10110100 from Figure 3-4 is the same as the decimal number 180. Decimal-180 in turn
corresponds to a measured voltage of 3.53 volts.

Binary to Decimal Conversion Revisited
So how do we know that 256 combinations can come from an 8-bit binary number?
Remember, you can always tell how many numbers (combinations of 0s and 1s) can
come from a given number of bits by using this formula from Chapter #2:

combinations =2bits

This means the number of combinations equals two raised to the power of the number of
bits. For 8 bits, the number of combinations is 28 = 256. For 12 bits, the number of
combinations is 212 = 4096, and so on.

Let's use the two-step method from Chapter #2 to convert the 8-bit binary number
10100101 to its decimal equivalent. Here is a repeat of the bit multipliers table to work
with:

Table 3-1:Bit Multipliers for an 8-bit Binary Number

Bit 7 6 5 4 3 2 1 0

Multiplier 128 64 32 16 8 4 2 1

Chapter 3: Basic Analog to Digital Conversion · Page 53

First, multiply each bit by its power of two from Table 3-1:
128 x 1 = 128
64 x 0 = 0
32 x 1 = 32
16 x 0 = 0
8 x 0 = 0
4 x 1 = 4
2 x 0 = 0
1 x 1 = 1

Second, add all 8 of the decimal values:
128 + 0 + 32 + 0 + 0 + 4 + 0 + 1 = 165

Now we know the binary number 10100101 is equal to the decimal number 165. To
display this conversion, a single DEBUG command can be added to the Display
subroutine. Added lines are shown with a "□".

Display:
 DEBUG HOME, "8 bit binary value: ", BIN8 adcBits
 DEBUG CR, CR, "Decimal value: ", DEC3 adcBits '□ new line
RETURN

The command DEBUG CR, CR, "Decimal value: ", DEC3 adcBits tells the Debug
Terminal to display two carriage returns followed by the message in quotes, followed
again by the 3-digit decimal value of adcBits. If the actual number only has one or two
digits, the Debug Terminal will automatically display leading zeros since DEC3 was
specified. For example, the number 7 will display as 007, and the number 85 as 085, etc.
With some careful adjustment of the pot, we can check our work using output sample
shown in Figure 3-6.

Page 54 · Basic Analog and Digital

Figure 3-6
Debug Terminal
Output for Program
Listing 3.1,
Revision 1.

Calculate Voltage
Now that we know the decimal equivalent of the ADC0831’s binary output, we can do a
few calculations to get the measured voltage. To find out what voltage the decimal
number corresponds to, we need to calculate where in the voltage range the number falls.
Here is an effective way to think about the problem.

• We know that the voltage is on a 0 to 5 volt scale, and we know that the
ADC0831’s output is on a scale from 0 to 255.

• In other words, the measured voltage is to 5 as the A/D output is to 255.

This translates to fractions as:

 255
OutputD/ADecimal

5
Voltage =

We can re-arrange this equality to calculate the voltage:

 255
Output)A/D(Decimal×5Voltage=

Chapter 3: Basic Analog to Digital Conversion · Page 55

So, now we know to multiply by 5 and divide by 255 for a 5 volt scale with 256 levels.
We can calculate the voltage from Figure 3-6 where the ADC0831’s output is 10100101
= 165. The measured voltage is:

.places decimal two toroundedVolts3.24=

255
165×5=Voltage

To calculate and display this voltage using the BASIC Stamp, we’ll add some code to
both the Calc_Volts and Display subroutines. First, the voltage equation needs to be
expressed in PBASIC code. Here is an example of some code that could reasonably be
expected to work.

v = 5 * adcBits / 255

This PBASIC calculation looks like it will give us the output we want, but it won’t. It’s
instructive to try it this way and see what happens. Modify the Calc_Volts and Display
subroutines in Program Listing 3.1 as follows:

Calc_Volts:
 v = 5 * adcBits / 255 '□ new line
RETURN

Display:
 DEBUG HOME
 DEBUG "8-bit binary value: ", BIN8 adcBits
 DEBUG CR, CR, "Decimal value: ", DEC3 adcBits
 DEBUG CR, CR, "DVM Reading: ", DEC3 v, " Volts" '□ new line
RETURN

We calculated that 165 would lead to a measured voltage of 3.24 volts. The 003 volts
shown in Figure 3-7 is only accurate to the nearest volt! What happened?

Page 56 · Basic Analog and Digital

Figure 3-7
Debug Terminal
Output for Program
Listing 3.1, Revision
2.

The PBASIC command set for the BASIC Stamp does arithmetic using integer values.
Integers are the counting numbers: …-2, -1, 0, 1, 2, 3, etc. The largest integer the BASIC
Stamp can process is 65535. When using integer arithmetic, the fractional part of any
answer is discarded. Fortunately, we can still use integer arithmetic to find the fractional
values we are trying to display.

Before dividing, the A/D output is multiplied by 5. This doesn’t cause any problems.

Output)A/D(Decimal×5 is essentially the same as adcBits×5 .

In our voltage calculation example, that’s 825.1655 =× Since 825 is an integer that is
less than 65535, this part of the calculation goes without a hitch. The problem occurs
when we try to divide 825 by 255. The answer has a fractional component that never gets
calculated with integer math.

Doing “long division” with a pencil and a piece of paper takes several steps, and it relies
solely on integer arithmetic. Let's look at how to calculate the answer for this division
problem.

Chapter 3: Basic Analog to Digital Conversion · Page 57

60ofremaindera+3=

255
Output)A/D(Decimal×5=Voltage

In long division, calculating the part of the answer to the right of the decimal point is
repetitive. We multiply the remainder by 10, then divide by 255 again, then take another
remainder, multiply it by 10, and divide by 255 again, etc. A shortcut to this procedure is
to take the remainder, and multiply it by 100, then divide by 255. This gives us two
decimal places. Let's try it.

2323.5924...2556000255100)(60 MathInteger ⎯⎯⎯⎯ →⎯=÷=÷×

Remember: the BASIC Stamp cuts off everything to the right of the decimal point
without rounding. This is called truncating. The result we get is 23. This result should
have been rounded up to 24 because 23.5294 is more than half way to the next integer
value, 24. For now, let's stick with 23 to the right of the decimal point.

Our answer using this algorithm is the integer 3 to the left of the decimal point, and the
integer value 23 to the right of the decimal point. Since we used only integers in our
arithmetic, it should work using PBASIC and the BASIC Stamp.

What’s an Algorithm? An algorithm is a procedure for solving a problem. The procedure is
broken down into repeatable steps.

Since the BASIC Stamp works with integers, it's not surprising that there is a PBASIC
command to calculate the integer remainder of a division problem. The operator for
division is / and the operator for getting the remainder is //. Let's try converting this
algorithm into PBASIC code to do the work for us. The steps for long division below
show the PBASIC commands corresponding to the steps in the algorithm.

v=5*adcBits/255

v2=(100*R)/255

R=(5*adcBits//255)255 5 adcBits ×

255 100 r×

v r+

v2

Page 58 · Basic Analog and Digital

This gives us our three PBASIC commands for calculating the values to the left and right
of the decimal point. To reconstruct the fractional value on the display, we’ll print a
period "." in-between the two values.

The first of the three commands is already in our Calc_Volts subroutine. Just add the
other two instructions to complete the algorithm.

Calc_Volts:
 v = 5 * adcBits / 255
 r = 5 * adcBits // 255 '□ new line
 v2 = 100 * R / 255 '□ new line
RETURN

The Display subroutine also needs to be updated to print the two variable values with a
period in between them. Make sure to update the line in the Display subroutine exactly
as shown below.

Display:
 DEBUG HOME
 DEBUG "8-bit binary value: ", BIN8 adcBits
 DEBUG CR, CR, "Decimal value: ", DEC3 adcBits
 DEBUG CR, CR, "DVM Reading: " '□ new line
 DEBUG DEC1 v, ".", DEC2 v2, " Volts" '□ new line
RETURN

Now run the program again, and see what happens. Figure 3-8 shows an output sample,
which is now almost ready to display to the nearest hundredth of a volt. All that needs to
be corrected is a rounding error in the hundredths decimal place.

Chapter 3: Basic Analog to Digital Conversion · Page 59

Figure 3-8
Debug
Terminal
Output for
Program
Listing 3.1,
Revision 3.

All that remains to be done is to correct the rounding error in the hundredth’s place. This
rounding problem can be corrected by adding the segment of code shown below to the
Calc_Volts subroutine.

Calc_Volts:
 v = 5 * adcBits / 255
 r = 5 * adcBits // 255
 v2 = 100 * r / 255
 v3 = 100 * r // 255 '□ new line
 v3 = 10 * v3 / 255 '□ new line
 IF (v3 >= 5) THEN v2 = v2 + 1 '□ new line
 IF (v2 >= 100) THEN '□ new line
 v = v + 1 '□ new line
 v2 = 0 '□ new line
 ENDIF '□ new line
RETURN

Page 60 · Basic Analog and Digital

The Output
The output sample from Figure 3-9 indicates that the DVM is now calculating to the
hundredth’s decimal place correctly.

Figure 3-9
Debug Terminal
Output for Program
Listing 3.1, Revision
4.

As soon as you're sure your program works right, save it as P3_1R4.bs2. We will add to
both the code and circuit in the next experiment.

About the Code
To round off to the nearest hundredth, we need to know the digit in the thousandth’s
place. Using the rules of long division, we can simply set a new variable, v3 equal to the
remainder from the calculation for v2, and divide by 255 again.

v3= 100 * R // 255
v3 = 10 * v3 / 255

Instead of using another variable, v3 is simply redefined in the second line. The value of
v3 to the right of the equals sign is the one calculated in the first line. The value of v3 to
the left of the equals sign is the redefined value, which is ten times the old v3, divided by
255.

Chapter 3: Basic Analog to Digital Conversion · Page 61

This process could be repeated over and over again to get the digit in the ten-thousandth’s
place, the hundred-thousandth’s place, and so on.

Once the digit in the thousandth’s place is known, the rules for rounding apply as
follows:

• If the digit in the thousandth’s decimal place is less than 5, don’t add 1 to the
hundredth’s decimal place.

• If the digit in the thousandth’s decimal place is equal to or more than 5, add 1 to
the hundredth’s decimal place.

• In either case, truncate everything after the hundredth’s place.

Since the value v2 is already truncated, we just need code for deciding whether or not to
add 1 to the hundredth’s place. It turns out to be a decision on whether or not to add 1 to
v2 as shown below.

 IF (v3 >= 5) THEN v2 = v2 + 1

Since the value in the ones place is stored in a different value, we need to check and see if
adding one to the hundredth’s place increments that value. Without this code, 3.996
would round to 3.00 instead of 4.00.

 IF (v2 >= 100) THEN
 v = v + 1
 v2 = 0
 ENDIF

Save this code, and if possible, leave the circuit as it is because we can use this DVM to
take measurements on the circuit we build in Chapter #4.

Resolution
The BASIC Stamp is now programmed to accurately calculate the voltage associated
with the ADC0831's binary output, and the calculation is accurate to the hundredth’s
decimal place. Although sources of calculation error have been eliminated, there is
another source of error that caused by the resolution limitation of the A/D converter.

The A/D converter chip we are using is capable of 256 binary values. This means that
each measured voltage gets rounded to one of 256 discrete values. The step size is the

Page 62 · Basic Analog and Digital

amount of the voltage range covered between each of these discrete values. Since the first
value is zero, there are 255 voltage steps. The step size is given by:

Volts/step0.02Volts/step0.0196

steps255
Volts5SizeStep ≅==

With this in mind, each time you adjust the pot, the converter comes close to
approximating the analog value, but it's not exact because of the resolution constraints.
So, there is still some uncertainty at the hundredth’s decimal place. In some applications,
the uncertainty is stated along with the measurement. Assuming the ADC0831 rounds at
the half way point, we can use this convention to read the voltage from Figure 3-9 as
"3.24 volts plus or minus 0.01 volts."

Higher resolution converters are available, such as 12 and 16 bit (and higher), but
because of their higher resolutions, they come with a higher cost as well. The
improvement in resolution is significant. As mentioned before, a 12-bit converter will
give you a resolution of 4095 steps. This results in 5 volts / 4095 steps, or one step for
every 0.0012 volts. A 12-bit converter typically costs more money than an 8-bit
converter. There is also a cost in terms of the amount of memory the measurement takes,
(12 as opposed to 8 bits) and the amount of processing it takes to get each measurement
(13 clock pulses instead of 9).

Calibration
What if the power supply on the Board of Education or HomeWork Board only supplies
4.963 volts instead of 5.000 volts? The BASIC Stamp voltmeter can be calibrated using a
second voltmeter known to be highly accurate. The difference between Vdd and Vss can
be measured using the accurate voltmeter. Developing the code to correct for this error
requires more representation of fractional values using integer math and is best left as a
challenge problem.

Another item to consider if you're shooting for a high degree of precision is that different
current draws on the power supply can also cause variations in power supply output
voltage. This is an experiment unto itself that would also require additional equipment.
As you probably guess, designing for a high degree of precision involves a number of
design challenges. For the remaining experiments, the present degree of accuracy of our
DVM is sufficient.

Chapter 3: Basic Analog to Digital Conversion · Page 63

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

binary

resolution

analog

serial

input

8-bit

Using the A/D converter makes it possible to process __________
information with the BASIC Stamp, a digital (__________) device. The
converter used in this experiment is the ADC0831 integrated circuit, an 8-
bit, __________ A/D converter.

For a given analog __________ , the ADC0831 outputs an __________
binary number. The BASIC Stamp can be used to control and collect data
from this A/D converter. Various programming techniques can be used to
read, remember, and display this data.

The digital representation of the converted analog signal is very good, but
not perfect due to inherent __________ limitations of this A/D converter.
A second source of error for the Stamp DC DVM can result from the fact
that the power supply on the Board of Education or HomeWork Board does
not necessarily supply exactly 5 volts.

Page 64 · Basic Analog and Digital

Questions
1. In your own words, explain the function of an A/D converter.

2. What would be the resolution if you were to use a 16-bit A/D converter in this

experiment?

3. How does the voltage divider equation relate to the wiper terminal of the pot?
What would you expect the output to be if the resistors are equal? Can you prove
this?

4. How do the measurements taken at the wiper terminal of the pot in this

experiment differ from those taken in Chapter #1? What is gained by using the
ADC0831 for measurements instead of just using a BASIC Stamp I/O pin to
check the voltage?

5. Given the resolution of our 8 bit A/D converter, when the voltage on the pot is

set to 3.6 volts, what decimal value will be displayed? What’s the binary value?

Challenge!
1. Use another jumper wire to connect the wiper terminal of the pot to an unused

BASIC Stamp I/O pin. Add a subroutine to the DVM program that monitors the
state of the I/O pin set to input. Determine if the threshold voltage you were
working with in Chapter #1 is indeed 1.4 volts.

2. Write a program that will monitor the analog value of the 10 kΩ potentiometer,

and alert you to the fact that it has gone beyond a certain pre-set limit.

3. Write a program and build a circuit that creates a “safety zone” between 1.0 volts
and 2.0 volts. If the analog voltage goes outside of these boundaries, an LED
blinks.

4. Draw the complete schematic for Challenge #3, and modify the program so that

the LED is only on when the voltage as set on the pot is exactly 2.0 volts.

5. Assume the power supply on your Board of Education or HomeWork Board
supplies 4.960 volts. Develop a subroutine to adjust the voltage measurements
to this scale.

