(3.3 VOLT TIME SLOT INTERCHANGE DIGITAL SWITCH WITH RATE MATCHING 4,096 x 4,096

FEATURES:

- Up to 32 serial input and output streams
- Maximum $4,096 \times 4,096$ channel non-blocking switching
- Accepts data streams at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$
- Rate matching capability: Mux/Demux mode and Split mode
- Output Enable Indication Pins
- Per-channel Variable Delay mode for low-latency applications
- Per-channel Constant Delay mode for frame integrity applications
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCl serial streams
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high-impedance output control
- Per-channel Processor mode to allow microprocessor writes to TX streams
- Direct microprocessor access to all internal memories
- Memory block programming for quick setup
- IEEE-1149.1 (JTAG) Test Port
- Internal Loopback for testing
- Available in 144-pin Thin Quad Flatpack (TQFP) and 144-pin Ball Grid Array (BGA) packages
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- $3.3 \mathrm{~V} \mathrm{I/O}$ with 5 V tolerant inputs and TTL compatible outputs

DESCRIPTION:

The IDT72V71643 has a maximum non-blocking switch capacity of $4,096 \times 4,096$ channels with data rates at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$. With 32 inputs and 32 outputs, a variety of rate combinations is supported, under either Mux/Demux mode or Split mode, to allow for switching between streams of different data rates.

Outputenable indications are provided through optional pins (one pin per output stream, only 16 output streams can be used in this mode) to facilitate external data bus control.

For applications requiring 32 streams and 32 per-stream Output Enable indicators, there is also an All Output Enable Feature.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

BGA: 1 mm pitch, $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ (order code: BC, BCG) TOP VIEW

NOTES:

1. IC - Internal Connection, tie to Ground for normal operation.
2. All I/O pins are 5 V tolerant except for TMS, TDI and TRST.

PIN CONFIGURATIONS (CONTINUED)

TQFP: 0.50 mm pitch, $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ (order code: DA, DAG) TOP VIEW

NOTES:

1. IC - Internal Connection, tie to Ground for normal operation.
2. All I/O pins are 5 V tolerant except for TMS, TDI and TRST.

PIN DESCRIPTION

SYMBOL	NAME	I/O	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+3.3 Volt Power Supply.
TX0-15	TX Output 0 to 15 (Three-state Outputs)	0	Serial data output stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$.
$\begin{aligned} & \text { TX16-31/ } \\ & \text { OEIO-15 } \end{aligned}$	TX Output 16 to 31/ Output Enable Indication 0 to 15 (Three-state Outputs)	0	When all 32 output streams are selected via control register, these pins (TX16-31) are output streams 16 to 31 and may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$. When output enable indication function is selected, these pins (OEI 0-15) reflect the active or three-state status for the corresponding, (TX0-15) output streams.
RX0-31	RX Input 0 to 31	1	Serial data input stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$.
F $\overline{\mathrm{i}}$	Frame Pulse	1	This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\circledR}$ and GCl specifications.
FE/HCLK	Frame Evaluation/ HCLK Clock	I	When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK (4.096 MHZ clock) is required for frame alignment in the wide frame pulse (WFP) mode.
CLK	Clock	1	Serial clock for shifting data in/out on the serial streams (RX/TX 0-31).
TMS	Test Mode Select	1	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pull-up when not driven.
TDI	Test Serial Data In	1	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	Test Serial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TCK	Test Clock	1	Provides the clock to the JTAG test logic.
TRST	Test Reset	1	Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-reset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the IDT72V71643 is in the normal functional mode.
$\overline{\text { RESET }}$	Device Reset	1	This input (active LOW) puts the IDT72V71643 in its reset state that clears the device internal counters, registers and brings TXO-31 and microport data outputs to a high-impedance state. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device. After reset state, $\overline{\text { RESET }}$ must be held HIGH for minimum 100ns before beginning operation.
WFPS	Wide Frame Pulse Select	1	When 1, enables the wide frame pulse (WFP) Frame Alignment interface. When 0 , the device operates in ST-BUS ${ }^{\circledR} / \mathrm{GCl}$ mode.
$\overline{\text { DS }}$	Data Strobe	1	This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations.
R/W	Read/Write	1	This input controls the direction of the data bus lines during a microprocessor access.
$\overline{\mathrm{CS}}$	Chip Select	I	Active LOW input used by a microprocessor to activate the microprocessor port of IDT72V71643.
A0-14	Address Bus 0 to 14	1	These pins allow direct access to Connection Memory, Data Memory and internal control registers.
D0-15	Data Bus 0-15	I/O	These pins are the data bits of the microprocessor port.
$\overline{\text { DTA }}$	Data Transfer Acknowledgment	0	This active LOW signal indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
ODE	Output Drive Enable	I	This is the output enable control for the TXO-31 serial outputs. When ODE input is LOW and the OSB bit of the IMS register is LOW, TXO-31 are in a high-impedance state. If this input is HIGH, the TXO-31 output drivers are enabled. However, each channel may still be put into a high-impedance state by using the per channel control bit in the Connection Memory.

DESCRIPTION (CONTINUED)

The IDT72V71643 is capable of switching up to $4,096 \times 4,096$ channels withoutblocking. Designed to switch 64 Kbit/s PCM or Nx64 Kbit/s data, the device maintains frame integrity in data applications and minimizesthroughput delay for voice applications on a per channel basis.

The serial input streams ($\mathrm{RX)}$ and serial output streams (TX) of the IDT72V71643 can be runup to $16.384 \mathrm{Mb} /$ s allowing 256 channels per $125 \mu \mathrm{~s}$ frame. Depending on the input and output data rates the device can support up to 32 serial streams.

