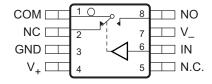
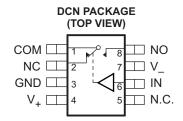


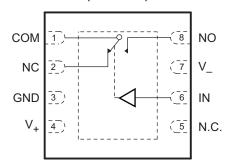
± 6 V/+12 V, 5 Ω , LOW r_{ON} SINGLE SPDT ANALOG SWITCH

Check for Samples: TS12A12511


FEATURES


- ±2.7 V to ±6 V Dual Supply
- 2.7 V to 12 V Single Supply
- 5-Ω (typ) ON-State Resistance
- 1.6-Ω (typ) ON-State Resistance Flatness
- 3.3-V, 5-V Compatible Digital Control Inputs
- Rail-to-Rail Analog Signal Handling
- Fast t_{ON}, t_{OFF} Times
- Tiny 8-Lead SOT-23, 8-Lead MSOP, and QFN-8 Packages
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS


- Automatic Test Equipment
- Power Routing
- Communication Systems
- Data Acquisition Systems
- Sample-and-Hold Systems
- · Relay Replacement
- · Battery-Powered Systems

DGK PACKAGE (TOP VIEW)

DRJ PACKAGE (TOP VIEW)

N.C. - Not internally connected

NC - Normally closed

NO - Normally open

The Exposed Thermal Pad must be electrically connected to V_ or left floating.

DESCRIPTION/ORDERING INFORMATION

The TS12A12511 is a single-pole double-throw (SPDT) analog switch capable of passing signals with swings of 0 to 12 V or –6 V to 6 V. This switch conducts equally well in both directions when it is on. It also offers a low ON-state resistance of 5 Ω (typical), which is matched to within 1 Ω between channels. The max current consumption is <1 μ A and –3 dB bandwidth is >93 MHz. The TS12A12511 exhibits break-before-make switching action, preventing momentary shorting when switching channels. This device is available packaged in an 8-lead MSOP, 8-lead SOT-23, and a 8-pin QFN.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Table 1. ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾ (2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	MSOP – DGK	Tape and reel	TS12A12511DGKR	2US
–40°C to 85°C	QFN – DRJ	Tape and reel	TS12A12511DRJR	ZVE
	SOT - DCN	Tape and reel	TS12A12511DCNR	NFH

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

TRUTH TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	On	Off
Н	Off	On

ABSOLUTE MAXIMUM RATINGS(1)

 $T_A = 25$ °C (unless otherwise noted).

		·	MIN	MAX	UNIT
V ₊ to V ₋				13	V
V₊ to GND)		-0.3	13	V
V_ to GND			-6.5	0.3	V
V _{I/O}	Analog inputs		V 0.5	V ₊ + 0.5	V
I _{IN}	Digital inputs			±30	mA
	Peak current	NC, NO, or COM		±100	mA
I _{I/O}	Continuous current	NC, NO, or COM		±50	mA
T _{stg}	Storage temperature range		-65	150	°C
T _A	Operating temperature range		-40	85	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE RATINGS

				UNIT
	DCN package	220		
θ_{JA}	Package thermal impedance	DGK package	173	°C/W
		DRJ package	103	

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ELECTRICAL CHARACTERISTICS ±5-V Dual Supply