Chapter 3: Basic Analog to Digital Conversion · Page 65

Why did I learn it?
There is a wide variety of electronic applications where analog signals are measured and
digital devices are used to process the analog signal data. In this experiment, we used a
BASIC Stamp and A/D converter combination to construct a digital DC voltmeter. We'll
be using the BASIC Stamp DC-DVM in several of the remaining experiments. There is a
surprising variety of uses for such a device as you will discover with each new
experiment.

How can I apply this?
In developing the digital voltmeter, the process of sampling voltage, converting it, and
processing it in digital form was introduced. An example of another use for an A/D
interface is the digital sampling of the analog signal from a microphone for digital
recording purposes. Another example that could make use of the circuit we built is a
door sensor. Our potentiometer could be attached to a door hinge, and the analog
information could be used to monitor how far the door is open. This circuit could in turn
be incorporated into a larger system that controls how far open the door swings.

The field of analog to digital conversion is an industry in itself. There are semi-conductor
manufacturing companies that specialize solely in creating A/D conversion chips and
systems. Whether you’d like to design at the component level, or at the integrated circuit
level, there will always be a need for creative analog interfacing – simply because the
world isn’t black and white (binary), it’s all the colors in-between as well (analog).

Page 66 · Basic Analog and Digital

Chapter 4: Basic Digital to Analog Conversion· Page 67

Chapter #4: Basic Digital to Analog Conversion

BUILD A RESISTIVE LADDER NETWORK
Digital to analog conversion (D/A conversion) is, for the most part, the reverse of A/D
conversion. With A/D conversion, we started with a continuous voltage range at the
converter's input. The A/D converter rounded to the nearest voltage step and sent a binary
output indicating which step it measured.

D/A conversion starts with a binary number as the input, and the output is a voltage step.
While the A/D process starts with an analog input and ends with a binary output, the D/A
process starts with a binary input and ends with a voltage step for an output. It's not a true
analog value that varies continuously; it's a discrete voltage that varies in steps.

The term resolution was introduced at the end of Chapter #3. Since a D/A converter's
output always going gets rounded to a voltage step (a discrete voltage value) it's
important to pick the right resolution for your D/A converter. Remember that with higher
resolution comes higher precision, but it typically comes at the price of greater expense,
more memory, and more processing steps.

The number of voltage levels a D/A converter can produce is given by how many
counting numbers you can get from the number of binary bits in the resolution. We can
use the combinations equation again to figure this out.

combinations = 2bits

The D/A converter we will use in this experiment has 4-bit resolution, so the number of
output voltage levels for the converter will be:

combinations = 2bits = 24 = 16

In Chapter #3, we used an integrated circuit, which performed the A/D conversion. In this
experiment, we'll build a D/A converter using resistors. It's called a resistive ladder
network, and adding or removing resistors can be done to change the resolution of the
converter. With a resistive ladder network, if you start with a 4-bit converter, and you
want to increase the resolution by 1-bit, all it takes is two extra resistors added to the
network.

In this chapter, we will build a resistive ladder network and program the BASIC Stamp to
make the network do D/A conversion. PBASIC will be used to program the BASIC

Page 68 · Basic Analog and Digital

Stamp to send the resistive ladder network sets of binary voltage levels. These sets of
binary voltages are converted by the resistive ladder network to discrete output voltages.

The DVM from Chapter #3 will be used to measure the converter's output voltages.
Measuring all the D/A converter's output levels is called a voltage sweep. We will use
PBASIC to automate our DVM to perform the entire voltage sweep. That way, the D/A
converter's output voltages can be measured without manually repeating each
measurement.

Parts Required
Gather these parts from your parts kit and let's get started:

(6) 2 kΩ resistors
(3) 1 kΩ resistors
(1) ADC0831 A/D Converter
(1) Red LED
(1) 270 Ω resistor
(1) LM 358 op-amp

The resistive ladder network for this experiment is shown in shown in Figure 4-1. The
name comes from the fact that the resistor network in the schematic resembles a ladder.
It's definitely an inexpensive alternative compared to an integrated circuit digital to
analog converter (D/A converter or DAC). A few resistors are a fraction of the cost of an
integrated circuit.

Chapter 4: Basic Digital to Analog Conversion· Page 69

Vss Vss

P7

P6

P5

P4

2 kΩ1 kΩ2 kΩ

2 kΩ

2 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

DAC Output

Figure 4-1
Resistive Ladder D/A Converter.

This resistive ladder network can be used as a
D/A converter. The binary number input is sent
in parallel as 4 bits across 4 separate data lines,
P4 through P7. As long as the value of all four
bits are present at the same time, the output of
the D/A converter output will be the intended
discrete voltage value.

This being the case, why doesn't everybody use resistive ladder networks for A/D and
D/A conversion? The resistive ladder network is also used in many A/D and D/A
integrated circuits, such as the ADC0831. The resistors used in integrated circuits are
microscopic implants on the surface of a silicon wafer. One advantage of IC converters is
that they have a high degree of accuracy. Another advantage an IC has is extra built-in
circuitry similar to the voltage follower we built in Chapter #1

Build It
Build the circuit as shown in Figure 4-2. Pay careful attention to the values of the
resistors as well as what each resistor connects to. If your circuit from Chapter #3 is still
intact, just remove the potentiometer and build the resistive ladder network near the
sockets for pins P4 through P7. The input lead to the DVM, which was connected to the
wiper terminal on the potentiometer, should now be connected to the output of the D/A
converter. Be sure to pay close attention so that the resistors don't touch each other except
where they're supposed to on the breadboard nodes. (Note that we are setting aside the
LM 358 op-amp and red LED for the time being.)

Page 70 · Basic Analog and Digital

Voltmeter Input Lead DAC Output

Vdd

Vss

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd
1

7

6

2

4

3

8 5

P0

P1

P2

Vss Vss

P7

P6

P5

P4

2 kΩ1 kΩ2 kΩ

2 kΩ

2 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

Figure 4-2
Schematic.

The DC
voltmeter
from
Chapter #3
is connected
to the output
of the
resistive
ladder
network D/A
converter.

Program It
Not only can we use the DVM to measure the output voltage from the D/A converter, we
can automate the testing process to measure all 16 the D/A converter's output voltage
levels. This might not be a big deal for just 16 measurements, but just imagine trying to
test all 4096 voltage steps on a 12-bit converter!

With some relatively simple additions to the code from Chapter #3, which was saved as
file P3_1R3.bs2, we can control both devices. PBASIC can be used to instruct the BASIC
Stamp to send an output signal to the D/A converter. The code for this will be added to
the final version of Program Listing 3.1. This way we can use our DVM from this
experiment to measure the D/A converter's output

Program Listing 4.1 is shown below. It's the final revision of Program Listing 3.1 with a
subroutine labeled DAC added to send binary voltages to the D/A converter. There are also
a few additional changes that are pointed out using comments such as '□ which means
add this line and '∆ which shows the lines that have been changed.

If you saved the program listing from Chapter #3, add and modify the code for this
experiment, and save the program under the name P4_1R0.bs2. If you do not have the
code from Chapter #3, enter the entire program listing below using the BASIC Stamp

Chapter 4: Basic Digital to Analog Conversion· Page 71

Editor and make sure to save it for future use. When the circuit is built and the code is
entered and saved, run Program Listing 4.1, and let's see how it works.

' -----[Title]---
' Basic Analog and Digital - PL4_1R0.bs2
' Digital Voltmeter (DVM). D/A Converter Added
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
adcBits VAR Byte
v VAR Byte
r VAR Byte
v2 VAR Byte
v3 VAR Byte
n VAR Nib

' -----[Initialization]--
CS PIN 0
CLK PIN 1
DataOutput PIN 2

DEBUG CLS 'Start display.

' -----[Main Routine]--
DO
 GOSUB DAC
 GOSUB ADC_Data
 GOSUB Calc_Volts
 GOSUB Display
LOOP

' -----[Subroutines]---
DAC:
 n = 11

 OUTPUT 7
 OUTPUT 6
 OUTPUT 5
 OUTPUT 4

 OUT7 = n.BIT3
 OUT6 = n.BIT2
 OUT5 = n.BIT1
 OUT4 = n.BIT0
RETURN

ADC_Data:
 LOW CLK
 LOW CS

Page 72 · Basic Analog and Digital

 PULSOUT CLK, 210
 SHIFTIN DataOutput,CLK,MSBPOST,[adcBits\8]
 HIGH CS
RETURN

Calc_Volts:
 v = 5 * adcBits / 255
 r = 5 * adcBits // 255
 v2 = 100 * R / 255
 v3 = 100 * R // 255
 v3 = 10 * v3 / 255
 IF (v3 >= 5) THEN v2 = v2 + 1
 IF (v2 >= 100) THEN
 v = v + 1
 v2 = 0
 ENDIF
RETURN

Display:
 DEBUG HOME, CR, CR, "Decimal value to DAC: ", DEC2 n
 DEBUG CR, CR, "Binary value to DAC: ", BIN4 n
 DEBUG CR, CR, "DVM Reading: ", DEC1 v, ".", DEC2 v2, " Volts"
RETURN

The Output
Given perfect resistor values, the measurement would be 2.20 volts. The resistors used in
this sample have a 10% tolerance. This means that the measured resistance for each
resistor should have a value within ±10% of what it’s supposed to be. Because of this, we
can expect the output to be slightly different than what’s expected, such as the measured
value in Figure 4-3.

Chapter 4: Basic Digital to Analog Conversion· Page 73

Figure 4-3
Debug Terminal
Output for Program
Listing 4.1.

About the Code
As mentioned, this code started with the final revision of Program Listing 3.1. The
comments were updated to indicate that this is now Program Listing 4.1. In the third
comment is a reference to indicate that a function was added to the DVM that does D/A
conversion.

' -----[Title]---
' Basic Analog and Digital - PL4_1R0.bs2 '∆
' Digital Voltmeter (DVM). D/A Converter Added '∆
' {$STAMP BS2}
' {$PBASIC 2.5}

A nibble size variable n was added to the declarations section, and it will be used to store
the binary value for the D/A converter.

n VAR Nib '□

A GOSUB command was added to the main routine that sends the program to the DAC
subroutine.

 GOSUB DAC '□

Page 74 · Basic Analog and Digital

This is the start of the digital to analog conversion (DAC) subroutine, so it's descriptively
labeled DAC. The value of n is set to 11. This means that the output should be n steps
above 0 on an output scale of 0 to 16. The value of n can be changed to specify voltage.

DAC: '□
 n = 11 '□

The BASIC Stamp I/O pins connected to the D/A converter are set to output. These
commands are normally found in the Declarations section. If they were placed in the
declarations section, the program would run faster because these commands would only
be done once at the beginning of the program. Instead, they are executed each time the
subroutine is run. The reason they were placed in the subroutine is to make it easier to
present some new PBASIC techniques.

 OUTPUT 7 '□
 OUTPUT 6 '□
 OUTPUT 5 '□
 OUTPUT 4 '□

Next, the BASIC Stamp's parallel binary output is sent to the D/A converter. We are
using the same command for sending outputs that was used in Chapters #1 and #2, but
there is a new feature added. The variable n has an extension to indicate which bit in the
nibble value is being used. For example, the command OUT7=n.BIT3 sets the output
value of pin P7 equal to the value of bit 3 in the nibble variable n. Since we set the value
of n to 11, the binary value of n is 1011. Bit 3 is the leftmost bit of the binary number, so
it's 1, which means the output value of P7 is set high. Also, when n = 11, P6 is set low,
P5 is set high, and P4 is set high.

 OUT7 = n.BIT3 '□
 OUT6 = n.BIT2 '□
 OUT5 = n.BIT1 '□
 OUT4 = n.BIT0 '□

That's all it takes for programming digital to analog conversion using a resistive ladder
network. The RETURN command sends the program back to the command immediately
following the GOSUB DAC command in the main: routine.

RETURN '□

The first two lines in the Display subroutine were modified to show the decimal and
binary values of n, the 4-bit binary value used D/A output value.

 DEBUG HOME, CR, CR, "Decimal value to DAC: ", DEC2 n '∆
 DEBUG CR, CR, "Binary value to DAC: ", BIN4 n '∆

Chapter 4: Basic Digital to Analog Conversion· Page 75

Modify the Code

If the D/A converter works as we expect, each time the value of n is incremented by 1,
the D/A output should increment by 0.2 volts. Try starting with n=0 by modifying the
value of n in the DAC subroutine:

n = 0 '∆

Then run the program again with n=1:
n = 1 '∆

Then change n to 2 and run the program a third time:
n = 2 '∆

Continue for each value up to n=15.

Figure 4-4 shows a sample measurement of a resistive ladder D/A conversion with the
value of n set to 15. Remember that the 10% resistors lead to some error in the output. In
Chapter #3, we were interested in programming our DVM for accurate calculations to the
nearest hundredth of a volt. In this experiment, anything within 10% of the expected
value is fine. So your end output when n=15 might be as low as 2.7 volts or as high as 3.3
volts. If the errors are larger than that, double check to make sure that a 1 kΩ resistor
didn’t get swapped with a 2 kΩ somewhere in the resistive ladder.

Page 76 · Basic Analog and Digital

Figure 4-4
Debug Terminal
Output for Program
Listing 4.1, Revision
1.

Addressing
Until now, we’ve been addressing each of the I/O lines one at a time. This works well
whenever you need to have control over the status of a particular control line. For
example, a single LED is easily addressed by the individual I/O pin to which it is
connected using OUTp=value, where p is a pin number between 0 and 15, and value is
either 0 or 1.

Addressed: When an I/O pin is addressed, it means that a value has been written into a
particular place in the BASIC Stamp module's RAM. For example, a particular memory
location can be set high to set a given I/O pin to be an output. Another address might be
used to set the pin high or low.

Performing these operations one bit at a time is not always efficient. The memory locations
are adjacent to each other so that the operations can be performed 1 nibble (4 bits) at a time
or one byte (8 bits) at a time, or even a word (16 bits) at a time.

Since the I/O pins (P4 through P7) are used as outputs in this experiment, it would be
easier and more efficient to have a method of addressing this group of bits. Notice that it
takes four lines of code just to set up the bits as outputs, and then it takes 4 additional
lines to individually set each bit. It’s not a big deal now, but as time goes on and you

Chapter 4: Basic Digital to Analog Conversion· Page 77

begin to create more complex programs, you may find yourself looking for ways to get
the most out of the least code.

There are two registers that we need to set to control output on a specific group of I/O
lines. The first register is called “direction”. The command “output” sets the direction as
an “output”. Conversely, “input” sets the I/O line up as input. The second is the “data”
register. If the I/O pin has been set up as an output, then this register’s “data” can be set
to either 0 or 1. This in turn sends either a low or high signal to that pin, and the
measured output will either be 0 or 5 volts.

Certain commands in PBASIC allow us to directly address its I/O lines as a word (16
individual bits), two bytes (two sets of 8 individual bits) or as 4 nibbles (four sets of four
individual bits). To modify our code, we want to address a nibble at a time, and the four
bits that we’re using are P4-P7. According to the BASIC Stamp Manual (which you
should have a copy of by now - it’s free download at www.parallax.com and printed
copies are not expensive) the group “P4-P7” is called nibble “b”. The next set of four
(P8-P11) is nibble “c”, and so on.

Let’s try using this in a program and figure out how it works. Rewrite the DAC:
subroutine in Program Listing 4.1 as follows:

DAC:
 n = 11

 DIRB = 15
 OUTB = n
RETURN

Figure 4-5 shows the output is identical to the previous version of the DAC subroutine. We
did the same job with two lines of code instead of eight.