With two main operating modes, Processor mode and Connection Mode, the IDT72V71643 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessor (Connection Memory). As control and statusinformationiscritical indatatransmission, the Processormode is especially useful whenthere are multiple devices sharing the inputand output streams.

Withthreemain configurationmodes, Regular, Mux/Demux, and Splitmode the IDT72V71643 is designed to work in a mixed data-rate environment. In Mux/Demux mode, all of the inputstreams work at one data rate and the output streams atanother. Depending on the configuration, moreorless serial streams will be available on the inputs or outputs to maintain a non-blocking switch. In SplitMode, half of the input streams are set at one rate, while the other half are setto another rate. Inthis mode, bothinputand outputstreams are symmetrical.

With data coming from multiple sources and through different paths, data entering the device is often delayed. To handlethis problem, the IDT72V71643 has a frameevaluation feature to allowindividual streams to be offset from the frame pulse in halfclock-cycle intervals up to +4.5 clock cycles for speeds up to $8 \mathrm{Mb} / \mathrm{s}$ or +2.5 clock cycles for $16 \mathrm{Mb} / \mathrm{s}$. (See Table 8 for maximum allowable skew).

The IDT72V71643 also provides a JTAG test access port, an internal loopback feature, memory block programming, a simple microprocessor interface and automatic ST-BUS ${ }^{\circledR} / \mathrm{GCl}$ sensing to shorten setup time, aid in debugging and ease use of the device without sacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATA AND CONNECTION MEMORY

All data that comes in through the RX inputs go through a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse (FOi) is used to mark the 125μ s frame boundaries and to sequentially address the inputchannels in Data Memory. The Data Memory is only written by the device from the RX streams and can be read from either the TX streams or the microprocessor.

DataoutputontheTX streamsmay comefromeithertheSerial InputStreams (DataMemory) or from the microprocessor (Connection Memory). In the case that RXinputdataisto beoutput, the addresses inConnectionMemory areused to specify a stream and channel of the input. TheConnectionMemory is setup in such a way that each location corresponds to an output channel for each particular stream. Inthatway, morethan one channel canoutputthe samedata. InProcessormode, the microprocessor writes datatotheConnection Memory locations corresponding tothestream and channel thatis to beoutput. The lower byte (8 leastsignificantbits) of the Connection Memory is outputevery frame until the microprocessor changesthe dataor mode ofthe channel. By using this Processor mode capability, the microprocessor can access input and output time-slots on a per channel basis.

The mostsignificantbits of the Connection Memory are used to control per channelfunctionssuch as Processormode, ConstantorVariable Delay mode, three-state of output drivers, and the Loopback function.

OPERATING MODES

In addition to Regular mode where input and outputstreams are operating atthe same rate, the IDT72V71643 incorporates arate matching function intwo differentmodes: Splitmode and Mux/Demux mode. InSplitmode some of the inputstreams are setatone rate, whileothers are setto another rate. Bothinput and outputstreams are symmetrical. InMux/Demux mode, all inputstreams are operating atthe same rate, while outputstreams are operating at adifferent rate. All configurations are non-blocking. These two modes can be entered by setting the DR3-0 bits in the Control Register, see Table 5.

OUTPUTIMPEDANCECONTROL

In order to putall streams in three-state, all per-channel three-state control bits inthe Connection Memory are set(MODO andMOD1=1) orboththeODE pin and the OSB bit of the Control Register must be zero. If any combination other than $0-0$, for the ODE pin and the OSB bit, is used, the three-state control ofthestreams will belefttothestateoftheMOD1 andMODObits oftheConnection Memory. The IDT72V71643 incorporates a memory block programming feature to facilitate three-state control after reset. See Table 1 for OutputHighImpedanceControl.

SERIAL DATA INTERFACE TIMING

When a $16 \mathrm{Mb} /$ s serial data rate is required, the master clock frequency will be running at 16.384 MHz resulting in a single-bit per clock. For all other cases, $2 \mathrm{Mb} / \mathrm{s}, 4 \mathrm{Mb} / \mathrm{s}$, and $8 \mathrm{Mb} / \mathrm{s}$, the master clock frequency will be twice the fastest data rate on the serial streams. Use Table 5to determine clock speed and DR3-0 bits inthe Control Register to setupthe device. The IDT72V71643 provides two different interface timing modes, ST-BUS® or GCI. The IDT72V71643 automatically detects the presence of an inputframe pulse and identifies it as either ST-BUS ${ }^{\circledR}$ or GCI.

In ST-BUS ${ }^{\circledR}$, when running at 16.384 MHz , data is clocked out on the falling edge and is clocked in on the subsquent rising-edge. At all other data rates, there are two clock cycles per bit and every second falling edge of the master clockmarks abitboundary and the dataisclocked in on the rising edge of CLK, three quarters of the way into the bit cell. See Figure 17 for timing.

In GCI format, when running at 16.384 MHz , data is clocked out on the rising edge and is clocked in on the subsquent falling edge. At all other data rates, there are two clock cycles per bit and every second rising edge of the master clock marks the bitboundary and datais clocked in on the falling edge of CLK at three quarters of the way into the bit cell. See Figure 18 for timing.

INPUT FRAME OFFSET SELECTION

Inputframe offsetselection allows the channel alignment of individual input streamstobe offsetwithrespecttotheoutputstreamchannelalignment(i.e. F0i). Although input data is synchronous, delays can be caused by variable path serial backplanes and variable pathlengths, whichmay beimplemented inlarge centralized and distributed switching systems. Because datais often delayed this feature is useful in compensating for the skew between clocks.