 $V_{+} = 5 \text{ V} \pm 10\%, V_{-} = -5 \text{ V} \pm 10\%, T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	'	T _A = 25°C		T _A = -4	10°C to 8	5°C	UNIT
FANAMETER	JINIDUL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	JIVII
Analog Switch									
Analog signal range						V_		V ₊	V
ON-state resistance	r _{ON}	V_{NC} = -4.5 V to +4.5 V or V_{NO} = -4.5 V to 4.5 V, I_{COM} = -10 mA; see Figure 12		5			5	8	Ω
ON-state resistance match between channels	Δr _{ON}	$V_{NC} = -4.5 \text{ V to } +4.5 \text{ V}$ or $V_{NO} = -4.5 \text{ V to } +4.5 \text{ V}$, $I_{COM} = -10 \text{ mA}$		1	1.2			1.6	Ω
ON-state resistance flatness	r _{ON(flat)}	$V_{NC} = -3.3 \text{ V to } +3.3 \text{ V}$ or $V_{NO} = -3.3 \text{ V to } +3.3 \text{ V}$, $I_{COM} = -10 \text{ mA}$		1.6	2.2			2.2	Ω
Leakage Currents									
OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{NC} = -4.5 \text{ V to } +4.5 \text{ V}$ or $V_{NO} = -4.5 \text{ V to } +4.5 \text{ V}$ $V_{COM} = -4.5 \text{ V to } +4.5 \text{ V}$; see Figure 13		±0.5	±1			±50	nA
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$V_{NC} = -4.5 \text{ V to } +4.5 \text{ V}$ or $V_{NO} = -4.5 \text{ V to } +4.5 \text{ V}$ $V_{COM} = \text{ open}$; see Figure 14		±0.5	±1			±50	nA
Digital Inputs									
High-level input voltage	V _{INH}					2.4		V ₊	V
Low-level input voltage	V _{INL}					0		0.8	V
Input current	I_{INL} , I_{INH}	$V_{IN} = V_{INL}$ or V_{INH}		0.005				±1	μA
Control input capacitance	C _{IN}			2.5					pF
Dynamic ⁽¹⁾									
Turn-ON time	t _{ON}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V$; see Figure 16		80	95			115	ns
Turn-OFF time	t _{OFF}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF, \ V_{COM} = 3.3 \ V$		41	50			56	ns
Break-before-make time delay	t _{BBM}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V;$ see Figure 17		36		18			ns
Charge injection	Q _C	$V_{NC} = V_{NO} = 0 \text{ V}, R_{GEN} = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 18		26					рС
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 19		-70					dB
Channel-to-channel crosstalk	X _{TALK}	$R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz,$ see Figure 20		-7 0					dB
Bandwidth -3 dB	BW	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 21		93					MH:
Total harmonic distortion	THD	R_L = 600 Ω , C_L = 15pF, VNO = 1V _{RMS} , f = 20 kHz; see Figure 22		0.004					%
NC, NO OFF capacitance	$C_{NC(OFF)}, \ C_{NO(OFF)}$	f = 1 MHz; see Figure 15		14					pF
COM, NC, NO ON capacitance	$\begin{array}{c} C_{\text{COM(ON)}}, \\ C_{\text{NC(ON)}}, \\ C_{\text{NO(ON)}} \end{array}$	f = 1 MHz; see Figure 15		60					pF
Supply									
Positive supply current	I ₊			0.03				1	μΑ

⁽¹⁾ Ensured by design, not subject to production test.

ELECTRICAL CHARACTERISTICS 12-V Single Supply

 V_{+} = 12 V ± 10%, V_{-} = 0 V, GND = 0 V, T_{A} = -40°C to 85°C (unless otherwise noted)

DADAMETED	CVMDOL	TEST CONDITIONS		T _A = 25°C		T _A = -4	10°C to 8	5°C	LINUT
PARAMETER	SYMBOL	TEST CONDITIONS	MIN TYP MAX		MAX	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range						0		V ₊	V
ON-state resistance	r _{on}	$V_{NC} = 0 \text{ V to } 10.8 \text{ V or } V_{NO} = 0 \text{ V to } 10.8 \text{ V,} $ $I_{COM} = -10 \text{ mA, see Figure } 12$		5			5	8	Ω
ON-state resistance match between channels	Δr_{on}	$V_{NC} = 0$ V to 10.8 V or $V_{NO} = 0$ V to 10.8 V, $I_{COM} = -10$ mA		1.6	2.4			2.6	Ω
ON-state resistance flatness	r _{on(flat)}	V_{NC} = 3.3 V to 7V or V_{NO} = 3.3 V to 7 V, I_{COM} = -10 mA		1.7			1.8	3.2	Ω
Leakage Currents									
OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{NC} = 0 \text{ V to } 10.8 \text{ V or } V_{NO} = 0 \text{ V to } 10.8 \text{ V}, \\ V_{COM} = 0 \text{ V to } 10.8 \text{ V}; \text{ see} \\ \text{Figure } 13$		±0.5	±10			±50	nA
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$V_{NC} = 0 \text{ V to } 10.8 \text{V or } V_{NO} = 0 \text{ V to } 10.8 \text{ V,} $ $V_{COM} = \text{open; see Figure } 14$		±0.5	±10			±50	nA
Digital Inputs					· ·			•	
High-level input voltage	V _{INH}					5		V ₊	V
Low-level input voltage	V_{INL}					0		0.8	V
Input current	I _{INL} , I _{INH}	$V_{IN} = V_{INL}$ or V_{INH}		±0.005				±0.1	μA
Digital input capacitance	C_{IN}			2.7	T				pF

ELECTRICAL CHARACTERISTICS 12-V Single Supply (continued)

 $V_{+} = 12 \text{ V} \pm 10\%$, $V_{-} = 0 \text{ V}$, GND = 0 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