Page 78 · Basic Analog and Digital

Figure 4-5
Debug Terminal
Output for Program
Listing 4.1, Revision
2.

Here is how to count from 0 to 15 using a nibble:

0 = 0000
1 = 0001
2 = 0010
3 = 0011

4 = 0100
5 = 0101
6 = 0110
7 = 0111

8 = 1000
9 = 1001
10 = 1010
11 = 1011

12 = 1100
13 = 1101
14 = 1110
15 = 1111

When nibble b is selected using DIRB, each bit in the number DIRB is set equal to a value
corresponding to a data direction as shown below:

Bit in nibble B 3 2 1 0
I/O pin P7 P6 P5 P4

If we used the command “DIRB = 4” the following direction register bits would be set
like this:

Bit value 0 1 0 0
I/O pin P7 P6 P5 P4

Chapter 4: Basic Digital to Analog Conversion· Page 79

This would result in I/O pin P6 being set as an output, and all the other pins (P0, P1, P3)
set as inputs. Hence the command DIRB=15 (by virtue of the fact that all four bits are a
“1”) sets up each of the I/O lines as outputs.

Sweeping the value of n from 0 to 15 should result in the same values as before.

A truly powerful aspect of using this method of addressing is that we can use PBASIC to
count up and down or access values from a lookup table to automatically address the I/O
pins. The result is that we can program the BASIC Stamp to more effectively control the
D/A converter output.

Modify the code labeled 'Start Display in Program Listing 4.1. First, modify the
DEBUG CLS command, and then add a second line as shown.

'Start display '□
DEBUG CLS, "DAC Nibble Values", CR '∆
DEBUG "Decimal Binary DVM", CR '□

Modify the main subroutine as shown:
' -----[Main Routine]--------------------------------------
FOR n = 0 TO 15
 GOSUB DAC '□
 GOSUB ADC_Data
 GOSUB Calc_Volts
 GOSUB Display
NEXT
STOP

Delete the line that sets the value of n in the DAC subroutine. Once that's done it should
look like this:

DAC:
 DIRB = 15
 OUTB = n
RETURN

Also modify the Display subroutine as shown.
Display:
 DEBUG DEC2 n, " ", BIN4 n, " "
 DEBUG DEC1 v, ".", DEC2 v2, " Volts", CR
RETURN

Page 80 · Basic Analog and Digital

Figure 4-6 shows the output. Try that with a hand held voltmeter and you’ll begin to see
the usefulness of combining the BASIC Stamp with analog interfaces. Imagine trying to
test all 4096 levels of a 12-bit DAC one at a time!

Figure 4-6
Debug Terminal
Sample Output for
Program Listing 4.1,
Revision 3.

This is a very efficient way to collect your voltage sweep data. Looking at the data for the
voltage sweep brings several things to light. First, the voltage output for the D/A
converter is always a little high. Second, the error increases as the output voltage

Chapter 4: Basic Digital to Analog Conversion· Page 81

increases. Third, the largest error is 0.1 volts. This kind of data can be exceedingly useful
in electronics design, and the automated testing process is a huge time saver.

The Voltage Follower with the Op Amp
Let's use the voltage sweep to analyze what happens when the output of the D/A
converter is connected to another circuit. We'll use the output of the D/A converter to
drive an LED circuit. First we'll connect the D/A converter output directly to the input of
the LED circuit. Then we'll use the voltage follower as an intermediate step between the
D/A converter output and the LED circuit input.

Vdd

Vss

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd
1

7

6

2

4

3

8 5

P0

P1

P2

Vss Vss

P7

P6

P5

P4

2 kΩ1 kΩ2 kΩ

2 kΩ

2 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

Vss

270 Ω

LED

Figure 4-7 D/A Circuit without a Buffer.

Page 82 · Basic Analog and Digital

Table 4-1:D/A Converter Output Without Buffer
Decimal Binary DVM (volts)

00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Figure 4-7 shows the D/A converter with an LED circuit added. The LED circuit is the
"load" that the D/A converter must "drive". Run a voltage sweep on this circuit, and fill
in the table below.

Then try the voltage sweep using the output of the voltage follower in as shown in Figure
4-8. Fill out the same table of voltage sweep information for this second circuit, and
compare the two. The voltage follower in Figure 4-7 is referred to as a buffer. The LED
circuit has no voltage follower to separate it from the resistive ladder network. The LED
is an "unbuffered" load for the D/A converter.

Chapter 4: Basic Digital to Analog Conversion· Page 83

Vdd

Vss

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd
1

7

6

2

4

3

8 5

P0

P1

P2

Vss Vss

P7

P6

P5

P4

2 kΩ1 kΩ2 kΩ

2 kΩ

2 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

Vss

270 Ω

LED

Vdd

LM358

A

Figure 4-8 D/A Circuit With a Buffer

Comparing the two tables, it should be fairly clear that the buffer (voltage follower)
eliminated a problem caused by connecting the LED circuit directly to the D/A
converter's output. The voltage of the D/A output without a buffer reached a maximum
well below the D/A converter's 3 volt maximum. On the other hand, the buffered output
went all the way to 3 volts with no problem.

Page 84 · Basic Analog and Digital

Table 4-2:D/A Converter Output with Buffer
Decimal Binary DVM (Volts)

00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The reason for this goes back to Ohm's Law: V = I x R (voltage equals current multiplied
by resistance). Each BASIC Stamp I/O pin can supply up to 20 mA of current. In the case
of the resistive ladder network without the buffer, the BASIC Stamp I/O pins reached
their maximum current output. Meanwhile, the resistance seen by the I/O pins stayed
about the same. In other words, I x R reached a limit because I (the current) could no
longer increase, and R is a fixed value. So the output voltage is equal to a current value
that can't get any higher multiplied by a fixed resistance. This is why the voltage stops
increasing.

Aside from isolating two circuits from each other, an op-amp in voltage follower
configuration can typically supply more current than the circuit connected to its input.
The name “buffer” is commonly used when a voltage follower is used to supply extra
current.

The circuit from Figure 4-8 will also be used at the beginning of Chapter #5, so do not
disassemble the circuit after completing Chapter #4.

Chapter 4: Basic Digital to Analog Conversion· Page 85

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

binary

discrete

bit

output

bit

current

addressing

direction

sweep

automate

A set of __________ voltage values sent to the inputs of a resistive ladder
network results in a ___________ voltage level at the output. This method
is an inexpensive alternative to integrated circuits. Its advantages are
flexibility in resolution and low cost. Its main disadvantage is accuracy.

The .BITx extension can be attached to a variable to select a particular
______ within a nibble, byte or word. This can be used to select bits from a
binary number in memory and set ___________ values equal to those bits.

PBASIC can be used to address BASIC Stamp I/O pins a __________ at a
time, or alternatives exist for __________ nibble, byte or word size groups
of I/O pins. This allows the ___________ and output values of the I/O pins
to be addressed as groups of bits instead of as a single bit.

A voltage ___________ can be run on a D/A converter. This allows one to
view the D/A converter's outputs for all possible binary inputs. The BASIC
Stamp can be programmed to ___________ this process and display the
data in a table format.

The voltage follower can be used as a buffer, which can supply extra
___________ to the input of a circuit connected to the D/A converter's
output.

Page 86 · Basic Analog and Digital

Questions
1. “1101” is what value in the decimal number system? What voltage would you

expect from the D/A converter output if you sent it this binary number?

2. What function is provided by a D/A converter?

3. What are some of the advantages and disadvantages of the resistive ladder
network?

4. Why does the D/A voltage “jump” from one value to another, unlike the voltage

available on a pot?

5. How does the voltage follower solve the output voltage range problem when the
D/A converter’s output is connected to the LED circuit’s input?

Challenge!
1. Create an 8-bit “resistive ladder” D/A converter. Draw the complete schematic.

2. Write a program that will step through 256 different analog voltages. Each

voltage should be present for 100 milliseconds on the voltmeter.

Chapter 4: Basic Digital to Analog Conversion· Page 87

Why did I learn it?
There are many different “real world” circuits that require some sort of analog voltage.
For example, when you listen to a compact disc, you’re listening to sounds that started as
analog signals from a microphone. Then the signal underwent the A/D process when it
was digitized. The CD player then performs the D/A conversion using the digital
information on the CD. The analog signal is amplified and played on a speaker.

When designing commercial products, it is your responsibility to determine the most
appropriate (and cost effective) method to accomplish a given task. A resistive D/A
converter is a very economical method to get an analog voltage from a digital device.

How can I apply this?
You've just built a variable voltage source and a digital voltmeter on the same
breadboard. You also used some PBASIC programming techniques to obtain information
about the converter using a voltage sweep. One application of this can be testing circuits,
but there are many others. In Chapter #5, we'll see how PBASIC can be used to control
the volume of tones emitted by a speaker. In Chapter #7, we'll use D/A conversion to
control the brightness of an LED transmitting a signal to a photoresistor.

The applications for D/A and A/D interfaces combined with a microcontroller are only
limited by one's imagination. These techniques can be applied to automated houses,
irrigation systems, rocket guidance systems, and robotics to name a few. Control systems
engineering is a field of study within electrical engineering that you might look into if
you find designing such systems interesting.

Page 88 · Basic Analog and Digital

Chapter 5: Time Varying Signals · Page 89

Chapter #5: Time Varying Signals

In this chapter we'll view signals with the Stamp-O-Scope. To do this we'll use the
BASIC Stamp along with the A/D and D/A circuits built in Chapters #3 and #4 to
emulate the function of an oscilloscope.

The voltage output of the resistive ladder network will be varied with time, and the
changes will be tracked using our oscilloscope emulator, the Stamp-O-Scope. The
Stamp-O-Scope will gather its input voltage data from the ADC0831 and display it
graphically in the Debug Terminal.

We'll view two different signals using the Stamp-O-Scope, and we'll use the D/A
converter to adjust the attributes of both signals. The first signal we'll work with is called
a triangle wave, and the second is called a pulse train. The LED will be used to monitor
the activity of both signals.

Unlike a normal oscilloscope, the Stamp-O-Scope cannot monitor voltage signals at
frequencies in the audible sound range. However, the BASIC Stamp can easily send a
voltage signal in the audible sound range via the D/A converter. This signal can be used
to make a speaker emit tones of adjustable pitch and volume.

The pitch and volume will be adjusted by changing two of the pulse train's properties.
But first, let's get started and view these properties with the Stamp-O-Scope.

Also in this experiment, the BASIC Stamp is used to generate sine waves (see Figure 5-1)
of adjustable frequency. These sine waves are used to make musical notes.

Page 90 · Basic Analog and Digital

Oscilloscope: A device that measures and displays time-varying voltage signals. The
oscilloscope is a common tool used by many electronics technicians and engineers to
display these signals. The signals of interest often repeat themselves many times each
second. The oscilloscope can be used to view the general shape of the signal, how fast it
repeats itself, and the maximum and minimum voltage values of the signal as it repeats
itself.

Figure 5-1
Oscilloscope
displaying a sine
wave output from
Program Listing
5.3.

Frequency: The rate at which a periodic time varying signal repeats itself. Frequency is
measured in repetitions per second. The name hertz (Hz) is used when referring to
frequency. One hertz is one repetition per second; that is:

1 Hz = 1 repetition/second = 1/s

Parts Required
The same circuit used in Chapter #4, Figure 4-8 is used to begin this experiment. Later,
the LED circuit is replaced with a piezoelectric speaker circuit. For this experiment you'll
need the following parts:

(6) 2 kΩ resistors
(3) 1 kΩ resistors
(1) ADC0831 A/D Converter
(10) Jumper wires
(1) Piezoelectric speaker

Chapter 5: Time Varying Signals · Page 91

The piezoelectric speaker shown in Figure 5-2 has positive and negative terminals shown
on both the circuit symbol and the component. The speaker from the Analog and Digital
Parts Kit has a plus (+) on its topside above the appropriate pin.

Figure 5-2
Piezo Speaker

Circuit symbol and
part.

If you saved the circuit that was developed in Chapters #3 and #4, you are ready for the
next step. Otherwise, rebuild the circuit shown in Chapter #4, Figure 4-8.

Program It
Start with an unmodified version of Program Listing 4.1, and make the following
changes. Changed lines are shown with ∆ and added lines are shown with a □.

Modify the first line as shown:

' Basic Analog and Digital – PL5_1R0.bs2 '∆

After the DEBUG CLS command, insert a code block nested in a DO…LOOP as shown
below:

'Start display
DEBUG CLS

DO '□
 FOR n = 7 TO 15 '□
 GOSUB Main '□
 NEXT '□
 FOR n = 14 TO 8 '□
 GOSUB Main '□
 NEXT '□
LOOP '□

Modify the Main Routine as shown. There are two changes to make. First, the GOSUB
Calc_Volts command should be commented with an apostrophe, and second, the
DO…LOOP command should be changed to a MAIN: label and a RETURN command.

Page 92 · Basic Analog and Digital

' -----[Main Routine]-------
MAIN: '∆
 GOSUB DAC
 GOSUB ADC_Data
 'GOSUB Calc_Volts '∆ (Comment this line!)
 GOSUB Display
RETURN '∆

Replace the commands in the DAC subroutine so it looks like this:
DAC:
 DIRB = 15
 OUTB = n
 PAUSE 50
RETURN

Also replace the commands in the Display subroutine from Program Listing 4.1 so it
looks like this:

Display:
 DEBUG REP " "\adcBits/4,"*", CR
RETURN

The Output - A Triangle Wave
Save the program as P5_1R0.bs2, and download it to your BASIC Stamp. The Stamp-O-
Scope output should look like Figure 5-3. The red LED on the breadboard should be
gradually getting bright and then dim again at the same pace as the triangle shaped wave
varies in the Debug Terminal. The asterisk in the bottom line of the Debug Terminal
indicates the current voltage measurement. The further right the asterisk appears in the
Debug Terminal, the higher the measured voltage.

Chapter 5: Time Varying Signals · Page 93

Figure 5-3
Output Sample of Time-
Varying Waveform

For Program Listing 5.1 is the
Stamp-O-Scope display. The
waveform displayed is
commonly referred to as a
triangle wave.

If you were to rotate the Stamp-O-Scope display a quarter turn counter-clockwise, it
would resemble the display of a normal oscilloscope. Figure 5-4 shows the Stamp-O-
Scope rotated this way. It also shows three of the most basic measurements taken on an
oscilloscope: amplitude, frequency, and DC offset. An oscilloscope typically displays
time on the horizontal scale and voltage on the vertical scale. Time passes across an
oscilloscope screen from left to right, and as the wave gets higher in the screen, the
voltage is higher. Most graphs of time varying waveforms are also presented in this
format.

Page 94 · Basic Analog and Digital

Time

Voltage

Amplitude

Period

DC Offset

Figure 5-4: Horizontal Output Sample of Time-Varying Waveform

A more conventional way of viewing time-varying waveforms is shown in Figure 5-4.
This is the way they are typically displayed using an oscilloscope. The amplitude, period
and DC offset are three common measurements taken using an oscilloscope. Note how
the time axis is the horizontal axis in this picture, and the voltage axis is the vertical axis

The period of a waveform is the amount of time it takes to repeat itself. In this case, that
amount of time is about 1 second. The frequency is the inverse of the period, so we can
use a simple equation to determine the frequency when we know the period:

 f = 1/T

The term f is the frequency, measured in hertz (Hz), and T is the period, measured in
seconds (s). Since the period is one second, and 1 ¸ 1 = 1, the frequency is also 1 Hz. As
another example, if the period is 1/100 of a second, the frequency is 1, 1/100 = 100 Hz.

