

MOS FIELD EFFECT TRANSISTOR μ PA1873

N-CHANNEL MOS FIELD EFFECT TRANSISTOR FOR SWITCHING

DESCRIPTION

The μ PA1873 is a switching device which can be driven directly by a 2.5 V power source.

This device features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

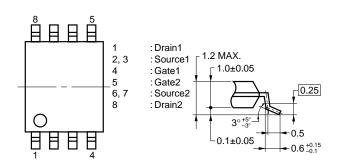
FEATURES

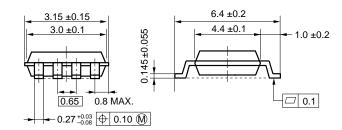
- 2.5 V drive available
- · Low on-state resistance

 $R_{DS(on)1} = 23.0 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 4.5 \text{ V, Ip} = 3.0 \text{ A)}$

 $R_{DS(on)2} = 24.0 \text{ m}\Omega$ MAX. (Vgs = 4.0 V, ID = 3.0 A)

 $R_{DS(on)3} = 28.0 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 3.1 \text{ V, ID} = 3.0 \text{ A)}$

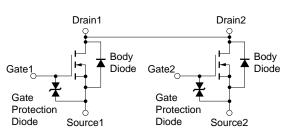

 $R_{DS(on)4} = 29.0 \text{ m}\Omega$ MAX. (Vgs = 2.5 V, ID = 3.0 A)


· Built-in G-S protection diode against ESD

ORDERING INFORMATION

PART NUMBER	PACKAGE
μPA1873GR-9JG	Power TSSOP8

PACKAGE DRAWING (Unit: mm)



ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Vgs = 0 V)	VDSS	20	V
Gate to Source Voltage (Vps = 0 V)	Vgss	±12	V
Drain Current (DC) (T _A = 25°C)	ID(DC)	±6.0	Α
Drain Current (pulse) Note1	D(pulse)	±80	Α
Total Power Dissipation (2 unit) Note2	PT	2.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55 to +150	°C

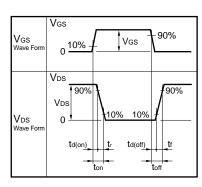
EQUIVALENT CIRCUIT

- **Notes 1.** PW \leq 10 μ s, Duty Cycle \leq 1%
 - 2. Mounted on ceramic substrate of 5000 mm² x 1.1 mm

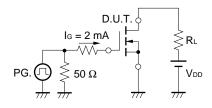
Remark

The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

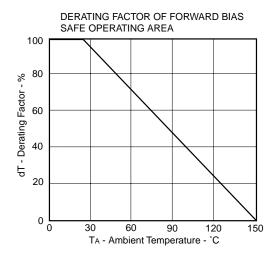
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

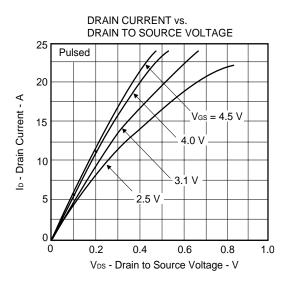


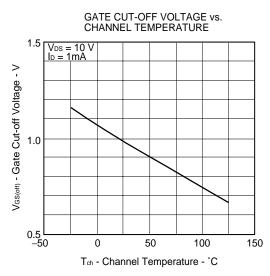
ELECTRICAL CHARACTERISTICS (TA = 25°C)

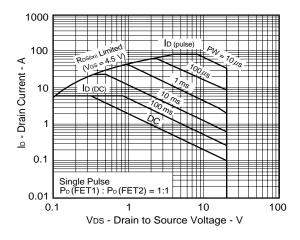

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	Vps = 20 V, Vgs = 0 V			10	μΑ
Gate Leakage Current	lgss	Vgs = ±12 V, Vps = 0 V			±10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1.0 mA	0.5	1.0	1.5	V
Forward Transfer Admittance	yfs	V _{DS} = 10 V, I _D = 3.0 A	5.0			S
Drain to Source On-state Resistance	RDS(on)1	Vgs = 4.5 V, ID = 3.0 A	13.0	18.0	23.0	mΩ
	RDS(on)2	Vgs = 4.0 V, ID = 3.0 A	14.0	19.0	24.0	mΩ
	RDS(on)3	Vgs = 3.1 V, ID = 3.0 A	14.5	21.5	28.0	mΩ
	RDS(on)4	Vgs = 2.5 V, ID = 3.0 A	15.0	24.5	29.0	mΩ
Input Capacitance	Ciss	V _{DS} = 10 V		705		pF
Output Capacitance	Coss	V _G S = 0 V		205		pF
Reverse Transfer Capacitance	Crss	f = 1.0 MHz		145		pF
Turn-on Delay Time	td(on)	V _{DD} = 10 V, I _D = 3.0 A		60		ns
Rise Time	tr	Vgs = 4.0 V		310		ns
Turn-off Delay Time	t _{d(off)}	$R_G = 10 \Omega$		380		ns
Fall Time	t _f			420		ns
Total Gate Charge	Q _G	V _{DD} = 16 V		9.0		nC
Gate to Source Charge	Qgs	V _{GS} = 4.0 V		2.0		nC
Gate to Drain Charge	Q _{GD}	ID = 6.0 A		4.0		nC
Body Diode Forward Voltage	VF(S-D)	IF = 6.0 A, VGS = 0 V		0.84		V
Reverse Recovery Time	trr	IF = 6.0 A, Vgs = 0 V		480		ns
Reverse Recovery Charge	Qrr	di/dt = 50 A / μs		1200		nC