242445752	OVMEDOL	TEGT COMPITIONS	T _A = 25°C			T _A = -4	5°C	LINIT	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic ⁽¹⁾	!	-						ı	
Turn-ON time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{COM} = 3.3 V$; see Figure 16		56	85			110	ns
Turn-OFF time	t _{OFF}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{COM} = 3.3 V$; see Figure 16		25	30			31	ns
Break-before-make time delay	t _{BBM}	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V;$ see Figure 17		30		19			ns
Charge injection	Q _C	$\begin{aligned} R_{\text{GEN}} &= V_{\text{NC}} = V_{\text{NO}} = 0 \text{ V, } R_{\text{GEN}} = 0 \\ \Omega, C_{\text{L}} &= 1 \text{ nF;} \\ \text{see Figure 18} \end{aligned}$		491					рС
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19		-70					dB
Channel-to-channel crosstalk	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 20		-70					dB
Bandwidth –3 dB	BW	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 21		122					MHz
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 15pF$, $V_{NO} = 1V_{RMS}$, $f = 20 kHz$; see Figure 22		0.04					%
NC, NO OFF capacitance	C _{NC(OFF)} , CI _{NO(OFF)}	f = 1 MHz, see Figure 15		14					pF
COM, NC, NO ON capacitance	C _{COM(ON)} , C _{NC(ON)} , C _{NO(ON)}	f = 1 MHz, see Figure 15		55					pF
Supply	· <u> </u>	<u> </u>							
Positive supply current	I ₊			0.07				1	μA

⁽¹⁾ Ensured by design, not subject to production test.

ELECTRICAL CHARACTERISTICS 5-V Single Supply

 $V_{+} = 5 \text{ V} \pm 10\%$, $V_{-} = 0 \text{ V}$, GND = 0 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

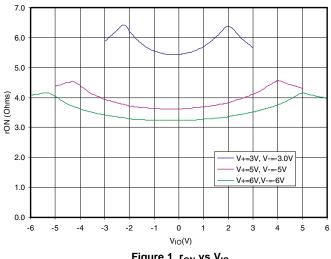
DADAMETED	CVMDOL	TEST CONDITIONS	Т	_A = 25°C		T _A = -4	10°C to 8	5°C	UNIT
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Analog Switch	•								
Analog signal range						0		V ₊	V
ON-state resistance	r _{on}	V_{NC} =0 V to 4.5 V or V_{NO} = 0 V to 4.5 V, I_{COM} = -10 mA; see Figure 12		8	10			12.5	Ω
ON-state resistance match between channels	Δr_{on}	V_{NC} =0 V to 4.5 V or V_{NO} = 0 V to 4.5 V, I_{COM} = -10 mA		1	1.1			1.5	Ω
ON-state resistance flatness	r _{on(flat)}	V_{NC} =0 V to 4.5 V or V_{NO} = 0 V to 4.5 V, I_{COM} = -10 mA		1.3			1.3	2	Ω
Leakage Currents	•				· ·			•	
OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{NC} = 0 \text{ V to } 4.5 \text{ V or } V_{NO} = 0 \text{ V to } 4.5 \text{ V}, \\ V_{COM} = 0 \text{ V to } 4.5 \text{ V}; \text{ see Figure } 13$		±0.5	±1			±50	nA
ON leakage current	I _{NC(ON)} , I _{NO(ON)}	$V_{NC} = 0 \text{ V to } 4.5 \text{V or } V_{NO} = 0 \text{ V to}$ 4.5 V, $V_{COM} = \text{open; see Figure 14}$		±0.5	±1			±50	nA
Digital Inputs									
High-level input voltage	V _{INH}					2.4		V_{+}	V
Low-level input voltage	V _{INL}					0		8.0	V
Input current	I _{INL} , I _{INH}	$V_{IN} = V_{INL}$ or V_{INH}		0.01				±0.1	μΑ
Digital input capacitance	C _{IN}			2.8					pF

ELECTRICAL CHARACTERISTICS 5-V Single Supply (continued)

 $V_{+} = 5 \text{ V} \pm 10\%$, $V_{-} = 0 \text{ V}$, GND = 0 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