Amplitude and DC offset are two quantities related to voltage that are measured
differently for different signals. The amplitude shown in Figure 5-4 is called the peak-to-

Chapter 5: Time Varying Signals · Page 95

peak amplitude. The D/A converter's output is programmed for a maximum of 3 volts and
a minimum of 1.6 volts. Therefore the peak-to-peak amplitude is 3 – 1.6 volts = 1.4 volts.

The DC offset is the difference between 0 volts and the waveform's minimum value. We
already know the lowest point of the sample triangle wave is 1.6 volts, and that's the DC
offset.

An alternative reference point for both Amplitude and DC offset is half way between the
upper and lower peak. The half way point would be (3 + 1.6), 2 volts = 2.3 volts. The
amplitude would be 3 – 2.3 volts = 0.7 volts. The DC offset would be 1.6 + 0.7 volts =
2.4 volts.

 About the Code
The Main routine is has been relegated to a subroutine in favor of the DO…LOOP code
block. This code block uses a FOR…NEXT loop to increment and decrement up and down
counts for n, the value sent to the D/A converter. This is why the measured output of the
D/A converter increases and then decreases in the Stamp-O-Scope display.

Each time a FOR…NEXT loop in the DO…LOOP routine increments the value of n, it also
sends the program to the Main subroutine.

DO
 FOR n = 7 TO 15
 GOSUB Main
 NEXT
 FOR n = 14 TO 8
 GOSUB Main
 NEXT
LOOP

The Main subroutine still does the same job it did in the previous experiment. The only
difference is that now it's a subroutine. The Calc_Volts subroutine is not necessary for
our Stamp-O-Scope display, so the GOSUB Calc_Volts command is commented. To
save EEPROM memory, you could also delete the entire subroutine. Keep that in mind if
you use this in a larger application and start to run out of EEPROM memory to store your
program.

Main:
 GOSUB DAC
 GOSUB ADC_Data
 'GOSUB Calc_Volts

Page 96 · Basic Analog and Digital

 GOSUB Display
RETURN

This is the simplest form of the DAC subroutine covered in Chapter #4.
DAC:
 DIRB = 15
 OUTB = n
 PAUSE 50
RETURN

The DEBUG command in the Display subroutine is what places the asterisks in the
location in the Debug Terminal corresponding to the magnitude of the measured voltage
at that instant. The higher the voltage measurement, the further to the right the cursor is
printed in the Debug Terminal.

The DEBUG modifier REP is what causes the " " (single space) character to be printed over
and over again. In this case it's repeated adcBits/4 (the value of adcBits divided by
four) times. After all those spaces, an asterisk and carriage return are printed so that the
next asterisk for the next voltage measurement will appear on the next line.

Display:
 DEBUG REP " "\adcBits/4,"*", CR
RETURN

How many spaces before the asterisk is printed? Let's say we are measuring 3 volts, the
highest voltage level the DAC is supposed to output. Remember that adcBits is the
number sent by the ADC0831, and it's between 0 and 255 on a 5-volt scale. Therefore
when 3-volts is measured:

 adcBits = (3/5) X 255 = 153

The number of spaces is:

adcBits/4, which is 153/4 = 38.25 = 38 rounded to zero decimal places.

The maximum voltage will place an asterisk 39 spaces across the Debug Terminal.

Try changing the value of n in the FOR…NEXT loop in the code block. In this case, it will
change both the amplitude and the period of the triangle wave. This is an example where
the limits of the FOR…NEXT loop are set to the voltage output limits of the resistive ladder
network D/A converter.

Chapter 5: Time Varying Signals · Page 97

DO
 FOR n = 1 TO 15 '∆
 GOSUB Main
 NEXT
 FOR n = 14 TO 0 '∆
 GOSUB Main
 NEXT
LOOP

Note that both the amplitude and period of the waveform increased. This is because the
BASIC Stamp is programmed to pause for a fixed amount of time at each output voltage
level. The pause statement is part of the DAC routine.

The Pulse Train
The next waveform we'll examine is called the pulse train, though a better name for it
might be a rectangle wave. For a pulse train, the amplitude is the voltage between the
high and low voltage levels, and the DC offset is the voltage between 0 volts and the low
part of the signal. The period and frequency are the same for a pulse train as they are for a
triangle wave. So the period is still the amount of time the waveform takes to repeat
itself, and the frequency is still the number of times the waveform repeats itself in a
second. The frequency is also still the inverse of the period.

The DO…LOOP code block can be modified to make a pulse train that has the same
frequency of the original triangle wave. The variable v3 is not used right now because we
are skipping the Calc_Volts subroutine. It can be used to for counting up and down. The
value of n, which controls the D/A converter output, can be set to a high value and a low
value. Let's start with a high value of 3 volts and a low value of 0 volts. Modify the
DO…LOOP code block as shown below, and save the modified program as P5_1R1.bs2

DO
 FOR v2 = 0 TO 15 '∆
 n=15 '□
 GOSUB Main
 NEXT
 FOR v2 = 15 TO 0 '∆
 n=0 '□
 GOSUB Main
 NEXT
LOOP

Run the program and view the pulse train. Then try to change the various adjustments to
the code and view what happens to the pulse train. Is it really square? You can adjust the

Page 98 · Basic Analog and Digital

value of n in the first FOR…NEXT loop to change the amplitude. You can change the
values of n in the second FOR…NEXT loop to get various DC offsets. Just remember that n
has to be between 0 and 15.

Changing the limits of the first FOR…NEXT loop changes the amount of time the signal
stays high. In other words, you can change the pulse width buy adjusting the StartValue
and EndValue arguments of the FOR…NEXT loop. Changing these values in the second
FOR…NEXT loop adjusts the duration of the low portion of the signal.

By changing both the duration of the low and high portion of the signal proportionately,
you can change the frequency without affecting the duty cycle. By changing only one of
the two sets of limits, you change the duty cycle as well as the frequency of the signal.

Pulse width: A pulse train goes high-low-high-low-high-low... the pulse width is the amount
of time that a pulse train stays high in between the lows

Duty cycle: The duty cycle is the ratio of time the signal stays high to the amount of time it
takes the signal to repeat itself. In other words it's the pulse width divided by the period of
the signal.

Now let's run the frequency of this pulse train up into the audible sound frequency range
and listen to the result of adjusting these signal characteristics. Remove the ADC0831
from the circuit. Also, replace the LED circuit with the piezoelectric speaker circuit
shown in Figure 5-5.

Chapter 5: Time Varying Signals · Page 99

Vss

P7

P6

P5

P4

2 kΩ1 kΩ2 kΩ

2 kΩ

2 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

Vss

Vdd

LM358

A

Vss

Figure 5-5
Piezoelectric Speaker Circuit

Connected to the buffered output
of the D/A converter.

Enter this program into the BASIC Stamp Editor. This is not a modification to the
previous programs. Also, the output is the piezoelectric speaker and there is no Debug
Terminal output. Save this program as P5_2RO.bs2.

' Basic Analog and Digital - PL5_2R0.bs2
' D/A Converter Making Sound, n changes volume, m changes frequency
' {$STAMP BS2}
' {$PBASIC 2.5}

n VAR Nib
m VAR Word

DIRB=15

n = 15
m = 500

DAC:
 OUTB = n
 PAUSE m
 OUTB = 0
 PAUSE m
GOTO DAC

Page 100 · Basic Analog and Digital

First, run the program as shown. The piezoelectric speaker should tick about every half-
second indicating the transitions between the high and low signal.

Next, change the value of m from 500 to 100, and note that the ticking is much quicker.
Also try the values of 50, 20, 10, 5, and 1. Experiment a bit.

The value of m = 1 should cause the piezoelectric speaker to emit a fairly clear tone.

Next, let's change the value of the amplitude by varying the value of n. First, try the
value of n = 1. The tone should be the same, just much quieter. Next try the value of
n = 5. The tone is still the same pitch, just louder. For values of n = 10 and n = 15,
the volume should increase two more notches.

In this application, we caused the piezoelectric speaker to make sound by applying pulses
using the BASIC Stamp. We steadily increased the frequency by decreasing the amount
of time the signal paused in its high and low state, effectively decreasing the signal’s
period. Since frequency is the inverse of period, decreasing the period increased the
frequency. When the frequency was increased the pitch of the tone also increased. Next
we changed the amplitude of the pulse train by changing the output value for the high
signal. This changed the volume of the sound made by the piezoelectric speaker.

Causing variations in air pressure creates sound. Any sound can be represented by some
sort of time-varying waveform. To cause the piezoelectric speaker to make sound, we
sent a time-varying periodic voltage signal to its input. The speaker converted the signal
into motion of a membrane inside the plastic case. As the membrane vibrated, it caused
air pressure variations. Our eardrum (another membrane) senses these pressure variations,
and we, in turn, heard the tones.

The pulse train we sent to the piezoelectric speaker represented variations in air pressure.
We varied the amplitude of the signal to increase the amplitude of the air pressure
variations, which in turn increased the volume of the tone. The frequency of the pulse
train was varied to change the frequency of the pressure variations. This in turn changed
the pitch of the tone.

The Sine Wave and Pulse Width Modulation (PWM)
The BASIC Stamp has a built in function to generate tones similar to those you hear
when you strike a tuning fork. Disconnect the terminal of the 100 Ω resistor connected to
the buffer output (LM358 pin 1), and connect it to P10 on your board as shown in Figure

Chapter 5: Time Varying Signals · Page 101

5-6. These three circuit elements are all that's necessary to connect to the BASIC Stamp
to play tunes and tones.

P10

Vss

Figure 5-6
BASIC Stamp Music
Circuit

The piezoelectric speaker shown in Figure 5-6 works like a rechargeable battery that
charges and discharges over short periods of time. By applying lots of pulses to the
circuit, the voltage output can actually be shaped into a signal.

These pulses can be varied in width and applied more or less frequently. Depending on
the pulse widths and frequencies, the capacitance of the piezospeakers gains or loses
voltage at varying rates. That's the gist of how pulse width modulation (PWM) works,
and it can be used to shape voltage signals. Figure 5-7 shows a sample of a PWM signal
applied to the input of an RC circuit as well as a sine wave output.

PWM Signal Sine Wave

Figure 5-7
Oscilloscope
Samples

Of a PWM
signal and a
sine wave.

Sine waves can be used to represent musical notes. When a sine wave is played on the
piezoelectric speaker, the sound has a significantly improved quality. The variations in air
pressure caused by a tuning fork are represented by a sine wave. Program Listing 5.3

Page 102 · Basic Analog and Digital

defines an octave of musical notes and their corresponding frequencies. A list of these
musical notes is then played using FREQOUT commands. Let's try it.

Reprogram the Circuit for Musical Notes
' Basic Analog and Digital - PL5_3R0.bs2
' Charge!!!
' {$STAMP BS2}
' {$PBASIC 2.5}

C CON 2093
CSharp CON 2218
D CON 2349
DSharp CON 2489
E CON 2637
F CON 2794
FSharp CON 2960
G CON 3136
GSharp CON 3322
A CON 3520
ASharp CON 3729
B CON 3951

DEBUG CLS
FREQOUT 10, 100, C
DEBUG HOME, "Frequency of PWM sine wave output is ", DEC4 C, " Hz.", CR
FREQOUT 10, 100, D
DEBUG "Frequency of PWM sine wave output is ", DEC4 D, " Hz.", CR
FREQOUT 10, 100, DSharp
DEBUG "Frequency of PWM sine wave output is ", DEC4 DSharp, " Hz.", CR
FREQOUT 10, 200, G
DEBUG "Frequency of PWM sine wave output is ", DEC4 G, " Hz.", CR
FREQOUT 10, 100, DSharp
DEBUG "Frequency of PWM sine wave output is ", DEC4 DSharp, " Hz.", CR
FREQOUT 10, 200, G
DEBUG "Frequency of PWM sine wave output is ", DEC4 G, " Hz.", CR

The Output
The output sample shown in Figure 5-8 is the last of the eight that are played. The tones
sound significantly better than the equivalent pulse trains, which in general have more of
a kazoo sound to them.

Chapter 5: Time Varying Signals · Page 103

Figure 5-8
Debug
Terminal
output
displaying
the
frequencies
played by
Program
Listing 5.3.

About the Code
The only new command introduced is FREQOUT. The FREQOUT command is used as
follows:

 FREQOUT Pin, Duration, Freq1, Freq2

We already know that Pin is a number between 1 and 15 that refers to your choice of
BASIC Stamp I/O pin, P1 through P15. The Duration is a number between 1 and 65535
that specifies how long the tone is played in milliseconds (ms). The term Freq1 is used to
specify the frequency of the tone that gets played. A second frequency (Freq1) can be
played simultaneously for some interesting effects. For example, the tones you hear when
you dial the telephone are actually two tones played simultaneously. The BASIC Stamp
also has a command for telephone tones called DTMF, which uses the same principle.

Page 104 · Basic Analog and Digital

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

voltage

period

amplitude

time

inverse

amplitude

RC circuit

frequency

symmetric

sine

time-
varying

pitch

DC offset

An oscilloscope is a tool used by many electronics technicians and
engineers, and it measures and displays ____________ signals. Amplitude,
DC offset, phase shift, period, and ________________ are useful signal
characteristics that can be measured with an oscilloscope.

An oscilloscope typically displays ________________ on the horizontal
scale and ________________ on the vertical scale. ________________
and DC offset are two quantities related to voltage that are measured
differently for different signals.

For a pulse train, the amplitude is the voltage between the high and low
signal. For a _________________ triangle wave, as with the sine wave,
the amplitude is the maximum deviation from the center line of the signal.
For the sine wave and triangle wave, the ________________ is the voltage
between the center line and 0-volts.

The frequency is the number of times a waveform repeats itself and the
________________ is the amount of time the waveform takes to repeat
itself. The frequency is the ________________ of the period.

Time varying voltage signals sent to a speaker can result in audible tones.
Adjusting the ________________ of a voltage signal adjusts the volume
of the tone. Adjusting the frequency of the signal adjusts the
________________ .

Musical notes are represented by ________________ waves oscillating at
certain frequencies. The BASIC Stamp uses pulse width modulation
(PWM) sent to the input of an ________________ to generate a sine wave
at the output.

Chapter 5: Time Varying Signals · Page 105

Questions
1. What's the main difference between the Stamp-O-Scope display and a regular

oscilloscope display?

2. If the frequency of a signal is 1000 Hz, what's the period?

3. How can you adjust the scale to display finer variations in voltage using the
Stamp-O-Scope? Hint: The answer involves an adjustment to the PBASIC code
for Program Listing 5.1.

4. How can you increase the refresh rate of the Stamp-O-Scope? Hint: examine the

code again; what factor limits the speed at which the signal is measured?

Challenge!
1. Modify Program Listing 5.3 so that it plays two notes simultaneously. For a hint,

look up the FREQOUT command in the BASIC Stamp Manual or the BASIC
Stamp Editor Help menu.

2. Modify Program Listing 5.1 and add a second lead that measures only 0 and 1

logic levels. Modify the code to display voltage activity of this second lead and
the Stamp-O-Scope input simultaneously on the same display. Good luck!

3. If you succeeded with Challenge #1, add a potentiometer to your board and wire

it as a voltage divider. Hook the new, second input lead to the wiper terminal of
the pot. Vary the pot above and below threshold voltage and see if you can
match the frequency of the triangle wave.

