

DS1249Y/AB 2048k Nonvolatile SRAM

www.maxim-ic.com

FEATURES

- 10 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Unlimited write cycles
- Low-power CMOS operation
- Read and write access times of 70 ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Full \pm 10% V_{CC} operating range (DS1249Y)
- Optional ± 5% V_{CC} operating range (DS1249AB)
- Optional industrial temperature range of -40°C to +85°C, designated IND
- JEDEC standard 32-pin DIP package

PIN ASSIGNMENT

NC	1	32	V _{CC}
A16	2	31	A15
A14	3	30	A17
A12	4	29	WE
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	OE
A2	10	23	<u>A10</u>
A1	11	22	CE
A0	12	21	DQ7
DQ0	13	20	DQ6
DQ1	14	19	DQ5
DQ2	15	18	DQ4
GND	16	17	DQ3

32-Pin ENCAPSULATED PACKAGE 740-mil EXTENDED

PIN DESCRIPTION

A0 - A17	- Address Inputs
DQ0 - DQ7	- Data In/Data Out
CE	- Chip Enable
WE	- Write Enable
ŌĒ	- Output Enable
V _{CC}	- Power (+5V)
GND	- Ground
NC	- No Connect

DESCRIPTION

The DS1249 2048k Nonvolatile SRAMs are 2,097,152-bit, fully static, nonvolatile SRAMs organized as 262,144 words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry which constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. There is no limit on the number of write cycles which can be executed and no additional support circuitry is required for microprocessor interfacing.

READ MODE

The DS1249 devices execute a read cycle whenever \overline{WE} (Write Enable) is inactive (high) and \overline{CE} (Chip Enable) and \overline{OE} (Output Enable) are active (low). The unique address specified by the 18 address inputs (A₀ - A₁₇) defines which of the 262,144 bytes of data is accessed. Valid data will be available to the eight data output drivers within t_{ACC} (Access Time) after the last address input signal is stable, providing that \overline{CE} and \overline{OE} access times are also satisfied. If \overline{OE} and \overline{CE} access times are not satisfied, then data access must be measured from the later-occurring signal (\overline{CE} or \overline{OE}) and the limiting parameter is either t_{CO} for \overline{CE} or t_{OE} for \overline{OE} rather than t_{ACC}.

WRITE MODE

The DS1249 executes a write cycle whenever the \overline{WE} and \overline{CE} signals are active (low) after address inputs are stable. The later-occurring falling edge of \overline{CE} or WE will determine the start of the write cycle. The write cycle is terminated by the earlier rising edge of \overline{CE} or \overline{WE} . All address inputs must be kept valid throughout the write cycle. \overline{WE} must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The \overline{OE} control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled (\overline{CE} and \overline{OE} active) then \overline{WE} will disable the outputs in t_{ODW} from its falling edge.

DATA RETENTION MODE

The DS1249AB provides full functional capability for V_{CC} greater than 4.75 volts and write protects by 4.5 volts. The DS1249Y provides full-functional capability for V_{CC} greater than 4.5 volts and write protects by 4.25 volts. Data is maintained in the absence of V_{CC} without any additional support circuitry. The nonvolatile static RAMs constantly monitor V_{CC} . Should the supply voltage decay, the NV SRAMs automatically write protects themselves, all inputs become "don't care," and all outputs become high impedance. As V_{CC} falls below approximately 3.0 volts, a power switching circuit connects the lithium energy source to RAM to retain data. During power-up, when V_{CC} rises above approximately 3.0 volts, the power switching circuit connects external V_{CC} to the RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 4.75 volts for the DS1249AB and 4.5 volts for the DS1249Y.

FRESHNESS SEAL

Each DS1249 device is shipped from Maxim with its lithium energy source disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP} , the lithium energy source is enabled for battery backup operation.

-0.3V to +6.0V

 0° C to $+70^{\circ}$ C

-40°C to +85°C -40°C to +85°C

+260°C

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relative to Ground Operating Temperature Range Commercial: Industrial: Storage Temperature Range Lead Temperature (soldering, 10s) **Note:** EDIP is wave or hand soldered only.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS				(T _A : See Note 10)		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
DS1249AB Power Supply Voltage	V _{CC}	4.75	5.0	5.25	V	
DS1249Y Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V	
Logic 1	V _{IH}	2.2		V _{CC}	V	
Logic 0	V _{IL}	0.0		0.8	V	

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\% \text{ for } DS1249AB)$

	$(T_A: See Note 10) (V_{CC} = 5V \pm 10\% \text{ for DS1249Y})$					
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	I _{IL}	-2.0		+2.0	μΑ	
I/O Leakage Current $\overline{CE} \ge V_{IH} \le V_{CC}$	I _{IO}	-2.0		+2.0	μA	
Output Current @ 2.4V	I _{OH}	-1.0			mA	
Output Current @ 0.4V	I _{OL}	2.0			mA	
Standby Current $\overline{CE} = 2.2V$	I _{CCS1}		1.0	1.5	mA	
Standby Current $\overline{CE} = V_{CC} - 0.5V$	I _{CCS2}		100	150	μΑ	
Operating Current	I _{CCO1}			85	mA	
Write Protection Voltage (DS1249AB)	V _{TP}	4.50	4.62	4.75	V	
Write Protection Voltage (DS1249Y)	V _{TP}	4.25	4.37	4.5	V	