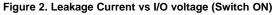
DADAMETED	CVMDC:	TEST COMPITIONS	Т	_A = 25°C		$T_A = -4$	10°C to 8	5°C	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Dynamic ⁽¹⁾									
Turn-ON time	t _{ON}	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{COM} = 3.3 \ V;$ see Figure 16		119	145			178	ns
Turn-OFF time	t _{OFF}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{COM} = 3.3 V$; see Figure 16		38	47			95.2	ns
Break-before-make time delay	t _{BBM}	$R_L = 300 \ \Omega, C_L = 35 \ pF,$ $V_{NC} = V_{NO} = 3.3 \ V;$ see Figure 17		79		44			ns
Charge injection	Q _C	$\begin{aligned} & V_{GEN} = V_{NC} = V_{NO} = 0 \; V, \; R_{GEN} = 0 \\ & \Omega, \; C_{L} = 1 \; nF; \\ & see \; Figure \; 18 \end{aligned}$		65					рС
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19		-70					dB
Channel-to-channel crosstalk	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 20		-70					dB
Bandwidth -3 dB	BW	$R_L = 50 \Omega$, see Figure 21		152					MHz
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 15 pF$, $V_{NO} = 1$ VRMS, $f = 20 kHz$; see Figure 22		0.04					%
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	f = 1 MHz, see Figure 15		15					pF
COM, NC, NO ON capacitance	$\begin{array}{c} C_{\text{COM(ON)}}, \\ C_{\text{NC(ON)}}, \\ I_{\text{NO(ON)}} \end{array}$	f = 1 MHz, see Figure 15		55					pF
Power Requirements									-
V ₊ supply current	I ₊	$V_{IN} = 0 \text{ V or } V_+$		0.02				1	μΑ

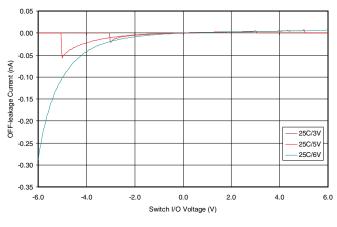
⁽¹⁾ Ensured by design, not subject to production test.


PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Pin Function Descriptions

TERM	IINAL	DESCRIPTION
NAME	NO.	DESCRIPTION
1	COM	Common terminal. Can be an input or output.
2	NC	Normally closed. Can be an input or output.
3	GND	Ground (0 V) reference
4	V ₊	Most positive power supply
5	N.C.	No connect. Not internally connected.
6	IN	Logic control input
7	V_	Most negative power supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.
8	NO	Normally open. Can be an input or output.




TYPICAL PERFORMANCE CHARACTERISTICS

0.05 0.00 -0.05 ON-leakage Current (nA) -0.10 -0.15 -0.20 -0.25 25C/3V -0.30 25C/5V 25C/6V -0.35 -0.40 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 Switch I/O Voltage (V)

Figure 1. r_{ON} vs V_{IO}

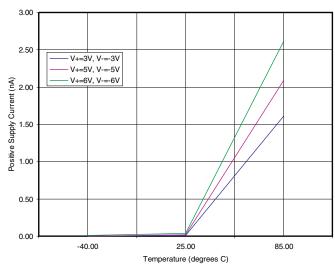
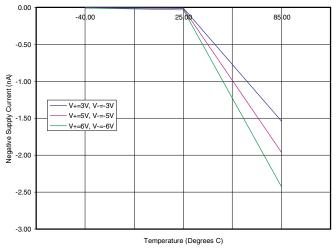



Figure 3. Leakage Current vs I/O Voltage (Switch OFF)

Figure 4. Positive Supply Current vs Temperature

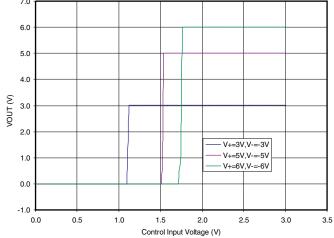
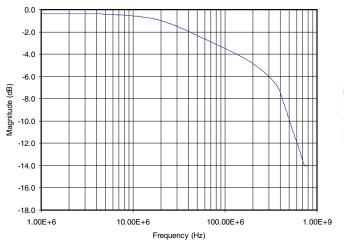



Figure 5. Negative Supply Current vs Temperature

Figure 6. Control Input (IN) Threshold Voltage

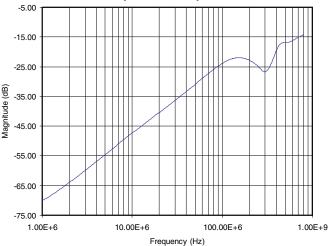
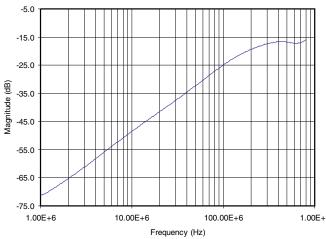
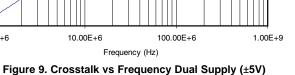




Figure 7. Bandwidth Dual Supply (±5V)

Figure 8. Off Isolation vs Frequency Dual Supply (±5v)