4. A really cool thing to do would be to discover a phenomenon called phase shift.

Connect the input lead of the second channel you developed in Challenge 2 to
the D/A converter output. Also, connect the channel 1 lead (ADC0831 Vin(+)) to
the D/A converter output. Adjust the D/A converter to up count and down count
between 4 and 15. Note that there's a delay between the mid point of the triangle
wave and the transition of the pulse train. Adjusting the lower limits of the
counting variables and notice that the delay shifts. This delay is called phase
shift.

Page 106 · Basic Analog and Digital

Why did I learn it?
The oscilloscope is an essential tool in the electronics industry, and many hobbyists use
them as well. This is a good first exposure to using the oscilloscope and to viewing time-
varying waveforms. If you find yourself learning how to use an oscilloscope, some of the
concepts introduced here will make some of the functions of the buttons and dials easier
to learn.

How can I apply this?
Familiarity with the oscilloscope and with time-varying waveforms will make it easier to
understand explanations of various phenomena that vary with time. They appear in many
chemistry, physics and electronics texts.

Chapter 6: Recording Frequency Data · Page 107

Chapter #6: Recording Frequency Data

In the previous chapter we used the BASIC Stamp to control a D/A converter to produce
audible tones. In this chapter, we'll use a 555 timer to generate frequencies in the audible
sound range, then we'll use the BASIC Stamp to sample and process the frequency data.

We'll start by viewing a pulse train generated by a 555 timer on a simplified version of
the Stamp-O-Scope. Two potentiometers will be used to control the frequency and duty
cycle of the pulse train. After viewing the pulse train's signal characteristics, the 555
timer's output will be directed to a piezoelectric speaker. The 555 timer's output will also
be connected to a BASIC Stamp I/O pin set to input. The BASIC Stamp will be
programmed to monitor and record the frequencies generated by the 555 timer.

Parts Required
This experiment requires the following parts:

(2) 10 kΩ potentiometers
(1) Piezoelectric speaker
(1) 555 timer
(1) 100 µF electrolytic capacitor
(1) 1 µF electrolytic capacitor
(2) 220 Ω resistor

Not all the parts will get used at once on the same circuit. Certain capacitors and resistors
are substituted in the second circuit to increase the 555 timer's output frequency.

The electrolytic capacitor shown in Figure 6-1 has a positive and negative terminal. The
wire that comes out of the metal canister closest to the black stripe is the negative
terminal. The arrows (>>) on the black stripe point to the negative terminal. The canister
also has the value printed on it. 1µF indicates 1 microfarad while 10 µF indicates a 10
microfarad capacitance value. Likewise, 100 µF indicates 100 microfarads, and so on.

Page 108 · Basic Analog and Digital

The electrolytic capacitor has a positive (+) and a negative (-) terminal. The negative
terminal is the lead that comes out of the metal canister closest to the stripe with a negative
(–) sign. Always make sure to connect these terminals as shown in the circuit diagrams.
Connecting one of these capacitors incorrectly can damage it. In some circuits, connecting
this type of capacitor incorrectly and then connecting power can cause it to rupture or even
explode.

1µF

Figure 6-1
Electrolytic Capacitor
Circuit Symbol and
Component

Figure 6-2 shows the symbol and pin map for the 555 timer. As with the ADC0831, the
circuit symbol for the 555 timer is drawn for convenience in the circuit diagram. This
means that the locations of the pins on the symbol and its size may change from one
diagram to the next. The pin map, on the other hand, does not change. Make sure to
locate the index mark, and use the pin map in conjunction with the schematic while
wiring your circuits.

555 Timer

1

7

6
2

4

3

8

1

2

4

3

8

7

5

6

Res

Out

Trig

GND

Con

Thres

Dis

Vcc

555 Timer

Figure 6-2
Symbol and pin map
for 555 Timer

As always, make
sure to locate the
index mark when you
place the part on the
breadboard.

Build It
The circuit in Figure 6-3 is called an "astable multivibrator" and it’s used to generate a
steady stream of pulses. The timing of these pulses is determined by the capacitor and
the resistances of the two potentiometers. You will be able to change the potentiometer
resistances by twisting their knobs/dials, which will in turn change the pulse duration and
frequency the circuit sends to the speaker. The speaker makes the signal audible, and
since the circuit’s output is also connect to P0, you will be able to program the BASIC
Stamp to measure certain characteristics of the signal as well.

Chapter 6: Recording Frequency Data · Page 109

Build the circuit shown in Figure 6-3. Note that there is a lower case "nc" below two
potentiometer terminals in the figure. This stands for "not connected". Since the
potentiometer is used as a single variable resistor instead of a voltage divider, the third
terminal doesn't get connected to anything. It's OK to plug the nc terminal into a row on
the breadboard; just don't plug anything else into the same row.

Figure 6-3
Astable
Multivibrator
circuit

With
adjustable high
and low times.

No program is needed yet at this point. After you've built the circuit, adjust the
potentiometers until the piezoelectric speaker makes a steady, slow tic-toc sound. A
frequency of 1 Hz is desirable. You can make the tic-toc stop any time you want by
connecting pin-5 of the 555 Timer to ground (Vss).

How to predict the 555 Timer's frequency?

 f = 1.45/[C*(RA + 2RB)

More facts acquired from a data sheet, this one on the 555 family of timers. TH, the pulse
width, is given by:

0.69 x C x (RA +RB),

…where C, RA and RB are the values of the capacitor and two resistance values of pot A and
pot B as shown in Figure 6.3. TL, the duration of the low signal (the time between pulses) is
given by:

0.69 x C x RB

Page 110 · Basic Analog and Digital

In the previous experiment, the Stamp-O-Scope digitally sampled and displayed signal
data. Program Listing 6.1 is a greatly simplified version of the Stamp-O-Scope (the
Stamp-O-Scope 2), and it only displays variation in logic level (0 or 1). Since the 555
timer's output is a pulse train that varies between 0 and 5 volts, A/D conversion is not
required. The Stamp-O-Scope 2 is all that's needed.

' Basic Analog and Digital - PL6_1R0.bs2
' Stamp-O-Scope 2
' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG CLS 'Start display

DO
 DEBUG REP " "\IN0*20, "*", CR
 PAUSE 100
LOOP

About the Code
The command DEBUG REP " "\IN0*20, "*", CR uses the input value measured at pin
P0 to dictate how many spaces are printed. No variables are used. When the input is zero,
the asterisk gets printed without any spaces before it, indicating a 0 at the input. When the
value at P0 is 1, twenty spaces are printed before the asterisk, indicating a measured input
value of 1.

Chapter 6: Recording Frequency Data · Page 111

The Output
Figure 6-4 shows the Stamp-O-Scope 2 display. You can adjust the potentiometers and
change the frequency characteristics of the waveform. For example, pot B directly affects
the amount of time the signal is low. It also indirectly affects the amount of time the
signal is high. Try adjusting pot B until the low signal is 4 asterisks wide. Then, you can
adjust pot A so that the pulse-width varies. Try adjusting A so that the pulse-width is also
5-asterisks wide. Toggle the Pause/Resume button at the bottom of the Debug Terminal
by clicking on it with your mouse to freeze and unfreeze the display.

Figure 6-4: Output Sample of 555 Timer Pulse Train

This is a time-varying display of the pulse train generated by the 555 timer as measured
by pin P0. Again, the display has been turned sideways to match conventional displays
and graphs.

Page 112 · Basic Analog and Digital

Now, try adjusting pot B and make the low signal two asterisks wide. What happened to
the pulse width? It should also have gotten narrower too.

Next, try adjusting pot B as far as it will go to increase the frequency (making the pulse
widths narrower). The piezoelectric speaker should be clicking pretty fast now. Carefully
adjust pot A and you should be able to hear an audible tone out of the piezo speaker. It's
not a pretty tone; it sounds about like a kazoo.

The Stamp-O-Scope 2 is probably not working very well any more, as shown in Figure 6-
5. We'll replace it with another program that lends itself to measuring audible sound.

Figure 6-5: Output Sample of Faster Pulse Train

Chapter 6: Recording Frequency Data · Page 113

The pulse train is now repeating itself several times as fast as the sampling rate. So the
Stamp-O-Scope 2 display is no longer valid.

Now back way off on pot B so that all you get is a periodic clicking out of the
piezoelectric speaker. We'll want to crank pot B back up in a little while to get that tone
again, but first, let's consider what happened to the Stamp-O-Scope 2 display as the
frequency of the 555 Timer was increased.

The display shown in Figure 6-5 still showed signal activity, even though it was
erroneous. This is called aliasing. Aliasing happens when you don't sample something
fast enough to get a true representation of what's going on. Aliasing can cause problems
because sometimes the signal that gets displayed actually looks valid.

For the most part, the Debug Terminal is the limiting factor for sampling rate. So let's
make a program that allows the BASIC Stamp take turns between working at full speed
and sending messages to the Debug Terminal.

When is aliasing a concern? A recommended sampling rate depends on the
characteristics of the signal being measured. Some signals are sampled just a few times
per cycle while others are sampled thousands of times per cycle.

The absolute minimum sampling rate, in theory, that can be used to gather valid signal data
is twice the frequency being sampled. When the sampling rate is less than twice the
frequency of the signal being sampled, aliasing is guaranteed. This minimum frequency is
called the Nyquist rate.

A BASIC Stamp I/O pin can be monitored to check the number of threshold voltage
crossings per time interval. The BASIC Stamp 2 can be programmed to track these
changes once every two microseconds, which makes the period between samples 2
microseconds. From Chapter #5, we know that frequency is the inverse of the period:

f = 1 / T

We can use this equation with a period of T = 2 µs to calculate the sampling frequency,
which is also commonly referred to as the “sampling rate”:

1 ÷ 2 x 10-6 seconds = 250 x 103 = 500 kHz

Since the sampling rate is 500 kHz, the theoretical maximum frequency we could sample
is 250 kHz. The audible sound range is between 20 Hz and 20 kHz, and the sounds we
will work with in this experiment will vary between 50 Hz and 3.5 kHz. So the BASIC
Stamp will instead be “oversampling” the signal, and aliasing will not be a problem.

Page 114 · Basic Analog and Digital

Program It
Let's make a program that counts how many times the pulse train repeats itself. In effect,
we will make a program that determines the frequency of the pulse train. The BASIC
Stamp has a built in feature for counting frequency, and the PBASIC command is the
COUNT command.

With the COUNT command, the BASIC Stamp increments a value when the input voltage
passes the 1.4 volt I/O pin threshold twice. This makes programming and interpreting the
frequency data easy for periodic signals such as the pulse train, triangle wave and sine
wave. Figure 6-6 shows why there are two threshold crossings per repetition of the
waveform. When a waveform repeats itself, it's called a cycle. Notice how the waveform
crosses the threshold voltage twice per cycle.

 1 full cycle

5 Volts

1.4 Volts

0 Volts

 Two crossings of the
threshold voltage

Figure 6-6
Full Cycle of
a Pulse Train

Enter Program Listing 6.2 into the BASIC Stamp Editor and save it as P6_2R0.bs2.

' Basic Analog and Digital - PL6_2R0.bs2
' Frequency Meter
' {$STAMP BS2}
' {$PBASIC 2.5}

f VAR Word

DO
 COUNT 0, 1000, f
 DEBUG HOME, "Frequency: ", DEC4 f, " Hz.", CR, CR
LOOP

When you run the program, and adjust pot B to its maximum, the output should be
somewhere in the neighborhood of the frequency shown in Figure 6-7.

Chapter 6: Recording Frequency Data · Page 115

Figure 6-7
Debug Output for
Program Listing 6.2

Try replacing the 100 µF capacitor with a 10 µF capacitor and 1 µF, then adjust the pots
to note the frequency ranges and sounds that are possible. Remember that you can turn
the sound (noise, racket, whatever you want to call it by now) off by shorting pin 5 on the
555 timer to Vss. When you want the sound back on, just disconnect the wire from the
Vss terminal again.

Modify the test circuit by replacing pot A with two 220 Ω resistors in series, and using
the 1 µF capacitor. Figure 6-8 shows how the circuit should look when the changes to the
circuit have been made.

Figure 6-8
Astable Multivibrator
Circuit

With RA fixed at 440 Ω.
RB is can still be
adjusted with pot B.

Page 116 · Basic Analog and Digital

Adjusting pot B, you should now be able to measure sound on a frequency range from
about 60 Hz to about 3.5 kHz. You can log frequency data as you adjust the pot with the
revised version of Program Listing 6.2 below.

' Basic Analog and Digital - PL6_2R1.bs2
' Frequency Meter
' {$STAMP BS2}
' {$PBASIC 2.5}

f VAR Word(10)
n VAR Nib

DO
 DEBUG CLS

 FOR n = 0 TO 9
 COUNT 0, 1000, f(n)
 DEBUG HOME, "Frequency: ", DEC4 f, " Hz.", CR, CR
 NEXT

 PAUSE 1000

 FOR n = 0 TO 9
 DEBUG "Frequency at ", DEC1 n
 DEBUG " seconds was ", DEC4 f(n), " Hz.", CR
 NEXT

 PAUSE 5000
LOOP

During the time this program records the frequency, the Debug Terminal display is
similar to the previous revision of the program. When the program is done recording, it
displays ten frequency samples. The Debug Terminal data shown in Figure 6-9 was
generated by adjusting the pot back and forth to some random frequencies (tones).

Chapter 6: Recording Frequency Data · Page 117

Figure 6-9
Debug Output for
Program Listing 6.2,
Revision 1.

About the Code
Program Listing 6.2 Revision 2 introduces the concept of data storage using an array.
We used the command:

f VAR Word(10)

to reserve 10 words of space in the BASIC Stamp module's RAM. There's a word labeled
f(0), another word labeled f(1), and so on through f(9). Each of these words is stored
adjacent to each other in RAM.

As the value of n is incremented in the FOR…NEXT loop, so is the index of the array. The
first time through the array, a value is loaded into word f(0), the second time through the
array, a value is loaded into word f(1), and so on through word f(9).

 FOR n = 0 TO 9
 COUNT 0, 1000, f(n)

Page 118 · Basic Analog and Digital

 DEBUG HOME, "Frequency: ", DEC4 f, " Hz.", CR, CR
 NEXT

The same concept worked for printing the values back to the Debug Terminal.
 FOR n = 0 TO 9
 DEBUG "Frequency at ", DEC1 n
 DEBUG " seconds was ", DEC4 f(n), " Hz.", CR
 NEXT

The time-varying waveforms we've looked at in this chapter and in Chapter #5 have been
periodic. That is, they've repeated themselves. In the next two experiments, we'll take a
look at waveforms that vary with time, but they aren't necessarily periodic.

Chapter 6: Recording Frequency Data · Page 119

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

sampling
rate

pulse train

time-
varying

amount

array
variable

incremented

period

duty cycle

Sounds can be characterized by _____________ waveforms. The
frequency range for audible sound is between 20 and 20,000 Hz. When a
time-varying waveform such as a pulse train of sufficient frequency and
amplitude is sent to a speaker, the speaker emits audible sound.

The 555 timer in an astable multivibrator circuit can be adjusted to
generate a _____________. The frequency, pulse width, and
_____________ can be adjusted by changing the values of the passive
elements in the circuit, i.e. the capacitor, and the two resistors.

The pulse width is the _____________ of time a signal remains high, and
the duty cycle is the ratio of the pulse width to the _____________ of the
waveform.

Aliasing is a phenomenon that occurs when the _____________ is less
than twice the frequency of the signal being sampled. This can cause
significant misinterpretations of the signal data.

