

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

February 2008

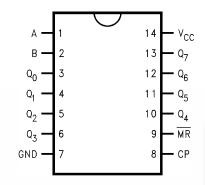
74VHC164 8-Bit Serial-In, Parallel-Out Shift Register

Features

- High Speed: f_{MAX} = 175MHz at V_{CC} = 5V
- Low power dissipation: $I_{CC} = 4\mu A$ (max.) at $T_A = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min.)
- Power down protection provided on all inputs
- Low noise: V_{OLP} = 0.8V (max.)
- Pin and function compatible with 74HC164

General Description

The VHC164 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHC164 is a high-speed 8-Bit Serial-In/Parallel-Out Shift Register. Serial data is entered through a 2-input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register, setting all outputs LOW independent of the clock. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

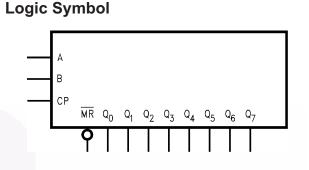

Ordering Information

Order Number	Package Number	Package Description
74VHC164M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC164SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC164MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC164N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram


Pin Description

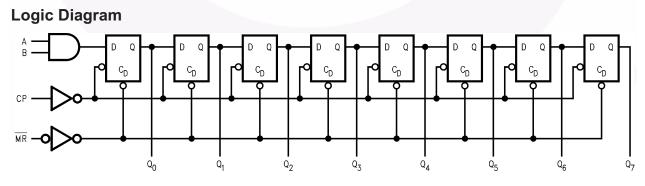
Pin Names	Description					
А, В	Data Inputs					
CP	Clock Pulse Input (Active Rising Edge)					
MR	Master Reset Input (Active LOW)					
Q ₀ –Q ₇	Outputs					

Functional Description

The VHC164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active High Enable for data entry through the other input. An unused input must be tied HIGH.

Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q_0 the logical AND of the two data inputs (A • B) that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

Function Table


Operating	lr	nputs	;	Outputs			
Mode	MR	Α	В	Q ₀	Q ₁ –Q ₇		
Reset (Clear)	L	Х	Х	L	L–L		
Shift	Н	L	L	L	Q ₀ –Q ₆		
	Н	L	Н	L	Q ₀ –Q ₆		
	Н	Н	L	L	Q ₀ –Q ₆		
	Н	Н	Н	Н	Q ₀ –Q ₆		

H = HIGH Voltage Levels

L = LOW Voltage Levels

X = Immaterial

Q = Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	-0.5V to V _{CC} + 0.5V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} /GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
TL	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to 5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	0V to V _{CC}
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time,	
	$V_{CC} = 3.3V \pm 0.3V$	0ns/V ~ 100ns/V
	$V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

Symbol					T _A = 25°C			T _A = -4 +8		
	Parameter	V _{CC} (V)	Con	ditions	Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input Voltage	2.0			1.50			1.50		V
		3.0–5.5			$0.7 \times V_{CC}$			0.7 x V _{CC}		
VIL	LOW Level Input	2.0		6			0.50		0.50	V
Voltage	Voltage	3.0–5.5					0.3 x V _{CC}		0.3 x V _{CC}	
UH I	HIGH Level Output Voltage	2.0		I _{OH} =50μA	1.9	2.0		1.9		V
		3.0	or V _{IL}		2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		I _{OH} = -4mA	2.58			2.48		
		4.5		I _{OH} = -8mA	3.94			3.80		
V _{OL}	LOW Level Output Voltage	2.0	$V_{IN} = V_{IH}$			0.0	0.1		0.1	V
		3.0	or V _{IL}			0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		I _{OL} = 4mA			0.36		0.44	
		4.5		I _{OL} = 8mA			0.36		0.44	
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V	or GND			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$	or GND			4.0		40.0	μA

Noise Characteristics

				T _A =	25°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽²⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	$C_L = 50 pF$	0.5	0.8	V
V _{OLV} ⁽²⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	$C_L = 50 pF$	-0.5	-0.8	V
V _{IHD} ⁽²⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		3.5	V
V _{ILD} ⁽²⁾	Maximum LOW Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		1.5	V

