ﬁ- adafruit learning system

Adafruit 2.8" and 3.2" Color TFT Touchscreen Breakout v2

ﬁr adafruit learning system
Overview

@)

)OO0

HR RST | X#Y#X-Y-DBD1D20D304D50607,

;

|

!

)

g0

0

32
o3

50
o2

o

O'.
Q

MIHEWHHHHR ﬁ 111 HH HH

flhlllunhrwﬁlukl

Add some jazz & pizazz to your project with a color touchscreen LCD. These TFT displays are big (2.8" or 3.2"
diagonal) bright (4 or 6 white-LED backlight) and colorfull 240x320 pixels with individual RGB pixel control, this has way
more resolution than a black and white 128x64 display.

As a bonus, this display has either a resistive or capacitive touchscreen attached to it already, so you can detect finger
presses anywhere on the screen.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 4 of 73

http://learn.adafruit.com/adafruit-gfx-graphics-library
https://www.adafruit.com/product/3857

This display has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller.The
display can be used in two modes: 8-bit or SPI. For 8-bit mode, you'll need 8 digital data lines and 4 or 5 digital control
lines to read and write to the display (12 lines total). SPI mode requires only 5 pins total (SPI data in, data out, clock,
select, and d/c) but is slower than 8-bit mode.

If you have the resistive touch version, 4 pins are required for the touch screen (2 digital, 2 analog) oryou can
purchase and use our resistive touchscreen controller (not included) to use 12C or SPI (http://adafru.it/1571)

If you have the capacitive touch version, there is a capacitive touch controller chip already installed that communicates
of standard 12C plus an IRQ line.

Touchscreen ® LCD control PUR
Imputs

B-bit 8088~

=]

[Ty SR T ITIF TS
!usa*i | &
ﬁo. . il 1 1 1”””"”:"‘!
e 7 T %
(=]

b gasy |
TF T LED-Breakout Board+
re Resistive T
Pouwer with !
Logic at

Of course, we wouldn't just leave you with a datasheet and a "good luck!". For 8-bit interface fanswe've written a full
open source graphics library that can draw pixels, lines, rectangles, circles, text, and more (https://adafru.it/aHk). For SPI
users, we have a library as well (https://adafru.it/d4d), its separate from the 8-bit library since both versions are heavily
optimized.

For resitive touch, we also have a touch screen library that detects x, y and z (pressure)(https://adafru.it/aT1) and
example code to demonstrate all of it.

For capacitive touch, we have an 12C interface library for the captouch chip. (https://adafru.it/dGG)

If you are using an Arduino-shaped microcontroller, check out our TFT shield version of this same display, with SPI
control and a touch screen controller as well (http://adafru.it/1651)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 5 of 73

http://www.adafruit.com/products/1571
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Adafruit_FT6206_Library
http://www.adafruit.com/products/1651

N Bl oni Ko
zaotoear

%

52080 +0E0

%

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 6 of 73

) * adafruit learning system
Pinouts
The 2.8" and 3.2" TFT display on this breakout supports many different modes - so many that the display itself has 50
pins. However, we think most people really only use 2 different modes, either "SPI" mode or 8-bit mode (which includes

both 6800 and 8080). Each 'side' of the display has all the pins required for that mode. You can switch between
modes, by rewiring the display, but it cannot be used in two modes at the same time!

All logic pins, both 8-bit and SPI sides, are 3-5V logic level compatible, the 74LV X245 chips on the back perform fast
level shifting so you can use either kind of logic levels. If there's data output, the levels are at at 3.3V

|:| We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger

e e

onaooogoooooﬁooo

[T == = T, B = T
L2&3INOD g
o -]

| IE it T
creen @ LCD control PUR
%om Inputs -
it 8080 'j,pe ‘parallel.

'!!“!H! $33d34341)

ILI9341

R

, gay
2.8” TFT LCO Breakout Board+
4-uire Resistive Touchscreen

Logic at 3,30~ =5U

SPI Interface
oR
Z

(OCard Detect

X
=
‘-.?

SPI Mode

This is what we think will be a popular mode when speed is not of the utmost importance. It doesn't use as many pins
(only 4 to draw on the TFT if you skip the MISO pin), is fairly flexible, and easy to port to various microcontrollers. It also
allows using a microSD card socket on the same SPI bus. However, its slower than parallel 8-bit mode because you

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 7 of 73

have to send each bit at a time instead of 8-bits at a time. Tradeoffs!