Data can be conveniently stored and accessed in RAM using an
_____________. The index of an array variable can be ____________
using a FOR…NEXT loop. When you specify an array of 10 bytes, they are
indexed as bytes 0 through 9.

Page 120 · Basic Analog and Digital

Questions
1. Given four different frequencies of sound, 3.5 Hz, 350 Hz, 3,500 Hz, 35,000 Hz,

which ones can you hear and which ones can't you hear? Explain your answers.
Also, compare the pitch of the sounds you can hear.

2. Explain aliasing. If a signal is sampled at 1 kHz, how low can the signal's

frequency get before aliasing is guaranteed?

3. For the circuit in Figure 6-7, what resistance value does the pot have to be to
make the astable multivibrator circuit generate a 2 kHz signal? This requires
some algebra.

4. Construct a PBASIC command to declare an array of 5 nibbles. Make a

command that sets the fist nibble in the array equal to the fifth nibble in the
array.

Challenge!
1. In Program Listing 6.2 Revision 2, the frequency samples we took were once

every 1 second because the count command counted for a second. Revise the
program listing to count the frequency samples for ½ of a second. Make sure
your output data is correct by comparing output of the revised program to output
of the original for a known frequency. Fix any bugs

2. Design a program to record and play back tones. Make it so that the recorded

tone is played on one speaker, and the playback tone is sent to a second speaker.
Add a function to the program that shuts the 555 timer off by sending a low
signal to pin-5 on the timer when you want to hear the playback signal. Hint:
You can combine program listings from Chapter #5 with a program listing from
this experiment, and you'll be almost done. All you'll have to do is program the
control signal that disables the 555 timer.

3. Design and build the circuit to implement the design from Challenge 2. You'll

need to be creative about finding enough space on the breadboard.

4. Add two pushbuttons to the system developed in Challenge 2 and 3 so that you
can control when to record and play back single sound samples. Now you'll need
to be really creative about finding enough space on the breadboard. Use 10 kΩ

Chapter 6: Recording Frequency Data · Page 121

resistors with the pushbuttons, and design them to send either high or low
signals. Hint: Review Chapter #1 for circuit and program techniques for
implementing the pushbuttons.

Why did I learn it?
Digital processing of audio signals is still expanding in the audio industry. New, more
efficient ways of storing and transmitting sound are being developed so that you can
transmit music more quickly over the internet and so that your voice sounds more like
your voice to the person on the other end of the phone line.

Digital signal processing is also the crux of the telecommunications industry with cellular
phones and normal telephones. When you talk on the phone, your voice signal is
converted to 0s and 1s and sent via the telephone network in binary format. Your
telephone still sends and receives analog voice signals, but your voice information is A/D
and D/A converted at various points in the telephone network.

How can I apply this?
Frequency is an effective way to think about sound, but there is a myriad of other uses for
frequency counting. For example, engine speed and car speed are determined by how fast
certain moving parts on the car turn. When something rotates, each time it turns full
circle it has repeated itself. If a shaft is rotating at 100 turns per second, its frequency of
rotation is 100 Hz. Machine vibration can also be measured in terms of frequency, and so
can many metabolic signals such as breathing, heart rate, and so on.

Page 122 · Basic Analog and Digital

Chapter 7: Digital to Analog the Easy Way using PWM· Page 123

Chapter #7: Digital to Analog the Easy Way using
PWM

A resistor, capacitor, BASIC Stamp, and a single line of PBASIC code. That's all it takes
to build a D/A converter with 8-bit resolution. Sound too good to be true? In a sense it is,
because a buffer is necessary for this circuit to maintain a given voltage. Even so, it's
easy to build and offers a higher degree of accuracy than its resistive ladder counterpart.
Figure 7-1 shows the circuit that's used - it's a simple RC circuit. The input receives a
pulse width modulated (PWM) signal, and the output rises or falls to the desired voltage
level.

Vss

PWM
Input

1 µF

P8

D/A
Output

10 kΩ

Figure 7-1
RC Circuit

Which can be
connected to the
BASIC Stamp for
D/A conversion.

How can sending pulses of varied width and frequency control or set a voltage level at
the D/A output? The answer is the RC circuit shown in Figure 7-1. This circuit behaves
like a rechargeable battery. Figure 7-2 shows an example of the simplest kind of
capacitor, the parallel plate capacitor. The charges migrate from the battery terminals and
accumulate on the two metal plates until the voltage across the capacitor is essentially the
same as the battery voltage.

Page 124 · Basic Analog and Digital

+

_

Figure 7-2
Parallel Plate Capacitor Charged by a
Battery

The opposed charges congregate at
their respective plates. They want to
get across the gap between the two
metal plates, but there is an insulating
material called a dielectric in between
the plates, so they can't get across.

You could also disconnect the battery from the capacitor, and it would maintain its
voltage. Typically, there is a small amount of current that does make it through the
dielectric material that separates the plates. It's called leakage current. Leakage current on
a charged capacitor will cause the voltage to slowly dissipate.

The RC circuit shown can charge to within 1% of 5 volts very quickly. Assume that a
single pulse is applied to the circuit in Figure 7-1 instead of the many pulses sent via a
PWM signal. If the values of the components are exact, it would take about 6.93
milliseconds for the capacitor to charge up to 2.5 volts, and would take 46.1 milliseconds
for the output to get all the way to 4.95 volts, which is 99% of the full 5 volts.

For advanced math enthusiasts, let's take a look at the proof. The modeling equation for
the RC circuit from Figure 7-1 responding to a pulse that goes from 0 to 5 volts is:

⎟
⎠

⎞
⎜
⎝

⎛
−×= ×

−
CR
t

InputOutput eVV 1

The modeling equation is rearranged to isolate the exponential term:

CR
t

Input

Output e
V
V

×
−

=−1

The natural log of both sides is taken to remove the exponential term, and the terms are
rearranged:

Chapter 7: Digital to Analog the Easy Way using PWM· Page 125

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−××−=⇒⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

×
−

⇒⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ×

−

Input

Output

Input

OutputCR
t

Input

Output

V
V

1lnCRt
V
V

1ln
CR
teln

V
V

1ln

All that's left is to plug in the numbers to solve for t2.5 volts and t4.95 volts. R and C are the
resistance and capacitance values shown in Figure 7-1, and VInput = 5 volts. The first
VOutput is 2.5 volts.

.ondssec1093.6

0.5
5.21ln)101()1010(

V
V

1lnCRt 363

Input

Output
Volts5.2

−− ×=⎟
⎠
⎞

⎜
⎝
⎛ −××××−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−××−=

Then, the same calculation can be done for t4.95 Volts.

.ondssec101.46

0.5
95.41ln)101()1010(

V
V

1lnCRt 363

Input

Output
Volts95.4

−− ×=⎟
⎠
⎞

⎜
⎝
⎛ −××××−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−××−=

An oscilloscope could be used to monitor the output voltage of the RC circuit from
Figure 7-1. The response when a single, very wide pulse (a voltage step) is applied would
resemble that shown in Figure 7-3. As you can see, it takes just a fraction of a second for
the capacitor to charge up to 5 volts. Nonetheless, it is a gradual change when compared
to pulses sent by the BASIC Stamp, which can be as narrow as 2 microseconds

Page 126 · Basic Analog and Digital

Output
Voltage
(Volts)

Input
Voltage
(Volts)

0-0.01-0.02 0.01 0.02 0.03 0.04 0.05

0

1

3

4

2

5

0-0.01-0.02 0.01 0.02 0.03 0.04 0.05

0

1

3

4

2

5

 Time, (Seconds)

Figure 7-3
RC circuit Step
Response

Shows the
voltage response
to a single
voltage step
applied at the
input.

Applying many narrow pulses as opposed to the single very wide pulse applied in Figure
7-3 has advantages in terms of accuracy. As you will soon find out, this D/A conversion
technique is surprisingly accurate - especially compared to the accuracy of the parts used
to make the conversion. The resistor has a 10% tolerance and the capacitor is only
accurate to 20%!

Parts Required
This experiment requires the following parts:

(1) ADC0831 A/D converter
(1) LM358 op-amp
(2) 10 kΩ resistor
(1) 1.0 µF electrolytic capacitor
(1) Photoresistor
(1) 470 Ω resistor
(1) Yellow LED

Chapter 7: Digital to Analog the Easy Way using PWM· Page 127

The photoresistor senses light level. Under a bright light, the resistance can drop to as
low as a few ohms. In darkness, the resistance can climb as high as 50 kΩs. Figure 7-4
shows the circuit symbol for a photoresistor and a drawing of the component

Figure 7-4
Photoresistor Circuit
Symbol and Component

Build It
Build the circuit shown in Figure 7-5. Recall from Chapter #4 that the inputs of the
ADC0831 have very high resistance, and they resemble an open circuit. Because of this,
it's okay to connect the output of the D/A converter to the ADC0831's Vin(+) input
without the buffer. We will use the remaining components later.

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd

1

7

6

2

4

3

8 5

Vss Vss

Vdd

P8
P0

P1

P2

10 kΩ

1 µF

Figure 7-5
RC Circuit for PWM D/A
Conversion

Connected to the Vin(+)
terminal of the ADC0831.
The ADC0831 is
connected to the output of
the D/A converter to
measure the output
voltages.

We are going to use the PWM command to send pulses to the RC circuit for D/A
conversion. Then we'll measure the voltage using the ADC0831 as a DVM.

Page 128 · Basic Analog and Digital

The format of the PWM command is:
PWM Pin, Duty, Cycles

The term Pin refers to a BASIC Stamp I/O pin, and you can specify a pin number
between 0 and 15 to select a pin. Since the converter input is connected to BASIC Stamp
pin P8 in the schematic, we need to set the pin value to 8.

Now, what about Duty ? Remember from the Chapter #5 that duty cycle is the ratio of the
pulse width to signal period. The term duty is different in the sense that it isn't the duty of
a cycle. It's the duty of all the pulses over a certain period of time. In other words, the
term Duty specifies the ratio of high signal to the time duration of all the pulses in a
specific interval of time.

When Duty is 255, that means that all the pulses are high, and there is no low signal
between them. When all the pulses are high, it means that the capacitor will charge all the
way to 5 volts, the high value of the pulses. In theory, the capacitor can never actually
charge to 5 volts, but in practice, a time of 5×R×C brings the voltage to within 99.3% of
5 volts.

Therefore, Duty is what controls the voltage level, but how do we figure out what we want
the duty to be? It's actually pretty simple because it works on a scale from 0 to 255,
where 0 is 0 volts and 255 is 5 volts. This looks like a method we already covered in
Chapter #3.

Assume we want 3.25 volts. In Chapter #3, we learned how to normalize a scale of 0 to 5
volts to a scale of 0 to 255. Remember that the measured voltage was to 5 as the A/D
output was to 255. This translated to fractions as:

 255
inputD/ADecimal

5
Voltage

=

In this case, the D/A output voltage is to 5 as the duty is to 255, which translates to
fractions as:

 255
duty

5
OutputD/A

=

Chapter 7: Digital to Analog the Easy Way using PWM· Page 129

Usually, we know what voltage we want, so we can rearrange the equation to tell us what
duty we need:

duty = 255 × (D/A Output ÷ 5)

Since we want our D/A output to be 3.25 volts:

duty = 255 × (3.25 ÷ 5) = 165.75

The number 165.75 should be rounded to 166 so that we can set the duty to an integer
value.

The last quantity we need to determine for the PWM command is Cycles, which specifies
how many milliseconds the PWM output lasts, and it can be a number up to 65,535. The
typical method for choosing how many cycles to charge is:

cycles = 4 × R × C, in milliseconds

Since we used a 1.0 µF capacitor and a 10 kΩ resistor,

cycles = 4 × 0.000001 × 10,000 = 0.04 = 40 × 10-3 = 40 ms

For the components we are using, we need to set the Cycles value in the PWM command to
40.

Now we know that to generate a 3.25 volt output, our PWM command needs to be:

 PWM 8, 166, 40

Let's try it.

Program It
Let’s start with Program 4.1 from page 71. Modify the declarations section so that the
variable n is defined as a word instead of a nibble:

' -----[Declarations]--------------------------------------
adcBits VAR Byte
v VAR Byte
r VAR Byte
v2 VAR Byte
v3 VAR Byte
n VAR Word ‘∆ changed line

Page 130 · Basic Analog and Digital

Replace the DAC subroutine as follows:
DAC:
 n = 166
 PWM 8, n, 40
RETURN

Also replace the Display subroutine so that it only displays the voltage, as shown below.
Display:
 DEBUG HOME, CR, "DVM Reading: ", DEC1 v
 DEBUG ".", DEC2 v2, " Volts"
RETURN

Also modify the first line of the program for future reference, and save the modified
program as P7_1R0.bs2. Then, run the program and check the output.

The Output
Take a look at Figure 7-6; not bad!

Figure 7-6
Debug Output for
Program Listing 7.1

Try setting n to a few different values in the DAC subroutine.

Chapter 7: Digital to Analog the Easy Way using PWM· Page 131

High input impedance: BASIC Stamp I/O pins set to input mode, op-amp input terminals,
and the ADC0831's Vin terminals all have an important aspect in common that makes them
invisible to other circuits. It's high input impedance.

The term impedance includes both resistance and capacitance. High input impedance
means that the resistance is huge, and there is a very small capacitance as well.

The impedance at the input terminals of these devices is so high that it fools the most
circuits into behaving as if the inputs to these devices are open circuits. So, for the most
part, you can connect the output of just about any circuit to these inputs.

On the other hand, we've seen how comparatively low resistance circuits such as a 10kΩ
resistor or an LED circuit can drastically change the output of D/A circuits.

One advantage of many D/A converter integrated circuits is that they provide reliable,
buffered output

Important: This circuit must be isolated from other circuits. The input impedance of the
V(+) pin on the ADC0831 is very high, high enough to make it invisible to the RC
circuit. But if you tried to use this circuit to drive an LED-resistor circuit without the
buffer, all the charge that built up in the capacitor would exit through the LED and
resistor.

Try connecting a 10k Ω resistor from the D/A converter output to Vss. Figure 7-7 shows
what happens when you try to send 3.25 volts with a load on the D/A converter.

Since the D/A PWM repeats itself without a pause in the program, the capacitor does not
have enough time to discharge all the way to 0 volts.

If the program were set to carry out the PWM command only once, the capacitor would
discharge very quickly

Page 132 · Basic Analog and Digital

Figure 7-7
Debug Terminal
Output for Program
Listing 7.1 with an
Unbuffered 10 kΩ
load.

As you can see, a buffer is essential to keep the voltage steady. You can use the same
voltage follower that we used in Chapters #2, #4 and #5 to buffer the output.

Place a voltage follower in between the D/A output and an LED circuit input as shown in
Figure 7-8, then run Program Listing 7.1 again.

LED

VssVssVss

LM358
P8

10 kΩ

1 µF
470 Ω

Vdd

A

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd

1

7

6

2

4

3

8 5

Vss

Vdd

P0

P1

P2

Figure 7-8: PWM DAC with Op-amp Buffer and a Load

Figure 7-9 indicates that the buffer is doing its job.

Chapter 7: Digital to Analog the Easy Way using PWM· Page 133

Figure 7-9
Debug Terminal
Output for Program
Listing 7.1 With a
Buffered LED
Circuit for a Load.

Next, add a photoresistor in series with a 10 kΩ resistor as shown in Figure 7-10. The
positive lead of your BASIC Stamp DVM should be connected to the node where the
photoresistor connects to the 10 kΩ resistor. This is a voltage divider output, and as the
resistance of the photoresistor varies, so will the voltage seen at the output of the voltage
divider. Also, point the top of the yellow LED directly at the face of the photoresistor as
shown.