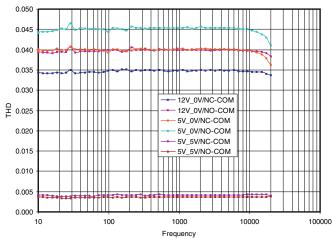


Figure 10. THD+N (%) vs Frequency

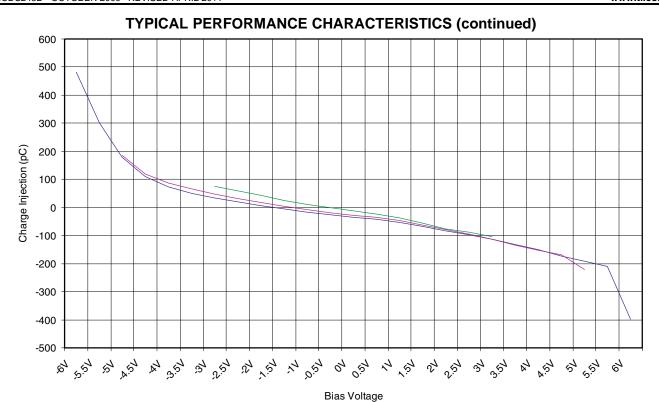


Figure 11. Charge Injection vs Bias Voltage

TEST CIRCUITS

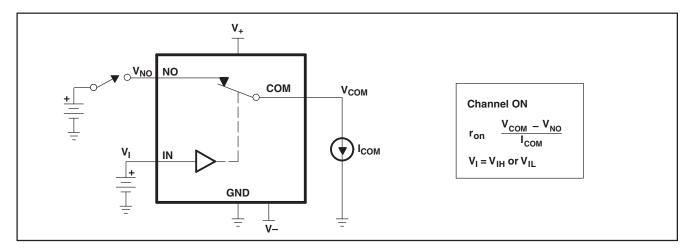


Figure 12. ON-State Resistance

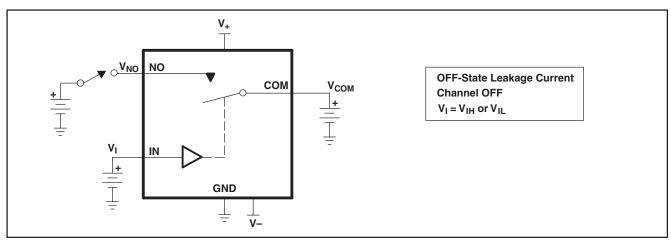


Figure 13. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)})

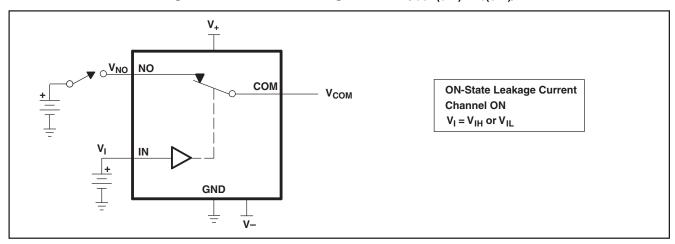
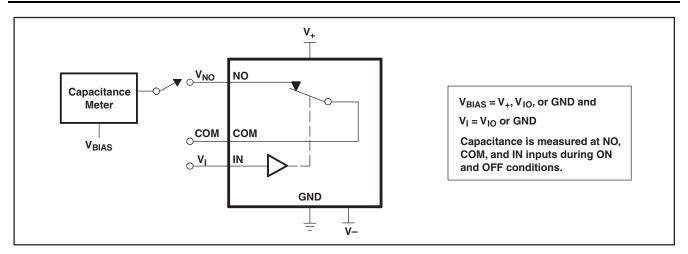
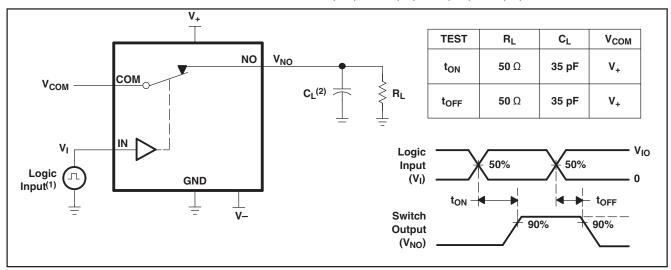
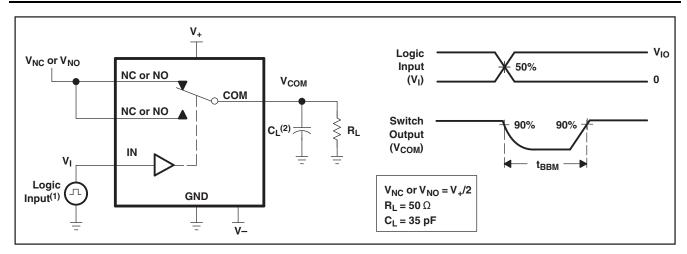
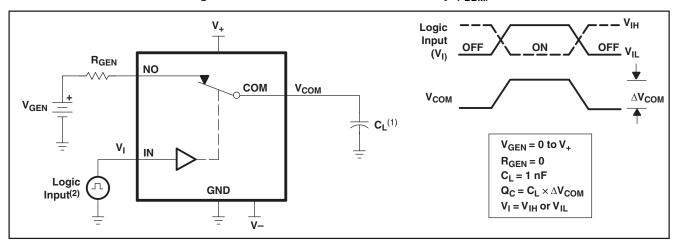