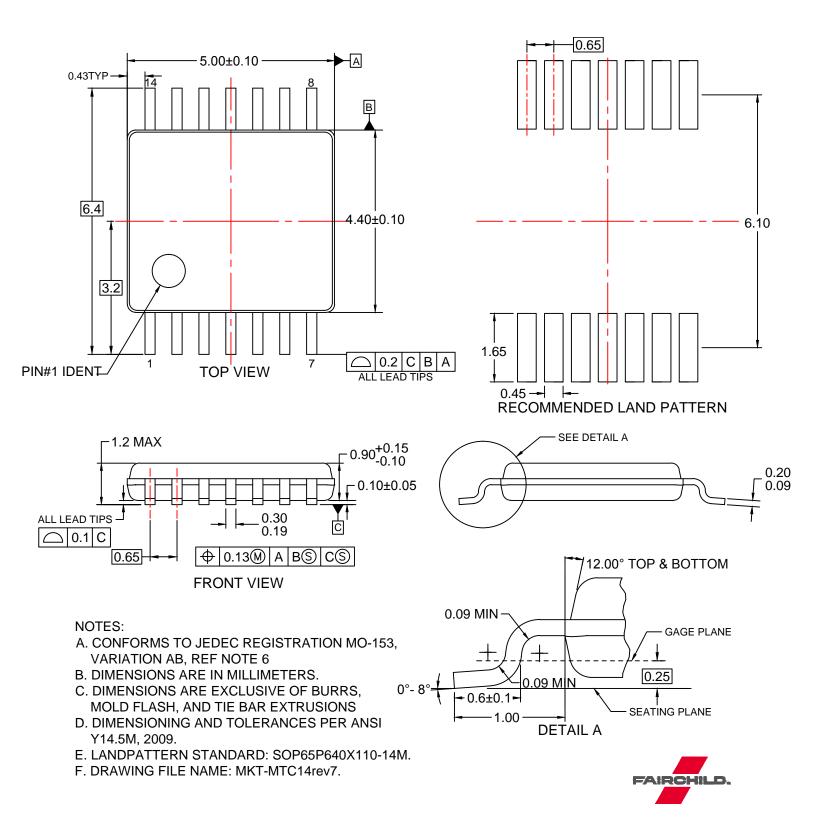
Note:

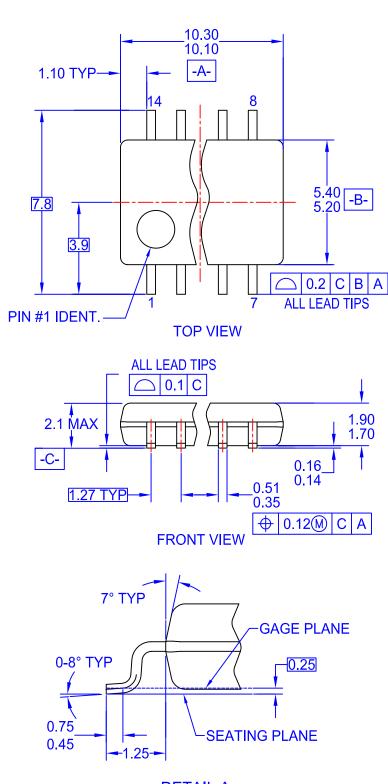
2. Parameter guaranteed by design.

AC Electrical Characteristics

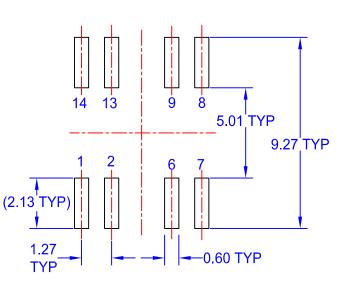
				т	T _A = 25°C		T _A = -40°C to +85°C			
Symbol	Parameter	$V_{CC}(V)$	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	
f _{MAX}	Maximum Clock	3.3 ± 0.3	$C_L = 15 pF, R_L = 1 k\Omega$	80	125		65		MHz	
	Frequency		$C_L = 50 \text{pF}, R_L = 1 \text{k}\Omega$	50	75		45			
		5.0 ± 0.5	$C_L = 15 pF, R_L = 1 k\Omega$	125	175		105			
			$C_L = 50 pF, R_L = 1 k\Omega$	85	115		75			
t _{PLH} , t _{PHL}	Propagation Delay Time (CP–Q _n)	3.3 ± 0.3	$C_L = 15 pF, R_L = 1 k\Omega$		8.4	12.8	1.0	15.0	ns	
			$C_L = 50 pF, R_L = 1 k\Omega$		10.9	16.3	1.0	18.5		
		5.0 ± 0.5	$C_L = 15 pF, R_L = 1 k\Omega$		5.8	9.0	1.0	10.5		
			$C_L = 50 pF, R_L = 1 k\Omega$		7.3	11.0	1.0	12.5		
	Propagation Delay	3.3 ± 0.3	$C_L = 15 pF, R_L = 1 k\Omega$		8.3	12.8	1.0	15.0	ns	
	Time (MR–Q _n)	me (MR –Q _n)	$C_L = 50 pF, R_L = 1 k\Omega$		10.8	16.3	1.0	18.5		
		5.0 ± 0.5	$C_L = 15 pF, R_L = 1 k\Omega$		5.2	8.6	1.0	10.0		
			$C_L = 50 pF, R_L = 1 k\Omega$		6.7	10.6	1.0	12.0		
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF	
C _{PD}	Power Dissipation Capacitance		(3)		76				pF	

Note:

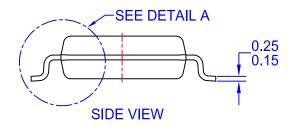

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I_{CC} (opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$.