LED

VssVssVss

LM358
P8

10 kΩ

1 µF
470 Ω

Vdd

A

Vss

10 k Ω

ADC0831

/CS
Vin(+)

Vin(-)

GND

Vref

D0

CLK

Vdd

1

7

6

2

4

3

8 5

Vss

Vdd

P0

P1

P2

Vdd

Figure 7-10: Transmitting an Optical Signal.

PWM sets the RC circuit's output voltage, which in turn drives an LED circuit via a
voltage follower.

Page 134 · Basic Analog and Digital

The light from the LED is transmitted to the photoresistor. Face the two devices at each
other as shown. The voltmeter from Chapter #3 senses the changes in voltage divider
output.

Let's try adjusting the brightness of the LED and see what happens to output at the
voltage divider. Make the changes to the Declarations and Main Routine sections, and to
the Display and DAC subroutines shown below. The n variable is defined as a word.
Then save the program as P7_1R1.bs2, and run it.

' -----[Title]---
' Basic Analog and Digital - PL7_1R1.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[Declarations]--
adcBits VAR Byte
v VAR Byte
r VAR Byte
v2 VAR Byte
v3 VAR Byte
n VAR Word

' -----[Initialization]--
CS PIN 0
CLK PIN 1
DataOutput PIN 2

DEBUG CLS 'Start display.

' -----[Main Routine]--
DO
 FOR n = 82 TO 199 STEP 9
 GOSUB DAC

 GOSUB ADC_Data
 GOSUB Calc_Volts
 GOSUB Display
 PAUSE 4000
 NEXT
LOOP

' -----[Subroutines]---
DAC:
 PWM 8, n, 40
RETURN

ADC_Data:
 LOW CLK

Chapter 7: Digital to Analog the Easy Way using PWM· Page 135

 LOW CS
 PULSOUT CLK, 210
 SHIFTIN DataOutput,CLK,MSBPOST,[adcBits\8]
 HIGH CS
RETURN

Calc_Volts:
 v = 5 * adcBits / 255
 r = 5 * adcBits // 255
 v2 = 100 * R / 255
 v3 = 100 * R // 255
 v3 = 10 * v3 / 255
 IF (v3 >= 5) THEN v2 = v2 + 1
 IF (v2 >= 100) THEN
 v = v + 1
 v2 = 0
 ENDIF
RETURN

Display:
 DEBUG HOME, "Decimal value to DAC: ", DEC3 n
 DEBUG CR, CR, "DVM Reading: ", DEC1 v
 DEBUG ".", DEC2 v2, "-Volts", CR, CR
RETURN

The Debug Terminal output should indicate that the output of the voltage divider varies
as the LED gets brighter and dimmer. To get the highest swings in measured voltage, turn
the lights off in the room. The circuit should work fine under normal lighting conditions
as long as no direct light from windows or overhead lamps is hitting the front of the
photoresistor. Use a book or a clipboard between these light sources and the photoresistor
to cast a shadow. If your circuit is in direct sunlight, the differences in output voltage may
be too small to measure.

The voltage divider equation can be used to determine the resistance of the photoresistor.
From Chapter #3, the voltage divider equation is:

 21

2
InputOutput RR

R
VV

+
×=

R2 is a known resistor value, and R1 is the unknown resistance value of the photoresistor.
Vinput is 5 volts, and Voutput should be noted from the Debug Terminal. It takes some
algebra to rearrange the terms; the final result is:

Page 136 · Basic Analog and Digital

2

Output

Input
21 R

V
V

RR −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×=

This is one method of using a variable resistor as a sensor. Clearly it can detect different
levels of light, and the ADC0831 handles converting the analog information into digital
information. In the next chapter, we'll introduce another method for measuring variable
resistance that uses significantly less hardware and code.

Chapter 7: Digital to Analog the Easy Way using PWM· Page 137

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

entire

analog

RC

buffer

voltage
divider

high

capacitor

The BASIC Stamp has a built in feature for D/A conversion that uses
pulse width modulation. The technique uses a series of pulses to charge
the capacitor in an __________ circuit to the desired voltage. PWM relies
on the duty, which is different from duty cycle, to control the voltage the
capacitor is charged to. Duty refers to a series of pulses instead of a single
cycle. It's the total amount of time the signal is _________ divided by the
total amount of time for the _________ pulse train.

 A __________ is essential for this circuit when driving a load. Without
it, the __________ will quickly loose its charge. A capacitor also looses
its charge due to leakage current, so the PWM should be repeated
periodically to refresh the voltage.

A photoresistor is a device whose resistance value changes with the
brightness of light that shines on a collecting surface. The photoresistor or
any resistor whose value changes with some analog value can be used in a
__________ and the result is a variable voltage output. This information
can be interpreted using the ADC0831 and the BASIC Stamp to measure
the __________ voltage output.

Page 138 · Basic Analog and Digital

Questions
1. Can changing the capacitor or resistor values improve the resolution of the PWM

D/A converter? Explain your answer.

2. Given the command: PWM 14,51,50, approximately how many milliseconds
does the command take to execute? How many milliseconds is the pulse train
high?

3. Why does the capacitor loose its charge if you attach a resistive element to the

output of the PWM D/A converter?

4. If you want a 2.5 volt output, what do you have to set the duty to? Assume you
are using the PWM command in Program Listing 7.1. Explain your reasoning.

5. If you want to do DAC using a 10 µF capacitor and a 47 k-Ω resistor, what

should your cycles be?

6. If the measured voltage in a voltage divider with a photoresistor as shown in
Figure 7-10 is 2.3 volts, what is the value of the photoresistor?

Challenge!
1. Write a program that controls the voltage on 2 separate D/A converters that

maintain different voltage values.

2. Design and build the circuit for the program in Challenge 1. You will need to
make use of the second op-amp in the LM358. Refer to Figure 1-5 for the
schematic.

3. Program your dual output DAC to make the LED load on channel 1 get

gradually brighter as the LED on channel 2 gets gradually dimmer.

4. Write a program that tells you the measured resistance value of the photoresistor
from Figure 7-8. Hint: Apply the voltage divider equation and use the existing
DVM program. You will need to modify the Calc_Volts and Display
subroutines.

Chapter 7: Digital to Analog the Easy Way using PWM· Page 139

Why did I learn it?
Using a simple RC circuit with a buffer is an inexpensive and easy way to get 8-bit DAC.
It's also really easy to program, and the accuracy is much closer to that of a D/A
converter integrated circuit than it is to the accuracy of the resistive ladder network with
10% resistors.

There are many instances in which analog quantities will change the resistance of a
device. The voltage divider can be an effective way to track these changes in resistance.
The measured voltage at the output of a voltage divider can give us information, not only
about the resistance value, but about the analog quantity that causes the resistance value
to change.

How can I apply this?
The optics industry has many applications where the levels of light are controlled and
sensed. In the communications industry, fiber optic cables are used to send your phone
conversation across long distances. In the robotics industry, sensing light is an important
aspect of controlling the movement of the mechanical parts of the robot.

The application you're probably most familiar with is the remote control on your
television set. When you point the remote control at your television and press a button to
change the channel, that information is sent using light, which is received by a sensor on
the front of your TV.

Many industrial processes need to use feedback to sense the level of light and adjust it to
keep it in a particular range. In photography, many cameras depend on analog
measurements taken by a light meter. These measurements can in turn be used to control
the aperture of the shutter when taking a photograph. The aperture is how far the shutter
opens to let light into the camera. In the next chapter, we'll build a light meter.

Page 140 · Basic Analog and Digital

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 141

Chapter #8: Light Meter Gizmo with R/C Time
Constants

In this chapter, we'll be using concepts we learned in previous activities to develop a light
meter gizmo. Here is the list of gizmo specifications:

• The gizmo should beep every half-second.
• When the light level in the room gets brighter, the gizmo should beep at a higher

pitch.
• When the light level in the room gets dimmer, the gizmo should beep at a lower

pitch.

This experiment introduces a way of using a BASIC Stamp I/O pin to measure variable
resistance or capacitance. A number of sensors aside from the photoresistor vary in either
resistance or capacitance. A simple and straightforward way of measuring these
quantities can make interfacing with these sensors immensely easier.

In this experiment, we'll begin by building our gizmo, next we'll look more closely at the
measurement technique to see how it can be used to monitor variable resistance or
capacitance. Figure 8-1 shows a generic RC circuit that can be used to take RC time
constant measurements.

Vdd

Vss

P15
220 Ω

R

C

Figure 8-1
RC Circuit

For measuring
values of R or C

Page 142 · Basic Analog and Digital

In Chapter #7, the amount of time it takes a capacitor to charge in an RC circuit with a
step input was introduced. The same principle applies here. A step will be applied to the
circuit, and the amount of time it takes the capacitor to charge will be measured. Here's
how it works:

The BASIC Stamp must be programmed to set P15 (the I/O pin we'll be using) high for a
few milliseconds to let the voltage across the capacitor approach 0 volts. The reason the
voltage across the capacitor approaches 0 volts is because Vdd is 5 volts at the positive
terminal of the capacitor, and P15 is set to 5 volts at negative terminal. So, the voltage
across the capacitor is 5-5 volts = 0 volts.

As soon as the voltage across the capacitor is close enough to 0 volts, P15 is set to
function as an input. Immediately, the BASIC Stamp starts counting in 2 microsecond
increments. As soon as P15 becomes an input, it doesn't have an output voltage of 5 volts
any more. P15 behaves like an open circuit as far as the RC circuit is concerned.

All of the sudden, the circuit is different. It's a resistor and a capacitor in series. The
capacitor starts with no charge, but the circuit has 5 volts across it (Vdd – Vss), so the
capacitor starts to charge up. As the capacitor starts charging, the voltage at P15 starts
falling. The voltage at P15 will fall until it crosses the BASIC Stamp I/O pin threshold
voltage. It takes a certain amount of time for the voltage at P15 to decay from 5 volts, to
the 1.4 volt threshold voltage of P15.

The BASIC Stamp can be used to measure the amount of time it takes the output to drop
from 5 to 1.4 volts, and this measurement can be used to determine an unknown
capacitance or resistance.

The equation for the voltage at P15 is given by:

CR
t

dd15P eVV ×
−

×=

This equation is widely used in many fields, and it's called the exponential decay
equation. In our case, it's an equation of exponentially decaying voltage. Figure 8-2
shows the decay curves of three RC circuits that differ only in resistance. Each of the
voltage outputs takes a different amount of time to decay from 5 volts to 1.4 volts.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 143

Output
Voltage
(Volts)

Input
Voltage
(Volts)

0-0.01-0.02 0.01 0.02 0.03 0.04 0.05

0

1

3

4

2

5

0-0.01-0.02 0.01 0.02 0.03 0.04 0.05

V1 V2 V3

0

1

3

4

2

5 V R = 5 k1 1→ Ω
→ Ω
→ Ω

V R = 10 k
V R = 15 k
V = 1.4 V

2 2

3 3

t

Vt

 Time, (Seconds)

Figure 8-2
RC circuit
Responds…

…to a negative
step input for
three different
resistance
values. Note
how each output
takes a different
amount of time
to decay from 5
volts to 1.4
volts.

The difference in time it takes the three different circuit outputs to decay can be used to
determine a resistance value if the capacitance value stays the same. Likewise, if the
resistance is fixed but the capacitance varies, the capacitance can be determined by
measuring the time between the step input and the threshold voltage.

A PBASIC command called RCTIME can be used to make the BASIC Stamp determine
the amount of time it took the RC output to decay from 5 volts to 1.4 volts, which is the
value of t in the exponential decay equation. The value of t that gets measured is t1.4 Volts.
The value of t1.4 Volts is the amount of time it takes for the voltage at I/O pin P15 to fall
from 5 volts to 1.4 volts.

It turns out that the amount of time it takes for the voltage to decay is directly
proportional to R multiplied by C. R×C is called the RC time constant, and it is often
represented by the Greek letter tau “τ.”

At the instant the voltage at P15 reaches 1.4 volts, the input value at pin P15 goes from 1
to 0, and the BASIC Stamp stops counting 2 µs intervals.

Page 144 · Basic Analog and Digital

Parts Required
This experiment requires the following parts:

(1) 0.1 µF poly capacitor
(1) 1 µF electrolytic capacitors
(1) 10 µF electrolytic capacitor
(1) Piezoelectric speaker
(1) 220 Ω resistor
(1) Photoresistor

Build It
Build the circuit shown in Figure 8-3 Note that the resistor in the circuit on the left uses
the variable photoresistor. The circuit on the right is the circuit we used to play music in
Chapter #5.

Vdd

Vss

P15
220 Ω

1 µF

 Vss

P7

Figure 8-3
Ambient Light Meter
Circuit.

You will have to calibrate both your circuit and program due to varying light conditions.
Do not point the photoresistor directly at the sun. We'll use the slot in the center of the
breadboard as our light collector. Point the photoresistor at the slot as shown in Figure 8-
4.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 145

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

Figure 8-4
Placement of the Photoresistor

Face the photoresistor into the slot in
the middle of the breadboard. This
way the photoresistor will detect the
light reflected off the white
breadboard. This will make the
photoresistor less subject to wide
resistance swings that can happen
when the photoresistor is faced
directly at bright light sources.

The PBASIC instruction set has a command called RCTIME, which measures the amount
of time it takes a capacitor to discharge under the conditions just described. The format
of the RCTIME command is:

RCTIME Pin, State, Result

As usual, Pin refers to a BASIC Stamp I/O pin. Referring to Figure 8-1, we are using pin
P15. Now, what about State? We are measuring RC decay time, waiting for the logic to
transition from 1 to 0, so we will set it to 0. If we were measuring RC growth instead, the
State would be set to 0. The Result is a number of 2 microsecond time increments that the
BASIC Stamp counted during discharge. How does this work?

First I/O pin 15 must be set high, to charge the capacitor to 5 volts. When the BASIC
Stamp gets to the RCTIME command, it switches I/O pin 15 to input. The voltage starts to
drop as shown in Figure 8-2. The BASIC Stamp counts the number of 2 microsecond
increments between switching to input and the time the voltage at P15 crosses the 1.4 volt
logic threshold. The number of 2 microsecond increments then gets saved as the result
variable.

We'll use this segment of code in Program Listing 8.1 to measure the RC time. We will
first wait 100 ms with pin P15 high. This gives the capacitor enough time to charge up.

HIGH 15
PAUSE 100

Page 146 · Basic Analog and Digital

Then RCTIME takes care of the time measurement and data storage.
RCTIME 15, 1, light

Program It
Enter Program 8.1 in your BASIC Stamp Editor, and download to the BASIC Stamp.

' Basic Analog and Digital - PL8_1R0.bs2
' Program Listing 8.1 Revision 0.
' {$STAMP BS2}
' {$PBASIC 2.5}

light VAR Word
dischargeTime VAR Word
sound VAR Word

a CON 40

DO
 HIGH 15
 PAUSE 100
 RCTIME 15, 1, light

 dischargeTime = light * 2
 sound = (65535 - light) / a

 FREQOUT 7, 500, sound

 DEBUG HOME
 DEBUG "Discharge time = ", DEC5 dischargeTime, " u-seconds."
 DEBUG CR, CR, "Sound Frequency = ", DEC5 sound, " Hz."
 PAUSE 500
LOOP

The Output
The piezoelectric speaker should beep every half second or so. If you put your hand over
the circuit to shade it, the tone of the beep should get lower. If you face your breadboard
directly at a light in the room, the pitch should get higher. Figure 8-5 is a sample output
for a well-lit room.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 147

Figure 8-5
Sample Debug
Terminal Output in
a Well-lit Area with
no Direct Sun

Figure 8-6 shows a sample output with a book casting a shadow over the light meter. The
tone emitted by the speaker is audibly lower

Figure 8-6
Sample Debug
Terminal Output in
Shade

Page 148 · Basic Analog and Digital

Figure 8-7 shows the output under low light conditions.