Each inputstream can have its owndelay offset value by programming the frame inputoffsetregisters(FOR, Table 7). The frame offsetshownis afunction ofthe datarate, and canbe as large as +4.5 masterclock (CLK) periodsforward with a resolution of $1 / 2$ clock period. To determine the maximum offsetallowed see Table 8.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V71643 provides the frame evaluation (FE) inputto determine different datainputdelays with respect to the frame pulse FOi. Setting the start frameevaluation(SFE) bitlowfor atleastoneframe starts ameasurementcycle.

When the SFE bit in the Control Register is changed from low to high, the evaluationstarts. Two frames later, the complete frame evaluation(CFE) bit of theframealignmentregister (FAR)changes from lowtohighto signal that avalid offsetmeasurementis ready to be read frombits 0 to 11 oftheFAR register. The SFE bit must be setto zero before a new measurement cycle is started.

InST-BUS ${ }^{\circledR}$ mode, the falling edge of the frame measurementsignal (FE) is evaluatedagainst the fallingedge oftheST-BUS ${ }^{\circledR}$ frame pulse. InGCImode, the risingedge ofFEis evaluated againstthe risingedge ofthe GCI framepulse. See Table 6 and Figure 6 for the description of the frame alignment register.

MEMORY BLOCK PROGRAMMING

The IDT72V71643 provides users with the capability of initializing theentire ConnectionMemory blockintwoframes. Tosetbits15to13ofevery Connection Memory location, first program the desired pattern in bits 9 to 7 of the Control Register.

Setting the memory block program (MBP) bit of the control register high enables the block programming mode. When the block programming enable (BPE)bit of the Control Register is setto high, the block programming data will beloaded into the bits 15 to 13 of every ConnectionMemorylocation. The other ConnectionMemory bits (bit12 to bit0) areloadedwithzeros. Whenthememory block programming is complete, the device resets the BPE bit to zero.

LOOPBACKCONTROL

Theloopback control (LPBK) bitofeachConnectionMemory locationallows the TX output datato belooped backed internally to the RXinputfor diagnostic purposes.

Ifthe LPBK bitis high, the associated TX output channel data is internally looped back to the RX inputchannel (i.e., data from TXn channel m routes to the RXn channel m internally); if the LPBK bit is low, the loopback feature is disabled. For proper per-channel loopback operation, the contents of frame delay offsetregistersmustbe settozeroand the device mustbein regularswitch mode (DR3-0 $=0 \times 0,0 \times 1$ or 0×2).

DELAY THROUGHTHE IDT72V71643

The switching of information fromtheinputserial streams tothe outputserial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctionswith differentthroughputdelay capabilities on aper-channel basis. For voice applications, Variable throughputdelay is bestasitensures minimum delay between input and outputdata. In wideband dataapplications, Constantthroughputdelay is bestasthe frame integrity of the information is maintained through the switch.

The delay through the device varies according to the type of throughput delay selected in the MOD1 and MODO bits of the Connection Memory.

VARIABLE DELAY MODE (MOD1-0 = 0x0)

Inthis mode, the delay is dependent only on the combination of source and destination serial stream speed. Although the minimum delay achievable is dependent on the input and output serial stream speed, if data is switched out +3 channels ofthe slowestdatarate, the datawill be switched out inthe same frame exceptifthe input and output data rates are both $16 \mathrm{Mb} / \mathrm{s}(\mathrm{DR} 3-0=0 \times 3)$. (See Figure 2 for example).

For example, given the input data rate is $2 \mathrm{Mb} /$ s and the output data rate is $8 \mathrm{Mb} / \mathrm{s}$, inputchannel CH 0 can be switch out by outputchannel CH 12 . In the above example the inputstreams are slower than the outputstreams. Also, for every $2 \mathrm{Mb} /$ stimeslotthere arefour $8 \mathrm{Mb} /$ stimeslots, thusathree $2 \mathrm{Mb} /$ schannel
delay equatesto12 outputchanneltime slots. See Figure 2 forthis example and otherexamples of minimum delay toguaranteetransmission inthe same frame.

CONSTANT DELAY MODE (MOD1-0 = 0x1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple Data Memory buffer. Inputchannel data is written into the Data Memory buffers during frame n will be read out during frame $n+2$. Figure 1 shows examples of Constant Delay mode.

MICROPROCESSOR INTERFACE

The IDT72V71643's microprocessor interface looks like astandard RAM interface to improve integration into a system. With a15-bitaddress bus anda 16-bitdatabus, read and writes are mapped directly into Data and Connection memories and require only one Master Clock cycle to access. By allowing the internal memories to be randomly accessed in one cycle, the controlling microprocessor has more time to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths.

Table 2 shows the mapping of the addresses into internal memory blocks, Table 3 shows the Control Register information and Figure 13 and Figure 14 shows asynchronous and synchronous microprocessor accesses.

MEMORY MAPPING

The address bus on the microprocessor interface selects the internal registers andmemories oftheIDT72V71643. The two mostsignificantbits ofthe address selectbetweenthe registers, DataMemory, and Connection Memory. IfA14 and A13 areHIGH, A12-A0 are usedto address the Data Memory (Read Only), where dataoutput is read from the 8leastsignificantbits on the databus. If A14 is HIGH and A13 is LOW, A12-A0 are used to address Connection Memory (Read/Write). IfA14isLOW andA13isHIGHA12-A9 are usedtoselect theControl Register, Frame Alignment Register, and Frame Offset Registers. See Table 2 for mappings.

CONTROL REGISTER

As explained inthe Serial Data Interface Timing and Switching Configurations sections, after system power-up, the Control Register should be programmed immediately to establishthe desired switching configuration.