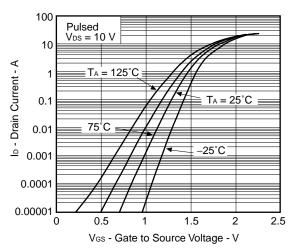
TEST CIRCUIT 1 SWITCHING TIME

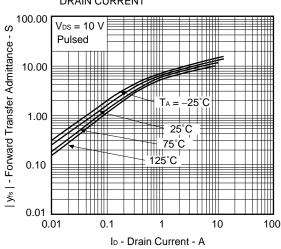


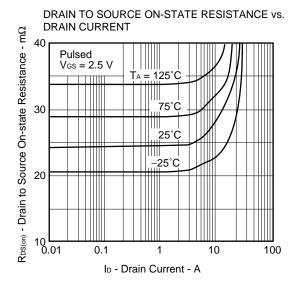



TEST CIRCUIT 2 GATE CHARGE

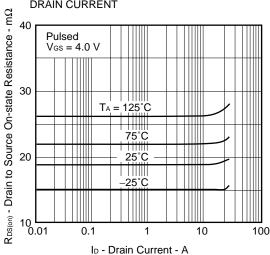

TYPICAL CHARACTERISTICS (TA = 25°C)



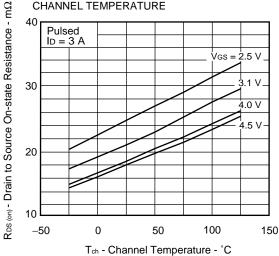

FORWARD BIAS SAFE OPERATING AREA

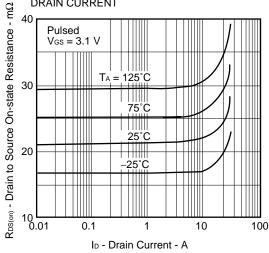


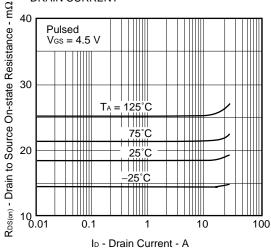
FORWARD TRANSFER CHARACTERISTICS

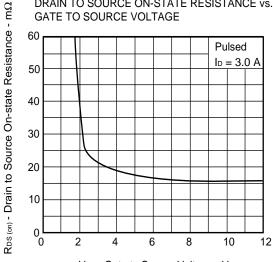


FORWARD TRANSFER ADMITTANCE Vs. DRAIN CURRENT




DRAIN TO SOURCE ON-STATE RESISTANCE vs. **DRAIN CURRENT**


DRAIN TO SOURCE ON-STATE RESISTANCE vs. CHANNEL TEMPERATURE


DRAIN TO SOURCE ON-STATE RESISTANCE vs. **DRAIN CURRENT**

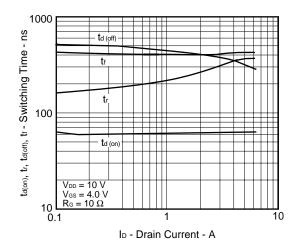
DRAIN TO SOURCE ON-STATE RESISTANCE vs. **DRAIN CURRENT**

DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

V_{GS} - Gate to Source Voltage - V

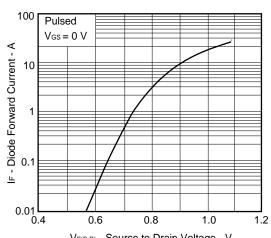
100

10 0.1

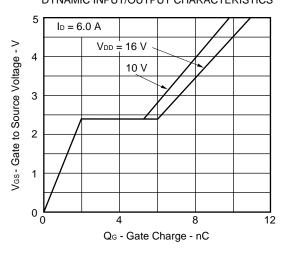

10000 $V_{GS} = 0 V$ f = 1 MHzCiss, Coss, Crss - Capacitance - pF 1000

CAPACITANCE vs.

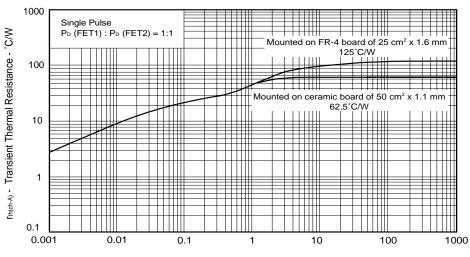
DRAIN TO SOURCE VOLTAGE


10 V_{DS} - Drain to Source Voltage - V

SWITCHING CHARACTERISTICS


100

SOURCE TO DRAIN DIODE FORWARD VOLTAGE



V_{F(S-D)} - Source to Drain Voltage - V

DYNAMIC INPUT/OUTPUT CHARACTERISTICS

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH

PW - Pulse Width - s

5

[MEMO]

NEC μ PA1873


[MEMO]

- The information in this document is current as of December, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331