Industrial, Octal, Digital Input Translator/Serializer ### **General Description** The MAX31911 industrial interface serializer translates, conditions, and serializes the 24V digital output of sensors and switches used in industrial, process, and building automation to 5V CMOS-compatible signals required by microcontrollers. It provides the front-end interface circuit of a programmable logic controller (PLC) digital input module. The device features integrated current limiting, lowpass filtering, and channel serialization. Input current limiting allows a significant reduction in power consumed from the field voltage supply as compared to traditional discrete resistor-divider implementations. Selectable onchip lowpass filters allow flexible debouncing and filtering of sensor outputs based on the application. On-chip serialization allows a drastic reduction in the number of optocouplers used for isolation. The device serializer is stackable so that any number of input channels can be serialized and output through only one SPI-compatible port. This reduces the number of optocouplers needed to only three, regardless of the number of input channels. For enhanced robustness with respect to high-frequency noise and fast electrical transients, a multibit CRC code is generated and transmitted through the SPI port for each 8 bits of data. The on-chip 5V voltage regulator can be used to power external optocouplers, digital isolators, or other external 5V circuitry. For ultra-low-power applications, Maxim Integrated offers a pin-compatible version of this device, the MAX31910. The MAX31910 uses patent-pending circuit techniques to achieve further reduction of power beyond what is possible by input current limiting alone. The future generation version of the MAX31910 and MAX31911 will include energy-less LED drivers while maintaining pin compatibility. Ordering Information appears at end of data sheet. #### **Features** - ♦ Eight High-Voltage Input Channels (36V max) - ♦ Configurable for IEC 61131-2 Input Types 1, 2, 3 - ♦ Wide Operating Supply Range of 7V to 36V - ♦ Optional Configuration Allows 5V Supply - ♦ Selectable Input Filtering and Debouncing from 0ms to 3ms - ♦ Configurable Input Current Limiting from 0.5mA to 6mA - ♦ High HBM ESD Immunity on All Field Input Pins - ♦ On-Chip 8-to-1 Serialization with SPI Interface - ♦ On-Chip 5V Regulator - **♦** Overtemperature Indicator - ♦ On-Chip 24V Field Supply Voltage Monitor - **♦ Low Quiescent Current and Power Dissipation** - ♦ Multibit CRC Code Generation and Transmission for Error Detection and More Reliable Data Transmission to an External Micro ### **Applications** Digital Input Modules for PLCs Industrial, Building, and Process Automation Motor Control ### **Block Diagram** For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX31911.related. ## Industrial, Octal, Digital Input Translator/Serializer ### **ABSOLUTE MAXIMUM RATINGS** | (Voltages relative to GND.) Voltage Range on V_{CC24V} | Operating Temperature Range Ambient Temperature -40°C to +125°C Junction Temperature -40°C to +150°C Storage Temperature Range -55°C to +125°C Lead Temperature (soldering, 10s) +300°C Soldering Temperature (reflow) +260°C | |---|---| | TSSOP (derate 27mW/°C above +70°C)2162.2mW | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### PACKAGE THERMAL CHARACTERISTICS (Note 1) TSSOP Junction-to-Ambient Thermal Resistance (θ_{JA})...........37°C/W Junction-to-Case Thermal Resistance (θ_{JC}).............2°C/W **Note 1:** Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ### **RECOMMENDED OPERATING CONDITIONS (Note 2)** | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------------------|--------------------|------------|------|-----|-----|-------| | Field Supply Voltage | V _{CC24V} | | 7 | | 36 | V | | Field Inputs Voltage | V _{INn} | (Note 3) | -0.3 | | 36 | V | | Logic Inputs Voltage | V _{LOGIC} | | 0 | | 5.5 | V | | Current-Limit Setting Resistor | R _{REF} | | | 15 | | kΩ | | Field Input Data Rate | f _{IN} | (Note 4) | | 200 | | kHz | ## Industrial, Octal, Digital Input Translator/Serializer ### DC ELECTRICAL CHARACTERISTICS $(V_{CC24V} = 7V \text{ to } 36V, T_J = -40^{\circ}\text{C to } +150^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|-----------------------|--|-----------------------------|-----------------------------|-----------------------------|-------| | Field-Supply Current | I _{CC24V} | IN1-IN8 = 24V, 5VOUT = open,