The dataintheControl Registerconsists ofthe Memory Block Programming bit(MBP), the Block Programming Data (BPD) bits, the Begin Block Programming Enable(BPE), the OutputStand By (OSB), StartFrameEvaluation(SFE), and Data Rate Select bits (DR 3-0). As explained in the Memory Block Programmingsection, theBPEbeginsthe programming iftheMBP bitisenabled. This allows the entire Connection Memory block to be programmed with the BlockProgramming Databits.

CONNECTION MEMORY CONTROL

Ifthe ODE pin or the OSB bit is high, the MOD1-0 bits of each Connection Memory location controls the output drivers. See Table 1 for detail. The Processor Channel (PC) mode is entered by a 1-0 of the MOD1-0 of the ConnectionMemory. InProcessor Channel Mode, this allows the microprocessor to access TX output channels. Once the MOD1-0 bits are set, the lower 8 bits of the Connection Memory will be output on the TX serial streams. Also controlled in the Connection Memory is the Variable Delay mode or Constant Delay mode. Each Connection Memory location allows the per-channel selection between Variable and Constant throughput Delay modes and Processormode.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX inputchannel (i.e., RXnchannelm datacomes from the TXn channel m). If the LPBK bit is low, the loopback feature is disabled. For proper per-channelloopback operation, the contents of the frame delay offset registers must be set to zero and the device must be in regular switch mode (DR3-0 $=0 \times 0,0 \times 1$ or 0×2).

OUTPUT ENABLE INDICATION

TheIDT72V71643hasthe capabilitytoindicatethe state oftheoutputs(active or three-state) by enabling the Output Enable Indication (OEI) in the control register. IntheOEI modehowever, only halfofthe outputstreams are available. If this same capability is desired with all 32 streams, this can be accomplished by usingtwoIDT72V71643devices. Inonedevice, the All OutputEnable(AOE) bitis settoa one while in the otherthe AOE is settozero. Inthisway, one device
acts as the switch and the other as a three-state control device. See Figure 8. It is important to note if the TSI device is programmed for AOE and the OEl is also set, the device will be in the AOE mode not OEI.

INITIALIZATION OF THE IDT72V71643

After power up, the IDT72V71643should be reset. During reset, the internal registers are putintotheir defaultstate and all TX outputs areputintothree-state. After resethowever, the state of Connection Memory is unknown. As such, the outputsshould be putinhigh-impedanceby holdingtheODElow. WhiletheODE is low, the microprocessor can initialize the device, program the active paths, and disable unused outputs by programming the OEbitinConnectionMemory. Once the device is configured, the ODE pin (or OSB bit depending on initialization) can be switched.

TABLE 1 -OUTPUT HIGH-IMPEDANCE CONTROL

MOD1-0 BITS IN CONNECTION MEMORY	ODE PIN	OSB BIT IN CONTROL REGISTER	OUTPUT DRIVER STATUS
1and 1	Don'tCare	Don'tCare	PerChannelHigh-Impedance
Don'tCare	0	0	High-Impedance
Any, other than 1 and 1	0	1	Enable
Any, other than 1 and 1	1	0	Enable
Any, other than 1 and 1	1	1	Enable

TABLE 2 - INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	RW	Location
1	1	STA4	STA3	STA2	STA1	STA0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R	DataMemory
1	0	STA4	STA3	STA2	STA1	STA0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R/W	ConnectionMemory
0	1	0	0	0	0	x	x	x	x	x	x	x	x	x	R / W	ControlRegister
0	1	0	0	0	1	x	x	x	x	x	x	x	x	x	R	FrameAlignRegister
0	1	0	0	1	0	x	x	x	x	x	x	x	x	x	R / W	FOR0
0	1	0	0	1	1	x	x	x	x	x	x	x	x	x	R / W	FOR1
0	1	0	1	0	0	x	x	x	x	x	x	x	x	x	R / W	FOR2
0	1	0	1	0	1	x	x	x	x	x	x	x	x	x	R / W	FOR3
0	1	0	1	1	0	x	x	x	x	x	x	x	x	x	R / W	FOR4
0	1	0	1	1	1	x	x	x	x	x	x	x	x	x	R / W	FOR5
0	1	1	0	0	0	x	x	x	x	x	x	x	x	x	R / W	FOR6
0	1	1	0	0	1	x	x	x	x	x	x	x	x	x	R/W	FOR7

NOTES:

1. Timeslot $\mathrm{Q}-2$ Frames - minimum delay.
2. Timeslot $A-3$ Frames - 1 output channel period - maximum delay.

Figure 1. Constant Delay Mode Examples

DR3-0 $=3 H^{(3,4)} \quad 16 \mathrm{Mb} / \mathrm{s} \rightarrow 16 \mathrm{Mb} / \mathrm{s}$

RX $16 \mathrm{Mb} / \mathrm{s}$| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TX $16 \mathrm{Mb} / \mathrm{s}$

						A	B	B	B	A							

NOTES:

1. If data is switched at least +3 channel periods of the slower data rate, the data will transmit out in the same frame except if the input and output data rates are both $16 \mathrm{Mb} / \mathrm{s}$ (DR3-0 = 0x3).
2. Delay is a function of input channel and output channel combinations, and input and output stream data rate.
3. See switching mode table for input and output speed combinations.
4. When the input and output data rates are both $16 \mathrm{Mb} / \mathrm{s}$, the minimum delay achievable is 6 time slots.