4-uire Resistive Touchscreen
= = Pouver uith 33U~

95
(8]

> —od
L]

]

£

GND - this is the power and signal ground pin

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire it right!
3.3Vout - this is the 3.3V output from the onboard regulator

CLK - this is the SPI clock input pin

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card mostly, and for debugging the TFT
display. It isn't necessary for using the TFT display which is write-only

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data from the microcontroller to the SD
card and/or TFT

® CS-thisis the TFT SPI chip select pin

D/C - this is the TFT SPI data or command selector pin

RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so this pin is not required but it can be
helpful sometimes to reset the TFT if your setup is not always resetting cleanly. Connect to ground to reset the
TFT

Lite - this is the PWM input for the backlight control. It is by default pulled high (backlight on) you can PWM at any
frequency or pull down to turn the backlight off

IM3 IM2 IM1IMO - these are interface control set pins. In general these breakouts aren't used, and instead the
onboard jumpers are used to fix the interface to SPI or 8-bit. However, we break these out for advanced use and
also for our test procedures

® Card CS/ CCS- this is the SD card chip select, used if you want to read from the SD card.
® Card Detect/ CD - this is the SD card detect pin, it floats when a card is inserted, and tied to ground when the

card is not inserted. We don't use this in our code but you can use this as a switch to detect if an SD card is in
place without trying to electrically query it. Don't forget to use a pullup on this pin if so!

Resistive touch pins

Y+ X+ Y- X-these are the 4 resistive touch screen pads, which can be read with analog pins to determine touch
points. They are completely separated from the TFT electrically (the overlay is glued on top)

Capacitive touch pins

SDA - this is the 12C data pin for the captouch chip, there's level shifting on this pin so you can use 3-5V logic.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 8 of 73

There's also a 10K pullup

SCL - this is the 12C clock pin for the captouch chip, there's level shifting on this pin so you can use 3-5V logic.
There's also a 10K pullup

IRQ - this is the captouch interrupt pin. When a touch is detected, this pin goes low.

8-Bit Mode

This mode is for when you have lots of pins and want more speed. In this mode we send 8 bits at a time, so it needs
way more pins, 12 or so (8 bits plus 4 control)! This isn't recommended because most microcontrollers don't have a ton
of pins and also we optimize our libraries for SPI!

Q Q000000000000Q0Q0000T
™~ R

v dn > o-
_::u:c::\um:';
a4 O &

Inputs -

z..mzmmm!'! "

NNdQQCJG ot—nmnm:nr
| O

DDD% 2 IXNob 2

[ED 0oz 70_cas
8! direct : 18 bit BR8B-type parallel
!gggunuﬂnnnnl,

el .‘.‘Iilllliit

GND - this is the power and signal ground pin

3-5V (Vin)- this is the power pin, connect to 3-5VDC - it has reverse polarity protection but try to wire it right!

CS - this is the TFT 8-bit chip select pin (it is also tied to the SPI mode CS pin)

C/D - this is the TFT 8-bit data or command selector pin. It is not the same as the SPI D/C pin!Instead, it's the
same as the SPI CLK pin.

WR - this is the TFT 8-bit write strobe pin. It is also connected to the SPI D/C pin

RD - this is the TFT 8-bit read strobe pin. You may not need this pin if you don't want to read data from the display
RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so this pin is not required but it can be
helpful sometimes to reset the TFT if your setup is not always resetting cleanly. Connect to ground to reset the
TFT

Backkite - this is the PWM input for the backlight control. It is by default pulled high (backlight on) you can PWM
at any frequency or pull down to turn the backlight off

DO thru D7 - these are the 8 bits of parallel data sent to the TFT in 8-bit mode. DO is the least-significant-bit and
D7 is the MSB

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 9 of 73

Wiring and ﬁ- adafruit learning system

Test

O
1O

0000
CCS

3_In1 C

|
|
|

on]
o2
og
oF
o
o8
o7
C3
O

Mz Ine Co|

We tried to make this TFT breakout useful for both high-pin microcontrollers that can handle 8-bit data transfer modes
as well as low-pincount micros like the Arduino UNO and Leonardo that are OK with SPI.

Essentially, the tradeoff is pins for speed. SPI is about 2-4 times slower than 8-bit mode, but that may not matter for
basic graphics!