RT1-RT8 = GND, all logic inputs open | | 1.4 | 2.0 | mA | | Field-Supply UVLO Off/On | V _{ONUVLO} | | | 9 | 10 | V | | Field-Supply UVLO On/Off | V _{OFFUVLO} | | 7 | 8 | | V | | Field Input Threshold High-
to-Low | V _{IN-(INF)} | 2.2kΩ external series resistor | 6 | 7.5 | | V | | Field Input Threshold Low-to-
High | V _{IN+(INF)} | 2.2kΩ external series resistor | | 8.5 | 10 | V | | Field Input Hysteresis | V _{HYS(INF)} | 2.2kΩ external series resistor | | 1 | | V | | Input Threshold High-to-Low (at IC pin) | V _{TH-(INP)} | | 2 | 2.5 | | V | | Input Threshold Low-to-High (at IC pin) | V _{TH+(INP)} | | | 3.5 | 4 | V | | Input Threshold Hysteresis (at IC pin) | V _{HYS(INP)} | | | 1 | | V | | Field Input Pin Resistance | R _{INP} | | | 0.8 | | kΩ | | Field Input Current Limit | I _{INLIM} | $R_{REF} = 15k\Omega$, $V_{CC24V} = 18V$ to 30V (Note 5) | 2.2 | 2.4 | 2.6 | mA | | | | DB1/DB0 = 0/0: no filtering | | 0 | | | | Filter Time Constant | tFILTER | DB1/DB0 = 0/1 | 0.008 | 0.025 | 0.038 | ms | | | 71121211 | DB1/DB0 = 1/0 | 0.25 | 0.75 | 1.1 | | | 1: 5 1: 0: | | DB1/DB0 = 1/1 | 1.0 | 3 | 4.5 | ., | | Linear Regulator Output | V ₅ VOUT | $Max I_{LOAD} = 50mA$ | 4.75 | 5.0 | 5.25 | V | | Regulator Line Regulation | dVREG _{LINE} | I _{LOAD} = 50mA | | 10 | 20 | mV | | Regulator Load Regulation | dVREG _{LOAD} | I _{LOAD} = 1mA to 50mA | | 20 | 50 | mV | | Logic-Low Output Voltage | V _{OL} | I _{OL} = 4mA | | 0.4 | 1.0 | V | | Logic-High Output Voltage | V _{OH} | $I_{OH} = -4mA$ | 4.0 | | | V | | Logic-Input Trip Point | V _{IH-IL} | | 0.3 x
V _{5VOUT} | 0.5 x
V _{5VOUT} | 0.7 x
V _{5VOUT} | V | | Logic-Input Leakage Current | I _{IL} | | -50 | -30 | -15 | μΑ | | Overtemperature Alarm | T _{ALRM} | | | 135 | | °C | ### Industrial, Octal, Digital Input Translator/Serializer ### **AC ELECTRICAL CHARACTERISTICS** $(V_{CC24V} = 7V \text{ to } 36V, T_J = -40^{\circ}\text{C to } +150^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |-------------------------|-----------------|--|-----|-----|-----|-------| | Field Input Pulse Width | t _{PW} | No external capacitors on pins IN1–IN8 | 1 | | | μs | | ESD | | HBM, all pins | | ±2 | | kV | | ESD | | HBM, IN1-IN8 with respect to GND | | ±15 | | l v | ### AC ELECTRICAL CHARACTERISTICS: SPI INTERFACE $(V_{CC24V} = 7V \text{ to } 36V, T_J = -40^{\circ}\text{C to } +150^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------------------|------------------|---------------|-----|-----|-----|-------| | CLK Pulse Duration | tCLKPW | (Note 6) | 20 | | | ns | | CS Pulse Duration | tcspw | (Note 7) | 20 | | | ns | | SIN to CLK Setup Time | t _{SU1} | (Note 8) | 5 | | | ns | | SIN to CLK Hold Time | t _{H1} | (Note 8) | 8 | | | ns | | CS to CLK Setup Time | t _{SU2} | (Note 9) | 8 | | | ns | | CS to CLK Recovery Time | t _{REC} | (Note 9) | 12 | | | ns | | Clock Pulse Frequency | f _{CLK} | (Notes 6, 10) | DC | | 25 | MHz | | Propagation Delay, CLK to SOUT | t _{P1} | (Note 6) | | | 20 | ns | | Propagation Delay, CS to SOUT | t _{P2} | (Note 7) | | | 20 | ns | | Rise/Fall Time SOUT/FAULT | t _{R/F} | (Note 6) | | | 40 | ns | **Note 2:** Limits are 100% production tested at $T_A = +25^{\circ}$ C and/or $T_A = +125^{\circ}$ C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Typical values are not guaranteed. **Note 3:** When using suggested external 2.2k Ω series resistors, limits of -3V to +36V apply. **Note 4:** f_{IN} refers to the maximum pulse frequency (1/ f_{IN} = shortest pulse width) that can be detected from the field sensors and switches. Note 5: External resistor R_{RFF} can be adjusted to set any desired current limit between 0.5mA and 6mA. Note 6: See Figure 8. Note 7: See Figure 5. Note 8: See Figure 7. Note 9: See Figure 6. Note 10: This is the maximum bit transfer rate through the serializer interface. ### **Industrial, Octal, Digital Input Translator/Serializer** ### **Typical Operating Characteristics** $(T_A = +25^{\circ}C, R_{REF} = 15k\Omega, unless otherwise noted.)