Figure 2. Variable Delay Mode Examples

TABLE 3 - CONTROL REGISTER (CR) BITS

ResetValue:			4000н.												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SRS	OEI	OEP	AOE	MBP	0	BPD2	BPD1	BPDO	BPE	OSB	SFE	DR3	DR2	DR1	DR0

Bit	Name	Description
15	Reset(Software Reset)	A one will reset the device and have the same effect as of the RESET pin. Must be zero for normal operation. Before beginning operation, this bit mustbe held zero for minimum 100ns.
14	OEI (OutputEnable Indication)	When1,TX16-31/OEIO-15 will behave as OEIO-15. These outputs will reflect the active or high-impedance state ofthe corresponding output datastreams TX0-15. When 0, TX16-31/OEIO-15 will behave as TX16-31 and react in the same way as TX0-15.
13	OEPOL (OutputEnable Polarity)	When 1, a one on OEI pin denotes an active state on the output data stream; zero on OEI pin denotes high-impedance state. When 0 , a one denotes high-impedance and azero denotes an active state.
12	AOE	When 1, TX0-31 will behave as OEIO-31 accordingly. These outputs will reflect the active or high-impedance state of the corresponding outputdatastreams(TX0-31)in another IDT72V71643ifprogrammedidentically.
11	MBP (Memory Block Program)	When 1, the Connection Memory block programming feature is ready for the programming of Connection Memory high bits, bit 13 to bit 15 . When 0 , this feature is disabled.
10	Unused	Mustbe zero for normal operation.
9-7	BPD2-0 (BlockProgramming Data)	These bits carry the value to be loaded into the Connection Memory block whenever the memory block programming feature is activated. After the MBP bit in the control register is set to 1 and the BPE bit is set to 1 , the contents of the bits BPD2-0 are loaded into bit 15 and 13 of the Connection Memory. Bit 12 to bit 0 of the Connection Memory are setto 0 .
6	BPE (Begin Block Programming Enable)	Azero to one transition of this bitenables the memory block programming function. The BPE and BPD2-0 bits in the CR register have to be defined in the same write operation. Once the BPE bit is set HIGH, the device requires two frames to complete the block programming. After the programming functionhas finished, the BPE bit returns tozero to indicate the operation is completed. When the $B P E=1$, the other bit in the control register must notbe changed for two frames to ensure proper operation.
5	OSB (OutputStand By)	When ODE $=0$ and $O S B=0$, the output drivers oftransmitserial streams are in high-impedance mode. When ODE=1 or OSB $=1$, Connection Memory Mod 1-0 $\neq 1$ and 1 , the output serial stream drivers function normally. When both Connection Memory Mod $1-0=1$ and 1, the output drivers of the transmit serial streams are in high impedance mode. Please refer to Table 1.
4	SFE (StartFrame Evaluation)	Azero to one transition in this bit starts the frame evaluation procedure. When the CFE bitin the FAR register changes from zero to one, the evaluation procedure stops. To start anotherframe evaluation cycle, setthis bitto zero for atleastone frame.
3-0	DR3-0	Input/Outputdatarate selection. See Table 5for detailed programming.

TABLE 4 - CONNECTION MEMORY BITS

TABLE 5 - SWITCH MODES

Switching Mode	Control Bits				DataRate bits/s		Clock Rate MHz
	DR3	DR2	DR1	DR0	Receive Streams	TransmitStreams	
Regular	0	0	0	0	2 M on RX0-31	$2 \mathrm{M} \mathrm{on} \mathrm{TXO-31}$	4
	0	0	0	1	4 M on RX0-31	4 M on TX0-31	8
	0	0	1	0	8 M on RX0-31	8 M on TXO-31	16
	0	0	1	1	16 M on RXO-15	16 M on TX0-15	16
Mux/Demux	0	1	0	0	2 M on RX0-31	8 M on TXO-7	16
	0	1	0	1	8 M on RX0-7	2 M on TX0-31	16
	0	1	1	0	4M on RX0-31	8 M on TX0-15	16
	0	1	1	1	8 M on RXO-15	4M on TX0-31	16
	1	0	0	0	16 M on RX0-3	2 M on TX0-31	16
	1	0	0	1	2 M on RX0-31	16 M on TXO-3	16
	1	0	1	0	16 M on RX0-15	8 M on TX0-31	16
	1	0	1	1	8M on RX0-31	16M on TX0-15	16
Split	1	1	0	0	2 M on RX0-15;	2 M on TX0-15;	16
					8M on RX16-31	8M on TX16-31	
	1	1	0	1	2 M on RX0-15;	2 M on TXO-15;	8
					4M on RX16-31	4M on TX16-31	
	1	1	1	0	4 M on RXO-15;	4 M on TX0-15;	16
					8M on RX16-31	8M on TX16-31	
	1	1	1	1	8 M on RXX-15;	8 M on TX0-15;	16
					16 M on RX16-23	16MonTX16-23	

DR3-0 $=3 \mathrm{H} \quad 16 \mathrm{Mb} / \mathrm{s} \rightarrow 16 \mathrm{Mb} / \mathrm{s}$

DR3-0 $=\mathbf{0} \mathbf{H}, \mathbf{1 H}, \mathbf{2 H} 2 \mathrm{Mb} / \mathrm{s} \rightarrow 2 \mathrm{Mb} / \mathrm{s}, 4 \mathrm{Mb} / \mathrm{s} \rightarrow 4 \mathrm{Mb} / \mathrm{s}, 8 \mathrm{Mb} / \mathrm{s} \rightarrow 8 \mathrm{Mb} / \mathrm{s}$

Figure 3. Regular Switch Mode

Figure 4. Mux/Demux Mode

DR3-0 $=\mathbf{C H} 2 \mathrm{Mb} / \mathrm{s} \rightarrow 8 \mathrm{Mb} / \mathrm{s} \& 8 \mathrm{Mb} / \mathrm{s} \rightarrow 8 \mathrm{Mb} / \mathrm{s}$

Figure 5. Split Mode

TABLE 6 - FRAME ALIGNMENT REGISTER (FAR)BITS

Figure 6. Example for Frame Alignment Measurement

TABLE 7 - FRAME INPUT OFFSET REGISTER (FOR)BITS

NOTE:

1. n denotes an input stream number from 0 to 31 .