Figure 8-7
Sample Debug
Terminal
Output for Low
Light

Figure 8-8 shows a sample of the output with the lights out. Overflow occurred. The
discharge time was more than 65,536 microseconds. As a result, the variable reset to zero
because the light variable also overflowed. Since both dischargeTime and light reset
to zero, the variable sound reached its maximum. This is because sound was
programmed as: sound = (65535 – light)/40. Light was reset to zero due to
overflow, so sound became (65535 -–0)/40 = 1638.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 149

Figure 8-8
Sample Debug
Terminal Output
in After
Somebody
Turned Out the
Lights

Under brighter light conditions, the resolution is poor. You can replace the 1 µF capacitor
with a 10 µF capacitor to increase the resolution at higher light levels. For full sun, some
kind of shade for the photoresistor would help. If you are dealing with low light
conditions, use a 0.1 µF capacitor instead.

The reason for using different capacitors is because the range of resistances for the
photoresistor varies for different ranges of light levels. Under lower lighting, the
photoresistor has a much higher range of resistance values than it does in a well-lit or full
sun area.

As discussed earlier, the discharge time depends on the RC time constant, R x C. If R
tends toward a relatively high range of resistances, using a smaller value of C will bring
the value of R multiplied by C back down. Likewise, if R is low, using a larger value of
C helps bring the value of RC back up.

Page 150 · Basic Analog and Digital

Do the Math
The RC time measurements along with the exponential decay equation can be a powerful
tool for determining an unknown resistance or capacitance.

CR
t

dd15P eVV ×
−

×=

Since we'll use PBASIC to make the BASIC Stamp tell us the measured amount of time,
t, we have the following information shown in Table 8-1

Table 8-1: Known Values at the Instant VP15 Crosses the
Threshold Voltage

Values Comments
Vdd = 5.0 volts The initial condition of the voltage at P15.

VP15 = 1.4 volts The final condition of the voltage at P15.

e ≈ 2.718 The value of e is a constant found in many
algebra books, physics texts, etc.

C = Can solve for If the value of resistance (R) is known, then the
capacitance (C) can be determined.

t = Known The BASIC Stamp counts the time for us in 2
microsecond increments.

R = Can solve for If the value of capacitance (C) is known, then
resistance (R) can be determined.

Algebra can be applied to the exponential decay equation to solve for R or C. First, take
the natural log of both sides of the equation. It eliminates the e term.

() () ()

CR
tVlnVlneVlnVln dd15P

CR
t

dd15P ×
−=⇒⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
×= ×

−

Rearranging terms yields:

() ()15Pdd VlnVln

CR
t

−=
×

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 151

Using properties of logarithms, this simplifies to:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

× 15P

dd

V
V

ln
CR

t

Rearranging again gives us an equality in terms of R and C and t:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×

15P

dd

V
V

ln

tCR

If R is the unknown value, divide both sides by C. If C is the unknown value, divide both
sides by R. The resulting two equations are useful for determining an unknown R if C is
known, or visa versa.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=

15P

dd

15P

dd

V
V

lnR

tCor

V
V

lnC

tR

Try a few different resistor and capacitor combinations from the Analog and Digital Parts
Kit. Remember that capacitor values can vary as much as 20% from their nominal
(named) value. This will in turn cause error in your measured values. However, if a
resistor with a very low tolerance, such as 1% is available, the measurements of
capacitance can be pretty accurate. Once the capacitor has been calibrated, then it's
possible to take accurate resistance measurements with the RC circuit as well.

Page 152 · Basic Analog and Digital

What have I learned?
On the lines below, insert the appropriate words from the list on the left.

threshold

capacitance

capacitor

RC

exponential

discharge

Analog sensors that vary in resistance or capacitance are used to measure a
variety of physical quantities. An ______________ circuit can be used in
conjunction with a BASIC Stamp binary input pint to measure resistance
or capacitance.

The ______________ is charged to 5-volts, then it is allowed to discharge,
and the time it takes to get from 5-volts to the ______________ voltage of
a BASIC Stamp input pin is measured. The equation for ______________
decay can then be used to determine a value of resistance or capacitance if
the other quantity is known.

An RC circuit where the resistance varies can be calibrated to a certain
range of ______________ times by changing the value of the capacitor.
This method can be used because the resistance multiplied by the
______________ is logarithmically related to the rate of decay.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 153

Questions
1. Given the circuit in Figure 8.3, how long will it take to discharge if the value of

the photoresistor is 47 kΩ?

2. For the discharge time in Question 1, would you expect any of the variables in
Program Listing 8.1 to overflow? If so, which ones? Explain your answer.

3. If the light conditions are so low that none of the capacitors in the kit work any

more, a store-bought capacitor might be the answer. What values of capacitor
might you try to find? Explain your answer.

4. For better resolution in the higher end of the light level scale, you can also

reduce the value of a in Program 8.1. How would that affect your Debug
Terminal readout and the sound of the piezoelectric speaker?

Challenge!
1. Design a circuit which has two photoresistors that are monitored. Assume that

you will be displaying the light intensity information on the Debug Terminal,
and that you won't be using a piezoelectric speaker.

2. Program the BASIC Stamp to monitor the light level at both of the photoresistors

and display the information using the Debug Terminal.

3. Try holding different colored papers in front of the photoresistors; black and
white will work best. Write a program to distinguish which photoresistor senses
white and which sees black.

4. Make sure your program from Challenge #3 is not affected by the ambient light

level in the room. Hint: You will need to compare the RELATIVE intensities of
the light measured by both photoresistors instead of comparing them to some
fixed number that was experimentally determined using a fixed value of ambient
light.

Page 154 · Basic Analog and Digital

Why did I learn it?
Pretty neat, huh? We used light for our input and sound was our output. We measured
light intensity and generated a particular tone based on that measured intensity.

This chapter illustrates how the concepts introduced in this series of experiments can be
mixed and matched to actually design an electronic device. It also demonstrates that
capacitors are not the exact value they are stated to be due to tolerances. You now know
how to calculate the capacitor value.

How can I apply this?
While learning all this, we've covered a number of circuit designs and a wide variety of
programming techniques. We've also gained some first hand experience with analog
phenomenon. We've also covered how to electronically interface, process, and in general,
do things with a digital device, the BASIC Stamp microcontroller. Below is a list of key
concepts that we've worked with in these experiments.

Chapter #1: Serial and parallel data, and synchronous and asynchronous communication.
Chapter #2: The comparator, the buffer, and threshold voltage.
Chapter #3: Analog to digital conversion, voltage dividers, and normalized voltage

measurements.
Chapter #4: Digital to analog conversion, the resistive ladder network, and sound

frequency and volume.
Chapter #5: The oscilloscope and time varying signals.
Chapter #6: The 555 timer, frequency and measuring frequency signals.
Chapter #7: The optical couple and pulse width management for D/A conversion.
Chapter #8: Building an electronic gizmo - a light meter, and A/D conversion using RC

time constants.

These eight experiments provide a first exposure to analyzing a variety of analog
phenomenon, the basics of electric circuits, and the essentials of digitally processing
information about analog measurements using a digital electronic device.

If you are an electronics hobbyist, hopefully there were a few items to add to your bag of
electronic design tricks. If you are a high school or college student continuing on to an
electrical technical or engineering field, you will undoubtedly revisit many of the
concepts covered here in much grater detail.

Chapter 8: Light Meter Gizmo with R/C Time Constants Page 155

Many of the parts used in this series of experiment are very basic and inexpensive.
Applications kits and a myriad of components are available that can be used to add a new
level of functionality to the BASIC Stamp. Some examples of these are digital keypads,
liquid crystal displays and servo motors.

If you have completed this series of experiments as well as the What’s a
Microcontroller? series, connecting the parts from each will be a relatively simple matter.
In addition, imagine what you can design and build using a digital keypad, a liquid
crystal display, and the analog interface concepts learned. A few examples: build an
interface for a factory automation process, a temperature and altitude sensor for your
rocket system, or a weather monitoring station. Good luck!

Page 156 · Basic Analog and Digital

 Appendix A: Parts Listing and Sources Page 157

Appendix A: Parts Listing and Sources

To use this kit you need:

• A PC running Windows 2K/XP/Vista with the BASIC Stamp Editor v2.4 or
higher installed.

• A BASIC Stamp 2 module on a prototyping platform with a programming cable
to connect it to your PC. Popular and convenient kit options include:

o The Board of Education Full Kit (#28103 serial, or #28803 USB)
o BASIC Stamp HomeWork Board (available in the BASIC Stamp

Activity Kit (#90005)
• The Basic Analog and Digital Parts & Text Kit or Parts Kit.

Board of Education Full Kit – Serial (#28103)

Part # Description Quantity
28150 Board of Education - Serial 1
800-00016 Jumper wires 10
BS2-IC BASIC Stamp 2 module 1
800-00003 Serial programming cable 1

Board of Education Full Kit – USB (#28803)
Parallax Part # Description Quantity
28850 Board of Education - USB 1
800-00016 Jumper wires 10
BS2-IC BASIC Stamp 2 module 1
800-00006 USB A to Mini B programming cable 1

BASIC Stamp Activity Kit (#90005)
Parallax Part # Description Quantity

- BASIC Stamp HomeWork Board 1

800-00016 What’s a Microcontroller? Parts &
Text Kit 1

800-00003 Serial cable 1

Page 158 · Basic Analog and Digital

The Basic Analog and Digital experiments require the Analog and Digital
Parts Kit (#28128)
The content of the Basic Analog and Digital Parts Kit is listed below. These replacement
parts are available from Parallax but may also be sourced from common electronic
suppliers. In an effort to provide the best quality and most up-to-date products for our
customers, you may find that some of the actual parts received with this kit may differ
from those listed in the table.

Basic Analog and Digital Parts and Text Kit (#28155)
Parts Only (#28128) Text only (#28129)

Parallax Code# Description Quantity
150-01011 100 Ω resistors 5% 4
150-01020 1 kΩ resistors 5% 8
150-01030 10 kΩ resistors 5% 3
150-02020 2 kΩ resistors 5% 10
150-02210 220 Ω resistors 5% 2
150-02710 270 Ω resistors 5% 2
150-04710 470 Ω resistors 5% 4
152-01031 10 kΩ potentiometer 2
200-01040 0.1 µF mono-radial capacitor 1
201-01050 1.0 µF electrolytic capacitor 1
201-01062 10.0 µF electrolytic capacitor 1
201-01070 100 µF electrolytic capacitor 1
350-00006 LED, red 3
350-00007 LED, yellow 1
350-00009 photo resistor 2
400-00002 tact switch 2
602-00015 LM 358 Op-amp IC 1
604-00009 555 timer IC 1
800-00016 3" jumper wires (bag of 10) 2
900-00001 piezo speaker 2
ADCO831 ADC 0831 8-bit A/D converter 1

 Appendix B: Resistor Color Code Page 159

Appendix B: Resistor Color Code

Resistor Color Code
Most common types of resistors have colored bands that indicate their value. The
resistors that we’re using in this series of experiments are typically “1/4 watt, carbon
film, with a 5% tolerance”. If you look closely at the sequence of bands you’ll notice that
one of the bands (on an end) is gold. This is band #4, & the gold color designates that it
has a 5% tolerance.

The resistor color code is an industry standard in recognizing the value of resistance of a
resistor. Each color band represents a number and the order of the color band will
represent a number value. The first two color bands indicate a number. The third color
band indicates the multiplier or in other words the number of zeros. The fourth band
indicates the tolerance of the resistor +/- 5, 10 or 20 %.

Color 1st Digit 2nd Digit Multiplier Tolerance
black 0 0 1
brown 1 1 10
red 2 2 100
orange 3 3 1,000
yellow 4 4 10,000
green 5 5 100,000
blue 6 6 1,000,000
violet 7 7 10,000,000
gray 8 8 100,000.000
white 9 9 1,000,000,000
gold 5%
silver 10%
no color 20%

Page 160 · Basic Analog and Digital

A resistor has the following color bands:

Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold

Looking at our chart above, we see that Red has a value of 2.

So we write: “2”.
Violet has a value of 7.
So we write: “27”

Yellow has a value of 4.
So we write: “27 and four zeros” or “270000”.

This resistor has a value of 270,000 Ωs (or 270 kΩs) & a tolerance of 5%.

 Index Page 161

Index

 - 5 -

555 timer, 107

 - A -

ADC0831, 41, 43
addressing, 76
aliasing, 113
analog, 1
analog to digital converter, 43
astable multivibrator, 108
asynchronous, 30

 - B -

BASIC Stamp Memory, 26
EEPROM, 26

RAM, 26

Bias, 44
binary numbers, 19, 28
binary to decimal convertion, 29
Board of Education, 6

 - C -

Capacitor
Polar – identifying terminals, 108

comparator, 7, 14
compiler directive, 10
continuous range, 41
Current/Amp, 4

 - D -

DEBUG, 10, 11, 22, 27, 53, 96
digital, 1
digital DC voltmeter, 41

Digital to analog conversion, 67
DO-LOOP, 11
DTMF, 103
duty cycle, 98, 128

 - E -

electrolytic capacitor, 107

 - F -

FOR-NEXT, 35
FREQOUT, 102, 103
frequency, 94

 - L -

LED, 3
LM358, 5

 - M -

MSBPOST, 50

 - N -

nibble, 77

 - O -

Ohm's Law, 4
operational amplifier, 5
operators, 26
oscilloscope, 89

 - P -

parallel, 30
parallel and serial transmission, 30
parallel plate capacitor, 123
period, 94
photoresistor, 127
piezoelectric speaker, 91

Page 162 · Basic Analog and Digital

potentiometer, 4
pulse train, 97
Pulse width, 98
pulse width modulated, 123
pulse with modulation, 100
pushbutton, 20
PWM, 128

 - R -

RC time constant, 141
RCTIME, 143, 145
Resistance/Ohm, 4
resistive ladder, 67
resistor, 3
resolution, 61

 - S -

serial, 30
SHIFTIN, 50
sine wave, 100
Subroutine, 48
synchronous, 30

 - T -

threshold voltage, 14
triangle wave, 92

 - V -

voltage, 2
voltage follower, 81

 Index Page 163

The components in your BASIC Analog and Digital Parts Kit may look different than
those pictured here. Parts and quantities are subject to change without notice.

Мы молодая и активно развивающаяся компания в области поставок

электронных компонентов. Мы поставляем электронные компоненты

отечественного и импортного производства напрямую от производителей и с

крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем

комплексные и плановые поставки широчайшего спектра электронных

компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную

поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и

предпродажную проверку качества продукции. На все поставляемые продукты

мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на

предприятия военно-промышленного комплекса России , а также работаем в

рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система

менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный

ассортимент и индивидуальный подход к клиентам являются основой для

выстраивания долгосрочного и эффективного сотрудничества с предприятиями

радиоэлектронной промышленности, предприятиями ВПК и научно-

исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331

mailto:sales@st-electron.ru