In addition, SPI mode has the benefit of being able to use the onboard microSD card socket for reading images. We
don't have support for this in 8-bit mode so if you want to have an all-in-one image viewer type application, use SPI!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 10 of 73

3-Bit Wiring and ﬁ adafruit learning system
Test

8-Bit Wiring

Wiring up the 8-bit mode is kind of a pain, so we really only recommend doing it for UNO (which we show) and Mega
(which we describe, and is pretty easy since its 8 pins in a row). Anything else, like a Leonardo or Micro, we strongly
recommend going with SPI mode since we don't have an example for that. Any other kind of 'Arduino compatible' that
isn't an Uno, try SPI first. The 8-bit mode is hand-tweaked in the Adafruit_TFTLCD pin_magic.h file. Its really only for
advanced users who are totally cool with figuring out bitmasks for various ports & pins.

Really, we'll show how to do the UNO but anything else? go with SPI!

R N e e Sl L S L O S e

C)oooooooooooooooooooa

0 ¥ 0 L+ 0-QaO0N 20—
== e fo&a3INobg
: — O [&]
hscreen LCD control PUR
wg [nputs -
it 8980 "tqpe ‘parallel:.
SRR T T

BN N

C/DO;:

C}DuuGuOOOO
xl\.\Olﬂﬁ‘mNngC

WR O |
cs O |

3-5V O |

RD O |
l-__

LCD Data 1/0 'I:a'pa::\itive LCE}nco?;rol PIR |
= ocuchscreen pPuU 0
ST N (i 2

grestenateflannaneneny

SR BRRRFRFRATH o000
T

Backlite O |

|
|

|:| We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger

D Make sure you're soldering and connecting to the 8-bit side!

Part 1- Power & backlight test
Begin by wiring up the 3-5VDC and GND pins.

Connect the 3-5V pin to 5V and GND to GND on your Arduino. I'm using the breadboard rails but you can also just wire
directly.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 11 of 73

ONINOHY

Power it up and you should see the white backlight come on.

Part 2 - Data Bus Lines

Now that the backlight is working, we can get the TFT LCD working. There are many pins required, and to keep the
code running fairly fast, we have 'hardcoded' Arduino digital pins #2-#9 for the 8 data lines.

However, they are not in that order! DO and D1 go to digital #8 and #9, then D2-D7 connect to #2 thru #7. This is
because Arduino pins #0 and #1 are used for serial data so we can't use them

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 12 of 73

=
=
-]
[
H
4
- e

Begin by connecting DO and D1 to digital #8 and 9 respectively as seen above. If you're using a Mega, connect the TFT
Data Pins DO-D1to Mega pins #22-23, in that order. Those Mega pins are on the 'double’ header.

B = abcde . fghi i|'+ﬁ

;|
i3
:;.

ONINQYY -

o
H
o
-
=
>
r
3
=

el § I p— —

53
2
+ ¥
-

Now you can connect the remaining 6 pins over. Connect D2-D7 on the TFT pins to digital 2 thru 7 in that order. If
you're using a Mega, connect the TFT Data Pins D2-D7 to Mega pins #24-29, in that order. Those Mega pins are on
the 'double' header.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 13 of 73

abcde _fghi1:+ﬁ

ONINGHY -

In addition to the 8 data lines, you'll also need 4 or 5 control lines. These can later be reassigned to any digital pins,
they're just what we have in the tutorial by default.

® Connect the third pin CS (Chip Select) to Analog 3

® Connect the fourth pin C/D (Command/Data) to Analog 2
® Connect the fifth pin WR (Write) to Analog 1

® Connect the sixth pin RD (Read) to Analog O

-
=
=]
c
H
=

- Q

You can connect the seventh pin RST (Reset) to the Arduino Reset line if you'd like. This will reset the panel when the
Arduino is Reset. You can also use a digital pin for the LCD reset if you want to manually reset. There's auto-reset

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 14 of 73

circuitry on the board so you probably don't need to use this pin at all and leave it disconnected

The RD pin is used to read the chip ID off the TFT. Later, once you get it all working, you can remove this pin and the
ID test, although we suggest keeping it since its useful for debugging your wiring.

OK! Now we can run some code

8-Bit Library Install

We have example code ready to go for use with these TFTs. It's written for Arduino, which should be portable to any
microcontroller by adapting the C++ source.

Two libraries need to be downloaded and installed: the TETLCD library (https://adafru.it/aHk) and the GFX
library. (https://adafru.it/aJa) You can install these libraries through the Arduino library manager.