TABLE 8 - MAXIMUM ALLOWABLE SKEW

Switching Mode	Control Bits				DataRate bits/s		Maximum
	DR3	DR2	DR1	DR0	Receive Streams	TransmitStreams	allowable skew
Regular	0	0	0	0	2 M on RX0-31	2 M on TX0-31	+4.5
	0	0	0	1	4 M on RX0-31	4M on TX0-31	+4.5
	0	0	1	0	8 M on RXO-31	8M on TX0-31	+4.5
	0	0	1	1	16 M on RX0-15	16 M on TX0-15	+2.5
Mux/Demux	0	1	0	0	2 M on RX0-31	8 M on TXO-7	+1.5
	0	1	0	1	8 M on RXO-7	2M on TX0-31	+4.5
	0	1	1	0	4 M on RX0-31	8M on TXO-15	+1.5
	0	1	1	1	8 M on RX0-15	4 M on TX0-31	+4.5
	1	0	0	0	16 M on RXO-3	2M on TX0-31	+2.5
	1	0	0	1	2 M on RX0-31	16 M on TX0-3	+1.5
	1	0	1	0	16 M on RX0-15	8M on TX0-31	+4.5
	1	0	1	1	8 M on RX0-31	16 M on TX0-15	+4.5
Split	1	1	0	0	2 M on RX0-15;	2 M on TX0-15;	+1.5
					8M on RX16-31	8M on TX16-31	+4.5
	1	1	0	1	2 M on RX0-15;	2 M on TX0-15;	+1.5
					4 M on RX16-31	4M on TX16-31	+4.5
	1	1	1	0	4 M on RX0-15;	4M on TX0-15;	+1.5
					8M on RX16-31	8M on TX16-31	+4.5
	1	1	1	1	8 M on RX0-15;	8M on TXO-15;	+4.5
					16M on RX16-23	16M on TX16-23	+2.5

TABLE 9 - OFFSET BITS (OFN2, OFN1, OFN0, DLEN) \& FRAME DELAY BITS (FD11,FD2-0)

InputStream Offset	MeasurementResultfrom Frame Delay Bits					Corresponding OffsetBits			
	FD11	FD2	FD1	FD0	OFn2	OFn1	OFn0	DLEn	
Noclockperiodshift(Default)	1	0	0	0	0	0	0	0	
+0.5 clock period shift	0	0	0	0	0	0	0	1	
+1.0 clock period shift	1	0	0	1	0	0	1	0	
+1.5 clock period shift	0	0	0	1	0	0	1	1	
+2.0 clock period shift	1	0	1	0	0	1	0	0	
+2.5 clock period shift	0	0	1	0	0	1	0	1	
+3.0 clock period shift	1	0	1	1	0	1	1	0	
+3.5 clock period shift	0	0	1	1	0	1	1	1	
+4.0 clock period shift	1	1	0	0	1	0	0	0	
+4.5 clock period shift	0	1	0	0	1	0	0	1	

NOTE:

1. See Table 8 for maximum allowable offsets.

Figure 7. Examples for Input Offset Delay Timing in $16 \mathrm{Mb} / \mathrm{s}$ mode

Figure 7. Examples for Input Offset Delay Timing in $8 \mathrm{Mb} / \mathrm{s}, 4 \mathrm{Mb} / \mathrm{s}$ and $2 \mathrm{Mb} / \mathrm{s}$ mode (Continued)

JTAG SUPPORT

The IDT72V71643JTAG interface conforms to the Boundary-Scan standard IEEE-1149.1. This standard specifies a design-for-testability technique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V71643. It consists of three input pins and one output pin.
-Test Clock Input (TCK)
TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remain independent. The TCK permits shifting of test datainto or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCKpulse. This pin is internally pulled to VCC when it is not driven from an external source.
-Test Data Input (TDI)
Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vcc when it is not driven from an external source.
-TestData Output(TDO)
Depending on the sequence previously applied to the TMS input, the contents of either the instruction registerordata registerare serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCKpulses. Whenno datais shifted throughthe boundary scan cells, the TDO driver is set to a high-impedance state.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to Vcc.

INSTRUCTION REGISTER

In accordance with the IEEE-1149.1 standard, the IDT72V71643 uses public instructions. The IDT72V71643 JTAG Interface contains a two-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. Subsequently, theinstructions aredecodedtoachievetwobasicfunctions: toselectthetestdata registerthatmay operate while the instruction is current, and to definethe serial test data registerpath, which is used to shiftdatabetweenTDI and TDO during data register scanning.

Value	Instruction
00	EXTEST
11	BYPASS
01 or 10	SAMPLE/PRELOAD

JTAG Instruction Register Decoding

TEST DATA REGISTER

As specified in IEEE-1149.1, the IDT72V71643JTAG Interface contains two test data registers:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT72V71643core logic.
-The Bypass Register
The Bypass register is a single stage shift register that provides a one-bit path from TDI to its TDO. The IDT72V71643 boundary scan registerbits are shown in Table 10. Bit0 is the firstbitclocked out. Allthree-state enablebits are activehigh.