$ ## Industrial, Octal, Digital Input Translator/Serializer ### **Typical Operating Characteristics (continued)** $(T_A = +25^{\circ}C, R_{REF} = 15k\Omega, unless otherwise noted.)$ # Industrial, Octal, Digital Input Translator/Serializer ### **Pin Configuration** ### **Pin Description** | PIN | NAME | FUNCTION | |--------------------------------|--------------------|---| | 1, 2 | DB0, DB1 | Debounce (Filtering) Time Select Inputs | | 3, 5, 7, 9, 11, 18,
20, 22 | IN1-IN8 | Field Inputs | | 4, 6, 8, 10, 12,
17, 19, 21 | RT1–RT8 | Connect directly to GND. These pins are reserved for energy-less LED drives in future versions of the device. | | 13 | RIREF | Current-Limiter Reference Resistor | | 14 | V _{CC24V} | Field-Supply Voltage | | 15 | 5VOUT | 5V Regulator Output | | 16 | FAULT | Active-Low Overtemperature or Undervoltage Alarm | | 23 | SOUT | Serial-Data Out | | 24 | CS | Active-Low Chip-Select Input | | 25 | CLK | Serial-Clock Input | | 26 | MODESEL | Mode-Select Input MODESEL = 1: Selects 8-bit shift register MODESEL = 0: Selects 16-bit shift register | | 27 | SIN | Serial-Data Input | | 28 | GND | Field Ground | | _ | EP | Exposed Pad. Must be connected to the PCB ground plane. | ### Industrial, Octal, Digital Input Translator/Serializer ### **Typical Application Circuit** ### **Detailed Description** #### **Input Current Clamp** The MAX31911 industrial interface serializer inputs (IN1-IN8) sense the state (on vs. off) of field sensors by monitoring both voltage and current flowing through the sensor output. The current sinking through these input pins rises linearly with input voltage until the limit set by the current clamp is reached. Any voltage increase beyond this point does not increase the input current any further. The value of the current clamp is adjustable through an external resistor connected between the RIREF pin and GND. Pins RT0-RT7 must be connected directly to GND to provide a return path for the input current. The voltage and current at the IN1-IN8 input pins are compared against internally set references to deter- mine whether the sensor is on (logic 1) or off (logic 0). The trip points determining the on/off status of the sensor satisfy the requirements of IEC 61131-2 Type 1 and 3 switches. The device can also be configured to work as a Type 2 switch. ### **Glitch Filter** A digital glitch filter provides debouncing and filtering of noisy sensor signals. The time constant of this filter is programmable from 0ms to 3ms through the DB0 and DB1 pins. See <u>Table 1</u> for debounce settings. To provide the digital glitch filter, the device checks that an input is stable for at least three clock cycles. The duration of a clock cycle is 1/3 of the selected debounce time. If the input is not stable for at least three clock cycles, the input change is not sent to the internal shift register. ### Industrial, Octal, Digital Input Translator/Serializer #### **Reading Serial Data** The filtered outputs of the input comparators are latched into a shift register at the falling edge of $\overline{\text{CS}}$. Clocking the CLK pin, while $\overline{\text{CS}}$ is held low, shifts the latched data out of SOUT 1 bit at a time. The internal data serializer comprises a 16-bit shift register, containing 8 bits of data corresponding to the eight field inputs, as well as an 8-bit status byte containing supplementary status and CRC information. The status byte contains 1 bit representing the status of the field-supply voltage (UV), 1 bit representing the status of