File Edit [Sketch| Tools Help

demo
// Demdg
#includ

#includ
#includ

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U
Export compiled Binary Ctrl+ Alt+5

Show Sketch Folder Crl+K
Include Library
Add File...

f/ we light one pixel at a time, this iz ocur

G e e

T — A

i

Manage Libraries...
Add ZIP Library...

Arduino libraries
ArduinoHttpClient
ArduinoSound
AudioZero

Bridae

rn ol

Search for the Adafruit_GFX library and install it. If using an older Arduino IDE (pre-1.8.10), also locate and install

Adafruit_BuslIO.

Type All - Topic All - adafruit gfy

Adafruit GFX Library by Adafruit
Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from. Install this library in addition to the
display library for your hardware,

More info

Search for the Adafruit TFTLCD library and install it

Type All - Topic All + adafruit tftled

Adafruit TFTLCD Library by Adafruit
Adafruit 2.8" TFT display Library Adafruit 2.8° TFT display Library
More info

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Version 1.6.1

- Install

Install

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

Page 15 of 73

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit-GFX-Library
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

- _
spitftbitmap | Arduino 1.0.5 Adafruit_ NFCShield 12C »
Edit Sketch Tools Help Adafruit_nRF8001 v
New Ctrl+N Adafruit_OV76T70 3
Open... Ctrl+0 Adafruit_PCD8544 2
Sketchbook 3 Adafruit_PM532 3
Examples 3 Adafruit_P52_Touchpad »
Close Ctrl+W Adafruit_ PWMServoDriver #
Save Ctrl+5 Adafruit_RABET7S 4
Save As... Ctrl+Shift+5 Adafruit_RGBLCDShield » |tion
Upload Ctrl+U Adafruit_SharpMem 3
Upload Using Programmer Ctrl+Shift+U Adafruit_SoftServo 4
Adafruit_SSD1305 3
Page Setup Ctrl+Shift+P .
Adafruit_5501306 4
Print Ctrl+P .
Adafruit_5501325 »
Preferences Ctrl+ Comma Adafruit_5501331 »
. Adafruit_55D1351 3
Quit Ctrl+Q
Adafruit_ST7735 3
/4 canmot be remapped to alternate pi i
/4 Duemilamove, eto., pin 11 = MOSI, Adafruit_STMPEG10 v
Adafruit_TC534725 k
#define TFI_DC 3 Adafruit_TEAST67 v
gdefine TFT_C3 10 : _
Adafruit TLIS34l tfr = Adafruit ILIS el L L b Lol
Adafruit_Thermal 3 rotationtest
#define 3D_C3 4 Adafruit_TLC5947 ’ titbmp
. 5 .
yoid setup fvoid) { Adafruit_TLC9711 titbmp_shield
Serial.begin(9600) ; Adafruit_TMPO06 4 tftpaint
Adafruit_TPA2016D2 3 tftpaint_shield
EEt.begin{) Adafruit_Trellis v
tft.fill%creen(ILIS341l EBLUE) ;
Adafruit_VCO706 3
Serial.print{"Initializing 3D card Adafruit_V¥51053 4

After restarting the Arduino software, you should see a new example folder called Adafruit_TFTLCD and inside, an
example called graphicstest. Upload that sketch to your Arduino. You may need to press the Reset button to reset the
arduino and TFT. You should see a collection of graphical tests draw out on the TFT.

(The images below shows SPI wiring but the graphical output should be similar!)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 16 of 73

GrooK
I impel 1

ONINOHY

If you're having difficulties, check the serial console.The first thing the sketch does is read the driver code from the TFT
It should be 0x9341 (for the ILI9341 controller inside)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 17 of 73

If you Unknown Driver Chip then it's probably something with your wiring, double check and try again!

| %] cOMS2 ; BRI

© Adafruit Industries

|&| coms2

TFT LCD test
Using Rdafruit 2.8"™ TFT Breakout Board Pinout
Found ILI%341 LCD driwver

Benchmark Time (microseconds)
Screen £ill 1322300
Text 400232
Lines 3988352
Horiz/Vert Lines 139360
§|Fectangles (outline) 103144
Rectangles (f£illed) 3070160
Circles (filled) 1325012
Circles {outline) 1738760
TIriangles ({ocutline) 1266132
Triangles (filled) 1574940

Rounded rects {outline) 585108
Rounded rects (filled) 3622556
Done!