TABLE 10-BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 168		
	Three-State Control	Output Scan Cell	Input Scan Cell
ODE			0
RESET			1
CLK			2
F0i			3
FE/HCLK			4
WFPS			5
$\overline{\text { DS }}$			6
$\overline{\mathrm{CS}}$			7
R/W			8
A0			9
A1			10
A2			11
A3			12
A4			13
A5			14
A6			15
A7			16
A8			17
A9			18
A10			19
A11			20
A12			21
A13			22
A14			23
$\overline{\text { DTA }}$		24	
D15	25	26	27
D14	28	29	30
D13	31	32	33
D12	34	35	36
D11	37	38	39
D10	40	41	42
D9	43	44	45
D8	46	47	48
D7	49	50	51
D6	52	53	54
D5	55	56	57
D4	58	59	60
D3	61	62	63
D2	64	65	66
D1	67	68	69
D0	70	71	72
TX31/OEI15	73	74	
TX30/OEI14	75	76	
TX29/OEl13	77	78	
TX28/OEl12	79	80	
TX27/OEl11	81	82	
TX26/OEl10	83	84	
TX25/OEI9	85	86	
TX24/OEI8	87	88	
RX31			89
RX30			90
RX29			91
RX28			92

Device Pin	Boundary Scan Bit 0 to bit 168		
	Three-State Control	Output Scan Cell	Input Scan Cell
RX27			93
RX26			94
RX25			95
RX24			96
TX23/0E17	97	98	
TX22/OEI6	99	100	
TX21/OEI5	101	102	
TX20/OEI4	103	104	
TX19/OEI3	105	106	
TX18/OEI2	107	108	
TX17/OEI1	109	110	
TX16/OEIO	111	112	
RX23			113
RX22			114
RX21			115
RX20			116
RX19			117
RX18			118
RX17			119
RX16			120
TX15	121	122	
TX14	123	124	
TX13	125	126	
TX12	127	128	
TX11	129	130	
TX10	131	132	
TX9	133	134	
TX8	135	136	
RX15			137
RX14			138
RX13			139
RX12			140
RX11			141
RX10			142
RX9			143
RX8			144
TX7	145	146	
TX6	147	148	
TX5	149	150	
TX4	151	152	
TX3	153	154	
TX2	155	156	
TX1	157	158	
TXO	159	160	
RX7			161
RX6			162
RX5			163
RX4			164
RX3			165
RX2			166
RX1			167
RX0			168

Figure 8. Using All Output Enable (AOE)

RECOMMENDED OPERATING

CONDITIONS ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCc	Positive Supply	3.0	3.3	3.6	V
VIH	Input HIGH Voltage	2.0	-	5.3	V
VIL	InputLOW Voltage	-	-	0.8	V
TOP	OperatingTemperature Commercial	-40	25	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

NOTE:

1. Voltages are with respect to Ground unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{ICC}^{(2)}$	SupplyCurrent	-	-	75	mA
$\mathrm{IIL}^{(3,4)}$	InputLeakage(inputpins)	-	-	60	$\mu \mathrm{~A}$
$\mathrm{IOZ}^{(3,4)}$	High-impedanceLeakage	-	-	60	$\mu \mathrm{~A}$
$\mathrm{VoH}^{(5)}$	OutputHIGHVoltage	2.4	-	-	V
$\mathrm{VoL}^{(6)}$	OutputLOWVoltage	-	-	0.4	V

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or $1 / O$ pins in high-impedance state) is over an applied voltage (V).
5. $\mathrm{IOH}=10 \mathrm{~mA}$.
6. $\mathrm{IOL}=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS - TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
VTT	TLThreshold	1.5	V
VHM	TTLRise/Fall Threshold Voltage HIGH	2.0	V
VLM	TTLRise/Fall ThresholdVoltageLOW	0.8	V

S1 is opencircuitexceptwhentestingoutput levels orhigh-impedancestates.

S2 is switched to Vcc or GND whentesting outputlevels orhigh-impedance states.

Figure 9. Output Load

AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLK

Symbol	Parameter	Min.	Typ.	Max.	Units
tFPW ${ }^{(1)}$	Frame Pulse Width (ST-BUS ${ }^{\circledR}$, GCI) Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & \hline \end{aligned}$	—	$\begin{aligned} & 295 \\ & 145 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tFPS ${ }^{(1)}$	Frame Pulse Setup time before CLK falling (ST-BUS ${ }^{\text {® or GCI) }}$	5	-	-	ns
tFPH ${ }^{(1)}$	Frame Pulse Hold Time from CLK falling (ST-BUS® or GCI)	10	-	-	ns
tcP(1)	CLK Period Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 190 \\ & 110 \\ & 58 \end{aligned}$	-	$\begin{aligned} & 300 \\ & 150 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tCH ${ }^{(1)}$	CLK Pulse Width HIGH Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \\ & \hline \end{aligned}$	—	$\begin{aligned} & 150 \\ & 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
tCL ${ }^{(1)}$	CLK Pulse Width LOW Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \\ & \hline \end{aligned}$	—	$\begin{aligned} & 150 \\ & 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tr, tf	Clock Rise/Fall Time	-	-	10	ns
tHFPW ${ }^{(2)}$	Wide Frame Pulse Width $\text { HCLK }=4.096 \mathrm{MHz}$ $\mathrm{HCLK}=8.192 \mathrm{MHz}$		$\begin{aligned} & 244 \\ & 122 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tHFPS ${ }^{(2)}$	Frame Pulse Setup Time before HCLK 4 MHz falling	50	-	150	ns
thfPH ${ }^{(2)}$	Frame Pulse Hold Time from HCLK 4 MHz falling	50	-	150	ns
tHFPS ${ }^{(2)}$	Frame Pulse Setup Time before HCLK 8 MHz rising	45	-	90	ns
thFP ${ }^{(2)}$	Frame Pulse Hold Time from HCLK 8 MHz rising	45	-	90	ns
thCP(2)	HCLK Period @ 4.096 MHz @ 8.192 MHz		$\begin{aligned} & 244 \\ & 122 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
thr, thf	HCLK Rise/Fall Time	-	-	10	ns
tDIF ${ }^{(2)}$	Delay between falling edge of HCLK and falling edge of CLK	-10	-	10	ns