CAPACITANCE

 $(T_{A} = +25^{\circ}C)$

					120 0)	
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		10	20	pF	
Input/Output Capacitance	C _{I/O}		10	20	pF	

AC ELECTRICAL CHARACTERISTICS $(V_{CC} = 5V \pm 5\% \text{ for DS1249AB})$							
	(T _A : S	ee Note 10	V) (V _{CC} = 5V	±10% for	DS1249Y)		
		DS124					
PARAMETER	SYMBOL	DS12	49Y-70	UNITS	NOTES		
		MIN	MAX				
Read Cycle Time	t _{RC}	70		ns			
Access Time	t _{ACC}		70	ns			
OE to Output Valid	t _{OE}		35	ns			
\overline{CE} to Output Valid	t _{CO}		70	ns			
$\overline{\text{OE}}$ or $\overline{\text{CE}}$ to Output Active	t _{COE}	5		ns	5		
Output High-Z from Deselection	t _{OD}		25	ns	5		
Output Hold from Address Change	t _{OH}	5		ns			
Write Cycle Time	t _{WC}	70		ns			
Write Pulse Width	t _{WP}	55		ns	3		
Address Setup Time	t_{AW}	0		ns			
Write Recovery Time	t _{WR1}	5		ns	12		
Write Recovery Time	t _{WR2}	15		ns	13		
Output High-Z from \overline{WE}	t _{ODW}		25	ns	5		
Output Active from \overline{WE}	t _{OEW}	5		ns	5		
Data Setup Time	t _{DS}	30		ns	4		
Data Hold Time	t _{DH1}	0		ns	12		
	t _{DH2}	10		ns	13		

READ CYCLE

WRITE CYCLE 1

SEE NOTES 2, 3, 4, 6, 7, 8, and 12

WRITE CYCLE 2

SEE NOTES 2, 3, 4, 6, 7, 8, and 13

POWER-DOWN/POWER-UP CONDITION

SEE NOTE 11

OWER-DOWN/POWER-UP TIMING				(T _A : See Note 10)		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
V_{CC} Fail Detect to \overline{CE} and \overline{WE} Inactive	t _{PD}			1.5	μs	11
V_{CC} slew from V_{TP} to $0V$	t _F	150			μs	
V_{CC} slew from 0V to V_{TP}	t _R	150			μs	
V_{CC} Valid to \overline{CE} and \overline{WE} Inactive	t _{PU}			2	ms	
V _{CC} Valid to End of Write Protection	t _{REC}			125	ms	

					(T _A =	= +25°C)
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Expected Data Retention Time	t _{DR}	10			years	9

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

- 1. $\overline{\text{WE}}$ is high for a Read Cycle.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of \overline{CE} and \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{WE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4. t_{DS} is measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. These parameters are sampled with a 5 pF load and are not 100% tested.
- 6. If the \overline{CE} low transition occurs simultaneously with or latter than the \overline{WE} low transition in Write Cycle 1, the output buffers remain in a high-impedance state during this period.
- 7. If the \overline{CE} high transition occurs prior to or simultaneously with the \overline{WE} high transition, the output buffers remain in high-impedance state during this period.
- 8. If \overline{WE} is low or the \overline{WE} low transition occurs prior to or simultaneously with the \overline{CE} low transition, the output buffers remain in a high-impedance state during this period.
- 9. Each DS1249 has a built-in switch that disconnects the lithium source until the user first applies V_{CC} . The expected t_{DR} is defined as accumulative time in the absence of V_{CC} starting from the time power is first applied by the user. This parameter is assured by component selection, process control, and design. It is not measured directly during production testing.
- All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to 70°C. For industrial products (IND), this range is -40°C to +85°C.
- 11. In a power-down condition the voltage on any pin may not exceed the voltage on V_{CC} .
- 12. t_{WR1} and t_{DH1} are measured from \overline{WE} going high.
- 13. t_{WR2} and t_{DH2} are measured from \overline{CE} going high.
- 14. DS1249 modules are recognized by Underwriters Laboratories (UL) under file E99151.

DC TEST CONDITIONS

Outputs Open Cycle = 200 ns for operating current All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: 100 pF + 1TTL Gate Input Pulse Levels: 0 - 3.0V Timing Measurement Reference Levels Input: 1.5V Output: 1.5V Input pulse Rise and Fall Times: 5 ns

ORDERING INFORMATION

PART	TEMP RANGE	SUPPLY TOLERANCE	PIN-PACKAGE	SPEED GRADE (ns)
DS1249AB-70#	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	32 740 EDIP	70
DS1249AB-70IND#	-40° C to $+85^{\circ}$ C	$5V \pm 5\%$	32 740 EDIP	70
DS1249Y-70#	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	32 740 EDIP	70
DS1249Y-70IND#	-40°C to +85°C	$5V \pm 10\%$	32 740 EDIP	70

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

PACKAGE INFORMATION

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
32 EDIP	MDT32#7	<u>21-0245</u>	—

REVISION HISTORY

REVISION DATE	DESCRIPTION	PAGES CHANGED
11/10	Updated the storage information, soldering temperature, and lead temperature information in the <i>Absolute Maximum Ratings</i> section; removed the -100 MIN/MAX information from the <i>AC Electrical</i> <i>Characteristics</i> table; updated the <i>Ordering Information</i> table (removed - 100 parts and leaded -70 parts); updated the <i>Package Information</i> table	1, 3, 4, 8

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331