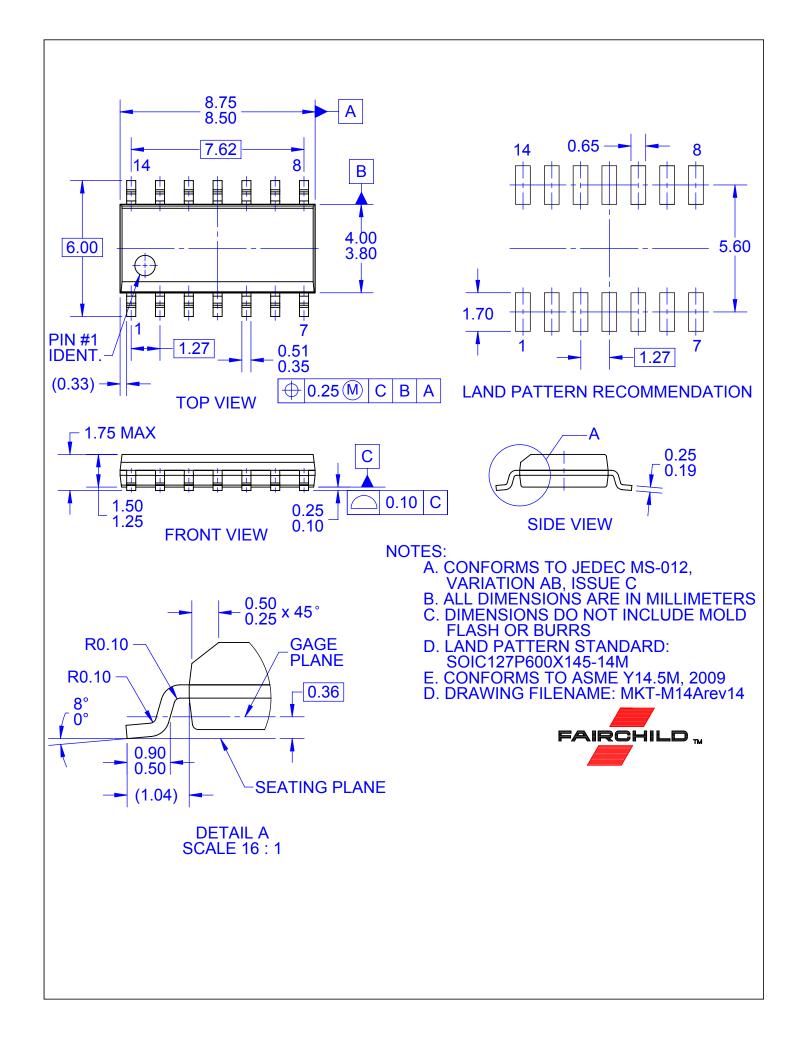

AC Operating Requirements

			T _A = 25°C		T _A = -40°C to +85°C	Units
Symbol	Parameter	V _{CC} (V) ⁽⁴⁾	Тур.	Guaranteed Minimum		
t _W (L), t _W (H)	Minimum Pulse Width (CP)	3.3		5.0	5.0	ns
		5.0		5.0	5.0	
t _W (L)	Minimum Pulse Width (MR)	3.3		5.0	5.0	ns
		5.0		5.0	5.0	
t _S	Minimum Setup Time	3.3		5.0	6.0	ns
		5.0		4.5	4.5	
t _H	Minimum Hold Time	3.3		0.0	0.0	ns
		5.0		1.0	1.0	
t _{REC}	Minimum Removal Time (MR)	3.3		2.5	2.5	ns
		5.0		2.5	2.5	


Note:

4. V_{CC} is 3.3 \pm 0.3V or 5.0 \pm 0.5V




LAND PATTERN RECOMMENDATION

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DRAWING FILENAME: MKT-M14Drev4.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

74VHC164MX 74VHC164SJ 74VHC164SJX 74VHC164MTCX 74VHC164MTC 74VHC164M 74VHC164N

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331