Figure 14. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)})


Figure 15. Capacitance (C_{COM(OFF)}, C_{COM(ON)}, C_{NC(OFF)}, C_{NC(ON)})

- (1) All input pulses are supplied by generators having the following characteristics: PRRs 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- (2) C_L includes probe and jig capacitance.


Figure 16. Turn-ON (t_{ON}) and Turn-OFF Time (t_{OFF})

- (1) All input pulses are supplied by generators having the following characteristics: PRRs 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- $^{(2)}$ C_L includes probe and jig capacitance.

Figure 17. Break-Before-Make Time Delay (t_{BBM})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRRs 10 MHz, $Z_0 = 50 \Omega$, $t_f < 5$ ns, $t_f < 5$ ns.

Figure 18. Charge Injection (Q_C)

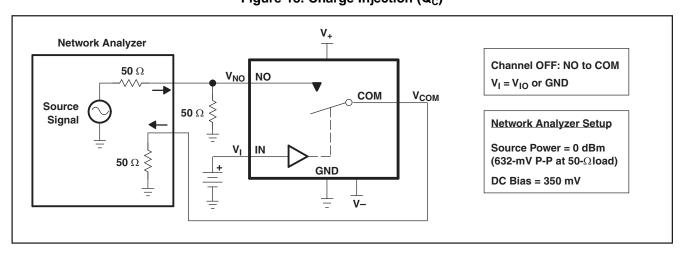


Figure 19. OFF Isolation (O_{ISO})

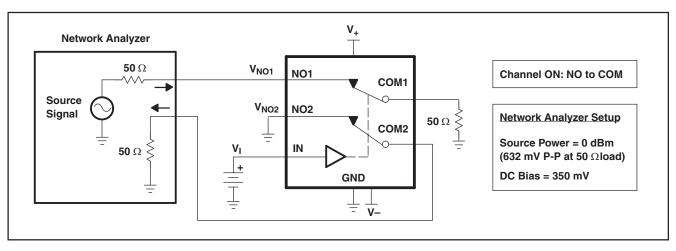


Figure 20. Channel-to-Channel Crosstalk (X_{TALK})

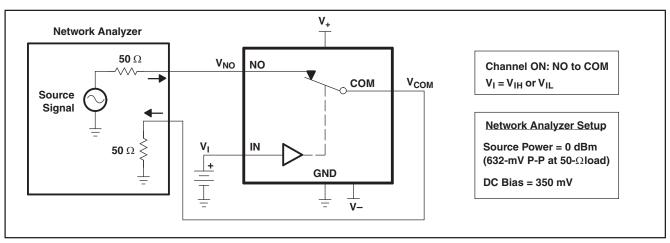
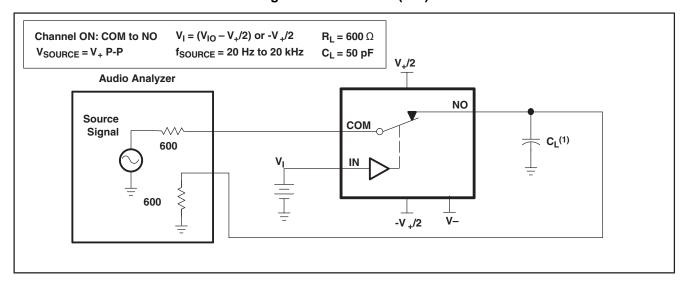
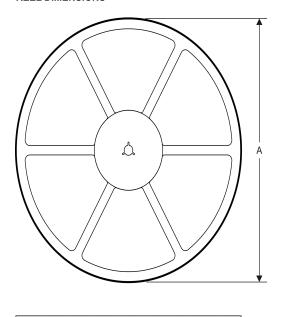



Figure 21. Bandwidth (BW)

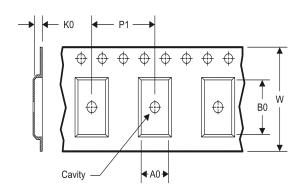
 $^{(1)}$ C_L includes probe and jig capacitance.