the internal temperature monitor (OT), a 5-bit CRC code internally calculated and generated, and a trailing 1 as a STOP bit. The undervoltage (UV) bit is normally 0. If the supply voltage falls below $V_{OFFUVLO}$, the UV becomes a 1. The UV bit returns to 0 once the supply voltage has returned above V_{ONUVLO} . The overtemperature (OT) bit is also normally 0. If the junction temperature increases to above T_{ALRM} , the OT bit becomes a 1. The bit returns to 0 once the junction temperature has returned below T_{ALRM} . The CRC code can be used to check data integrity during transfer from the device to an external microcontroller. In applications where the integrity of data transferred is not of concern, the CRC bits can be ignored. The CRC uses the following polynomial: $$P(x) = x^5 + x^4 + x^2 + x^0$$ The number of bits in the internal serializer can be selected between 8 bits or 16 bits. The MODESEL pin is used to configure the serializer as an 8-bit (disabling the status byte) or 16-bit shift register. In 8-bit mode, only the eight field input states are transferred through the SPI port and the status byte is ignored. Therefore, in multiple IC applications (input channels greater than 8), if desired, only a single status byte can be generated and transmitted for any number of input channels. The shift register contents are read only (no write capability exists) through the SPI-compatible interface. For higher input counts than 8, multiple devices can be cascaded. In this case, the SOUT pin of one device should be connected to the SIN pin of the next device, effectively cascading the internal shift registers. The CLK and $\overline{\text{CS}}$ pins of all the devices should be connected together in this configuration. See the <u>Serial-Port Operation</u> section for more detailed information on operating the SPI interface. #### **Temperature Monitoring** The internal junction temperature of the device is constantly monitored. An alarm is raised, by asserting the FAULT pin, if the temperature rises above TALRM. In addition to asserting FAULT, the device sets the OT bit to a 1. #### Supply Voltage Monitoring A supply voltage monitor circuit constantly monitors the field-supply voltage. If this voltage falls below a threshold ($V_{OFFUVLO}$), an alarm is raised by asserting the \overline{FAULT} pin, indicating that the part is experiencing a fault condition and the data in the serializer is not to be trusted. In addition, the device sets the UV bit to a 1. Once the field-supply voltage has recovered and goes above V_{ONUVLO} , the \overline{FAULT} pin is released, indicating normal operation of the part. **Table 1. Debounce Settings** | DB1 | DB0 | BINARY VALUE | DEBOUNCE TIME | |-----|-----|--------------|---------------| | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 25µs | | 1 | 0 | 2 | 0.75ms | | 1 | 1 | 3 | 3ms | ## Industrial, Octal, Digital Input Translator/Serializer ### **Applications Information** ### **EMC Standards Compliance** The external components shown in <u>Figure 1</u> allow the device to operate in harsh industrial environments. Components were chosen to assist in suppression of voltage burst and surge transients, allowing the system to meet or exceed international EMC requirements. <u>Table 2</u> lists an example device for each component in <u>Figure 1</u>. The system shown in <u>Figure 1</u>, using the components shown in <u>Table 2</u>, is designed to be robust against IEC burst transient, surge transient, and RFI specifications (IEC 61000-4, -5, -6, and -2). **Table 2. Recommended Components** | COMPONENT | DESCRIPTION | REQUIRED/RECOMMENDED/OPTIONAL | |------------------|--------------------------------------|---| | CO | 4.7nF, 2kV polypropylene capacitor | Recommended | | C1 | 10μF, 60V ceramic capacitor | Required | | C3 | 100nF, 10V ceramic capacitor | Recommended | | C4 | 4.7μF, 10V low ESR ceramic capacitor | Required | | C _{INX} | 1nF, 60V ceramic capacitor | Optional: For higher EMC