Autoscroll Noline ending | 9600 baud

-

TFT LCD test

Using Rdafruit 2.8" TFT Breakout Board Pinout

Unknown LCD driver chip: 4141

If using the ARdafruit 2.8" TFT Arduinc shield, the line:
#define USE ADAFRUIT_SHIELD PFINOUT

should appear in the library header (Adafruit TFI.h).

If using the breakout board, it should NOT be #defined!
Alsc if using the breakout, double-check that all wiring
matches the tuteorial.

-~

m

Autoscroll MNolineending | [9600baud |

https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

Page 18 of 73

ﬁ adafruit learning system

SPI Wiring and
Test

-uire Resistive Touchscreen
' Pouer with 3.3VU-5U

' L ogic at 3.3U-5U
SPI Interfa

- 0
-0 N W
J @ 00

B

-
v
@

. - .
[

Q
o
S
0
o

C HISO
13.3V out

£3
s

|:| We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger

|:| Don't forget, we're using the SPI interface side of the PCB!

SPI Mode Jumpers

Before you start, we'll need to tell the display to put us in SPI mode so it will know which pins to listen to. To do that, we
have to connect tbe IM1, IM2 and IM3 pins to 3.3V. The easiest way to do that is to solder closed the IMx jumpers on
the back of the PCB. Turn over the PCB and find the solder jumpers

22 M

- |
it |

: .':eé'l
b |
d

5 | 022

™

E

N <2

SR . SA5

o

i

=

a

W
] ©
g

L]

a
w
b
o
-

With your soldering iron, melt solder to close the three jumpers indicated IM11M2 and IM3 (do not solder closed IMO!)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 19 of 73

N~

Close TM1/IM2.(IM3
vtor SPL” & &=

T
é;;ﬂ[.;l
":}m.

If you really don't want to solder them, you can also wire the breakout pins to the 3vo pin, just make sure you don't tie
them to 5V by accident! For that reason, we suggest going with the solder-jumper route.

Wiring
Wiring up the display in SPI mode is much easier than 8-bit mode since there's way fewer wires. Start by connecting
the power pins

® 3-5V Vin connects to the Arduino 5V pin

® GND connects to Arduino ground

® CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digital 13. On Mega's, its Digital 52
and on Leonardo/Due its ICSP-3 (See SPI Connections for more details (https://adafru.it/d5h))

® MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Digital 12. On Mega's, its Digital 50
and on Leonardo/Due its ICSP-1 (See SPI Connections for more details (https://adafru.it/d5h))

® MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Digital 11. On Mega's, its Digital 51
and on Leonardo/Due its ICSP-4 (See SPI Connections for more details (https://adafru.it/d5h))

® CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can later change this to any pin

® D/C connects to our SPI data/command select pin. We'll be using Digital 9 but you can later change this pin too.

That's it! You do not need to connect the RST or other pins for now.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 20 of 73

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

g2:
| § e

ONINQuY

=)

NI BOYH ~ 337 OMINGHY AAN

Install Libraries

You'll need a few libraries to use this display
From within the Arduino IDE, open up the Library Manager...

=l demo | Ar

File Edit ISIcetch Tools Help
Verify/Compile Ctrl+R A
Upload Ctri+U Manage Libraries...
demo

Upload Using Programmer Ctrl+ Shift+L)
Add ZIP Library...

/f Demg Export compiled Binary Ctrl+ Alt+5 rn ol
#includ Show Sketch Folder Ctrl+K Arduine libraries
j| #includ Include Library ArduinoHttpClient
#includ :
Add File... ArduinoSound
) - - . AudioZero
f/ we light one pixel at a time, this iz ocur
a8 e mieemTle — A Rridne

Install Adafruit ILI9341 TFT Library

We have example code ready to go for use with these TFTs.

Two libraries need to be downloaded and installed: first is the Adafruit ILI9341 library (https://adafru.it/d4d) (this
contains the low-level code specific to this device), and second is the Adafruit GFX Library (https://adafru.it/aJa) (which
handles graphics operations common to many displays we carry). If you have Adafruit_GFX already, make sure its the
most recent version since we've made updates for better performance

Search for ILI9341 and install the Adafruit ILI9341 library that pops up!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 21 of 73

https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit-GFX-Library

@ Library Manager . - — M

Type [Al ~ | Topic [al ~ | fiig341

Adafruit ILI9341 by Adafruit Version 1.0.11 INSTALLED &
Library for Adafruit 1L19341 displays Library for Adafruit ILIS341 displays

More info
| [nstal

For more details, especially for first-time library installers, check out our great tutorial at
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Next up, search for Adafruit GFX and locate the core library. A lot of libraries may pop up because we reference it in
the description so just make sure you see Adafruit GFX Library in bold at the top.