Figure 22. Total Harmonic Distortion

REVISION HISTORY


Cł	nanges from Revision A (May 2010) to Revision B	Page
•	Deleted preview status from DGK and DCN packages.	1

PACKAGE MATERIALS INFORMATION

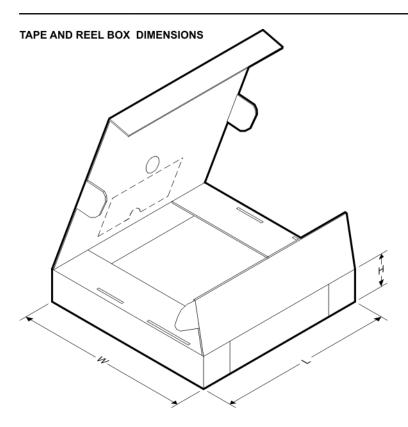

www.ti.com 16-Aug-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

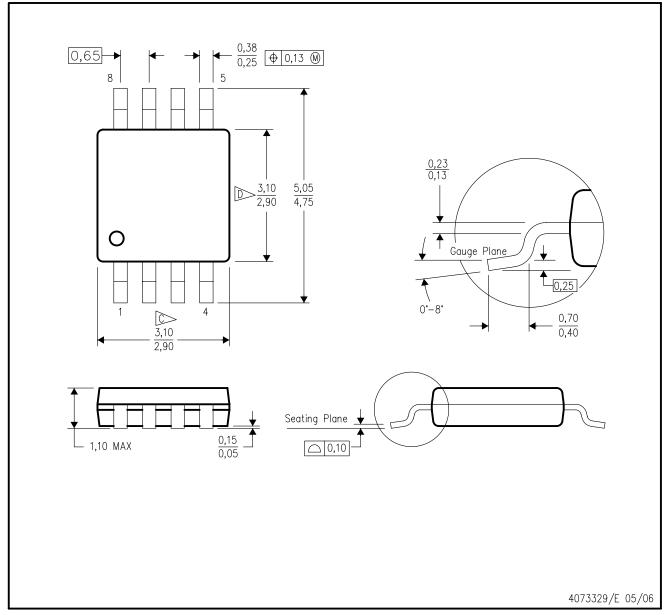

TAPE AND REEL INFORMATION

*All dimensions are nominal

All differsions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS12A12511DCNR	SOT-23	DCN	8	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS12A12511DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS12A12511DRJR	SON	DRJ	8	1000	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2012

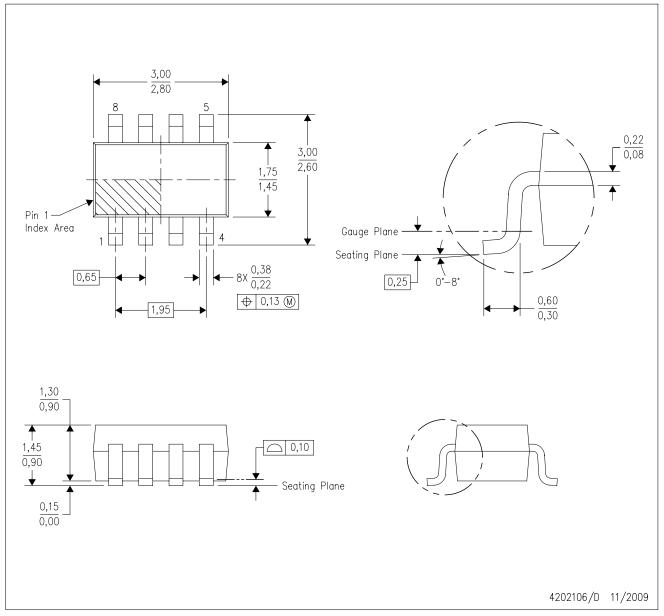


*All dimensions are nominal

7 til diritoriorerio di e ricitima							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS12A12511DCNR	SOT-23	DCN	8	3000	202.0	201.0	28.0
TS12A12511DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TS12A12511DRJR	SON	DRJ	8	1000	210.0	185.0	35.0

DGK (S-PDSO-G8)