NOTES:

1. WFPS Pin $=0$.
2. WFPS Pin $=1$.

Figure 10. Reset and ODE Timing

Figure 11. Serial Output and External Control

Figure 12. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - MICROPROCESSOR INTERFACE TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
tcss	CS Setup from DS falling	0	-	-	ns
trws	R/W Setup from DS falling	3	-	-	ns
tads	Address Setup from DS falling	2	-	-	ns
tcs	CS Hold after DS rising	0	-	-	ns
trwh	R/W Hold after DS Rising	3	-	-	ns
tadh	Address Hold after DS Rising	2	-	-	ns
tDDR ${ }^{(1)}$	Data Setup from $\overline{\text { DTA }}$ LOW on Read	2	-	-	ns
tDHR ${ }^{(1,2,3)}$	Data Hold on Read	10	15	25	ns
tosw	DataSetup on Write (FastWrite)	10	-	-	ns
tswo	Valid Data Delay on Write (Slow Write)	-	-	0	ns
tDHw	Data Hold on Write	5	-	-	ns
tospw	DS Pulse Width	5	-	-	ns
tскак	Clock to ACK	-	-	35	ns
takD ${ }^{(1)}$	AcknowledgmentDelay: Reading/WritingRegisters Reading/Writing Memory @ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ $8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$			$\begin{aligned} & 30 \\ & 345 \\ & 200 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
takn $^{(1,2,3)}$	AcknowledgmentHold Time	-	-	15	ns
toss ${ }^{(4)}$	Data Strobe Setup Time	2	-	-	ns

NOTES:

1. $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
2. $R_{L}=1 K$
3. High-Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. To achieve one clock cycle fast memory access, this setup time, tDss should be met. Otherwise, worst case memory access operation is determined by takD.

Figure 13. Asyncronous Bus Timing

Figure 14. Syncronous Bus Timing

Figure 15. Output Enable Indicator Timing (8 Mb/s ST-BUS ${ }^{\text {(}}$)

Figure 16. WFPS Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ — SERIAL STREAM (ST-BUS ${ }^{\circledR}$ and GCI)

Symbol	Parameter	Min.	Typ.	Max.	Units
tsIs	RXSetup Time	2	-	-	ns
tSIH	RX Hold Time	10	-	-	ns
tsod	TX Delay - Active to Active	-	-	22	ns
toz ${ }^{(1)}$	TX Delay - Active to High-Z	-	-	22	ns
tzD ${ }^{(1)}$	TX Delay - High-Z to Active	-	-	22	ns
tode ${ }^{(1)}$	Output Driver Enable (ODE) Delay	-	-	30	ns
toele	OutputEnable Indicator (OEI) Enable	-	-	40	ns
toEID	Output Enable Indicator (OEI) Disable	-	-	25	ns
trz	Active to High-Z on Master Reset	-	-	30	ns
tzR	High-Z to Active on Master Reset	-	-	30	ns
tRs	Resetpulse width	100	-	-	ns

NOTE:

1. High-Impedance is measured by pulling to the appropriate rail with $R_{L}(1 K \Omega)$, with timing corrected to cancel time taken to discharge $C_{L}(150 \mathrm{pF})$.

區

TX 16 Mb/s
RX $16 \mathrm{Mb} / \mathrm{s}$
TX $8 \mathrm{Mb} / \mathrm{s}$
$\stackrel{\infty}{n}$
\sum_{∞}^{∞}
\times
\times
TX $4 \mathrm{Mb} / \mathrm{s}$
RX $4 \mathrm{Mb} / \mathrm{s}$
TX $2 \mathrm{Mb} / \mathrm{s}$
Figure 17. ST-BUS ${ }^{\circledR}$ Timing

Figure 18. GCI Timing

ORDERING INFORMATION

Commercial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

BC Ball Grid Array (BGA, BC144) BCG Green - Ball Grid Array (BGA, BCG144)
DA Thin Quad Flatpacks (TQFP, DA144)
Green - Thin Quad Flatpacks (TQFP, DAG144)
$72 \mathrm{~V} 71643 \quad 4,096 \times 4,096$ - 3.3V Time Slot Interchange Digital Switch with Rate Matching
5902 drw21

DATASHEET DOCUMENT HISTORY

5/01/2000	pg. 1
$6 / 07 / 2000$	pgs. 3 and 4.
$10 / 10 / 2000$	pgs. 1 through 30.
$11 / 20 / 2000$	pgs.10.
$03 / 09 / 2001$	pg. 21
$08 / 20 / 2001$	pg. 24.
$10 / 22 / 2001$	pg. 1.
$1 / 04 / 2002$	pgs. 1 and 21.
$5 / 17 / 2002$	pg 28
$3 / 11 / 2005$	pgs. $1,4,6,10,28$
$3 / 22 / 2005$	pgs. $1-3,28$
$3 / 23 / 2005$	pgs. 4,30

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
uww.idt.com
for Tech Support:
408-330-1552
email:telecomhelp@idt.com

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