performance | | D0 | 36V fast zener diode (ZSMB36) | Recommended | | D1 | General-purpose rectifier (IN4007) | Optional: For reverse polarity protection | | R1 | 150Ω, 1/3W MELF resistor | Recommended | | R _{INX} | 2.2kΩ, 1/4W MELF resistor | Required | | R _{REF} | 15kΩ, 1/8W resistor | Required | Figure 1. Typical EMC Protection Circuitry ### Industrial, Octal, Digital Input Translator/Serializer ### **Serial-Port Operation** Serial output of the device functions in one of two modes, depending on the MODESEL setting (Table 3). With MODESEL = 0, the device output includes a 5-bit CRC, an undervoltage alarm, and an overtemperature alarm. See the <u>Detailed Description</u> for CRC, undervoltage, and overtemperature functional descriptions. With MODESEL = 1, the device outputs only the state of the IN1–IN8 inputs and omits the CRC, undervoltage alarm, and overtemperature alarm. ### **Daisy-Chain Operation** For systems with more than eight sensor inputs, multiple devices can be daisy-chained to allow access to all data inputs through a single serial port. When using a daisy-chain configuration, connect SOUT of one of the devices to the SIN input of another upstream device. \overline{CS} and SCK of all devices in the chain should be connected together in parallel (see Figure 2). In a daisy-chain configuration, external components used to enhance EMC robustness do not need to be duplicated for each device of a circuit board. Figure 3 illustrates a 16-input application. #### **SPI Waveforms** The serial output of the device adheres to the SPI protocol, running with CPHA = 0 and CPOL = 0. Input states on IN1–IN8 are latched in on the falling edge of \overline{CS} . The transfer of data out of the slave output, SOUT, starts immediately when \overline{CS} is asserted (i.e., MSB is output onto SOUT independent of CLK). The remaining data bits are shifted out on the falling edge of CLK. The data bits are written to the output SOUT with MSB first. When \overline{CS} is high, SOUT is high impedance. The resultant timing is shown in Figure 4. Note that all bits after IN1 are invalid if 8-bit operation mode is selected with the MODESEL input. Figure 5, Figure 6, Figure 7, and Figure 8 illustrate SPI timing specifications. Figure 2. Daisy-Chain Operation ### **Table 3. MODESEL Settings** | MODESEL SETTING | FUNCTIONALITY | |-----------------|--| | 0 | 16-bit output; [IN8-IN1][CRC (5 bit)][UV][OT][X] | | 1 | 8-bit output; [IN8–IN1] | ### Industrial, Octal, Digital Input Translator/Serializer Figure 3. 16-Input Application Circuit # Industrial, Octal, Digital Input Translator/Serializer Figure 4. SPI Communication Example Figure 5. SPI Timing Diagram 1 Figure 6. SPI Timing Diagram 2 Figure 7. SPI Timing Diagram 3 Figure 8. SPI Timing Diagram 4 ### **Industrial, Octal, Digital Input Translator/Serializer** ### **Chip Information** #### PROCESS: S45JRS ### **Ordering Information** | PART | TEMP RANGE | PIN-
PACKAGE | CARRIER | |---------------|-----------------|-----------------|------------------| | MAX31911AUI+ | -40°C to +125°C | 28 TSSOP | Bulk | | MAX31911AUI+T | -40°C to +125°C | 28 TSSOP | Tape
and Reel | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. ### **Package Information** For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE | PACKAGE | OUTLINE | LAND | |-------------|---------|---------|-------------| | TYPE | CODE | NO. | PATTERN NO. | | 28 TSSOP-EP | U28E+4 | 21-0108 | 90-0146 | T = Tape and reel. ## Industrial, Octal, Digital Input Translator/Serializer ### **Revision History** | REVISION
NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|---------------|--|------------------| | 0 | 8/12 | Initial release | _ | | 1 | 9/12 | Changed the supply voltage minimum from 10V to 7V; changed the current limits in the EC table Note 5; added the CRC polynomial to the <i>Reading Serial Data</i> section | 1–4, 9 | Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию . Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331