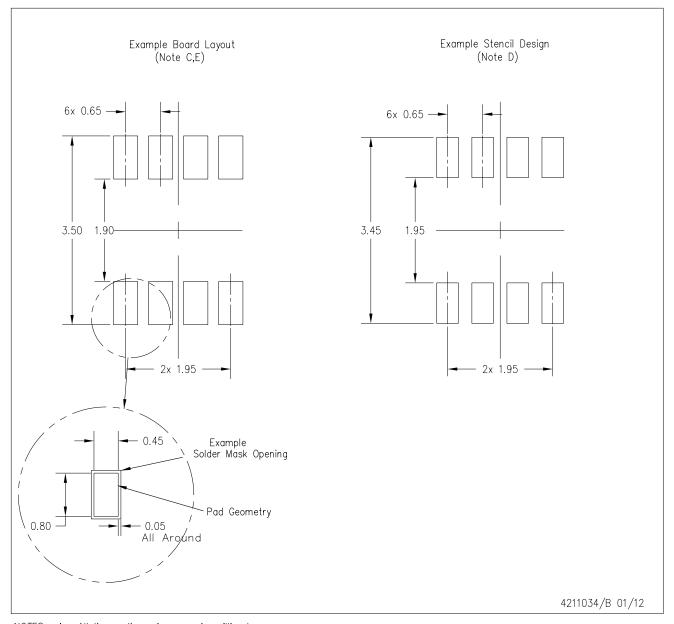
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DCN (R-PDSO-G8)

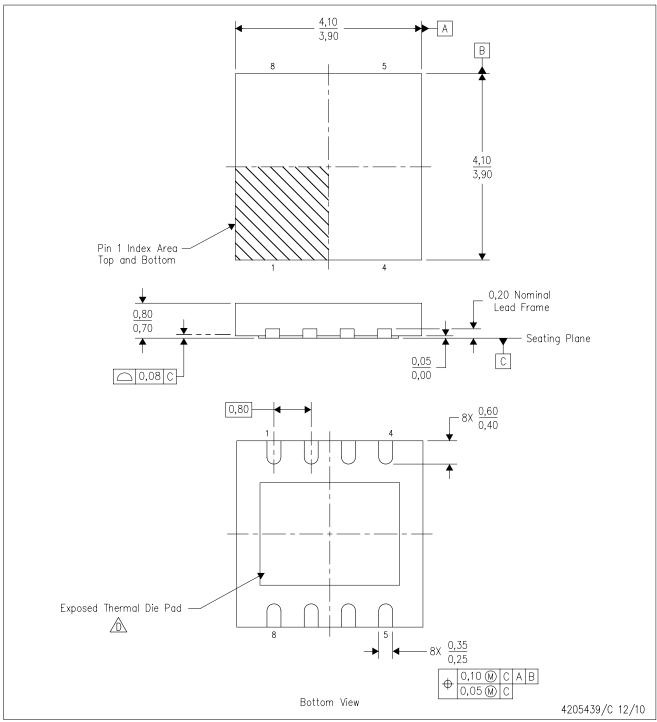
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DRJ (S-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

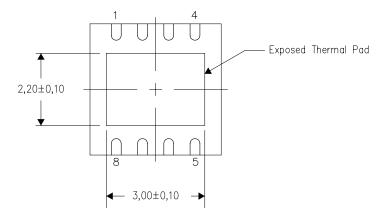
NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. SON (Small Outline No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Package complies to JEDEC MO-229 variation WGGB.

DRJ (S-PWSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

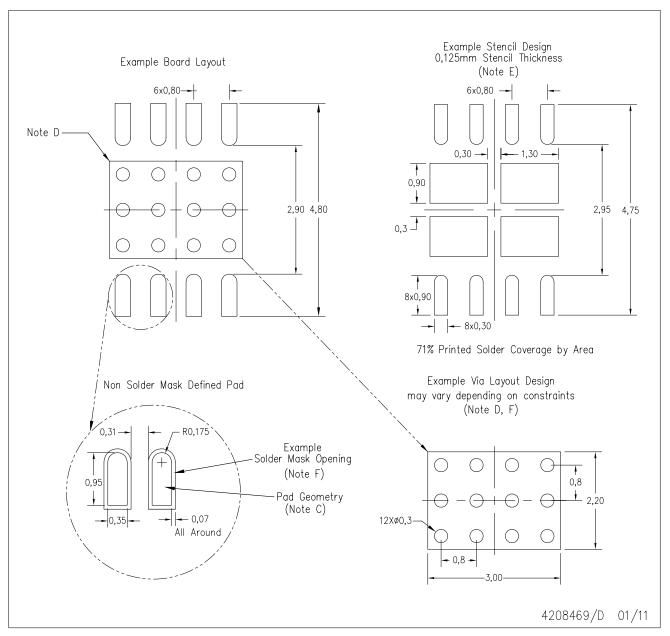
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206882/F 01/11

NOTE: All linear dimensions are in millimeters

DRJ (S-PWSON-N8)

SMALL PACKAGE OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com https://www.ti.com.
- E. Laser cutting apertures with electropolish and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances and vias tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts		Applications
udia	ununu ti com/ou dio	Automotive on

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense


Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti-rfid.com

Pr

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331