Install it!

Type :NI v: Topic :AII v: afy|

»

Adafruit DotStarMatrix by Adafruit Version 1.0.2 INSTALLED
Adafruit_GFX-compatible library for DotStar grids Adafruit_GFX-compatible library for DotStar grids
More info

m

Adafruit GFX Library by Adafruit Version 1.2.2 INSTALLED

Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from.JInstall this library in
=ddition to the display NBrary for your harovare.

More info

If using an older Arduino IDE (pre-1.8.10), also locate and install Adafruit_BuslO.

After restarting the Arduino software, you should see a new example folder called Adafruit_ILI9341 and inside, an
example called graphicstest. Upload that sketch to your Arduino. You may need to press the Reset button to reset the
arduino and TFT. You should see a collection of graphical tests draw out on the TFT.

(& CapTouchPaint | Arduino I.MJ o A— : E

= A Adafruit FXOS8700 ’ —

Edit Sketch Tools Help Adafruit GPS Library 3
New Ctrl+N Adafruit HDCL000 Library ’
Open... Ctrl+0 Adafruit HMC5883 Unified ’
Open Recent Adafruit HX8357 Library »
Sketchbook Adafruit 119340 L
Examples Adafruit ILIB341 breakouttouchpaint
Close Ctrl+W Adafruit INAZI9 fulltest_featherwing
Save Ctrl+5 Adafruit 10 Arduine graphicstest
Save As... Ctrl+Shift+5 Adafruit LED Backpack Library graphicstest_featherwing
PageSetup Ctrl«Shift«P Adafruit LIS3DH eneffbutten

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 22 of 73

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

ONINOHY

2
Kl
a8

ONINAYY

If you're having difficulties, check the serial console.The first thing the sketch does is read the driver configuration from
the TFT, you should see the same numbers as below

If you did not connect up the MISO line to the TFT, you wont see the read configuation bytes so please make sure
you connect up the MISO line for easy debugging! Once its all working, you can remove the MISO line

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 23 of 73

P J—
|4/ cOMS3 E=ENTSCT

| |[send]

I1.19341 Test! &
Display Power Mode: 0x9C

(|MADCTL Mode: OxdE

Pixel Format: 0x5

Image Format: 0xSC

S5elf Diagnoatic: 0xCO

Benchmark Time (microseconds)
Screen fill

m

[7] Autoscrel [Noline ending » | | 9500 baud v]]

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 24 of 73

ﬁ adafruit learning system
Bitmaps (SPI
Mode)

There is a built in microSD card slot into the breakout, and we can use that to load bitmap images! You will need a
microSD card formatted FAT16 or FAT32 (they almost always are by default).

Its really easy to draw bitmaps. However, this is only supported when talking to the display in SPI mode, not 8-bit
mode!

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which can be installed through the
Arduino Library Manager (Sketch—Include Library=Manage Libraries...). Enter “imageread” in the search field and the
library is easy to spot:

[BoN | Library Manager

Type All Topic All imageread

Adafruit ImageReader Library by Adafruit

Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for
your hardware (e.g. Adafruit_IL19341).

More info

Version 1.0.2 | Install |

Close

Lets start by downloading this image of pretty flowers (pix by johngineer)

Copy purple.bmp into the base directory of a microSD card and insert it into the microSD socket in the breakout.

You'll need to connect up the CCS pin to Digital 4 on your Arduino as well. In the below image, its the extra purple wire

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 25 of 73

You may want to try the SD library examples before continuing, especially one that lists all the files on the SD card

Now upload the File=examples—Adafruit InageReader Library—=ShieldILI9341 example to your Arduino + breakout.
You will see the flowers appear!

|:| We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger

»
=
-]
e
=
z
=]

To make new bitmaps, make sure they are less than 240 by 320 pixels and save them in 24-bit BMP format! They
must be in 24-bit format, even if they are not 24-bit color as that is the easiest format for the Arduino. You can rotate
images using the setRotation() procedure

You can draw as many images as you want - dont forget the names must be less than 8 characters long. Just copy the
BMP drawing routines below loop() and call

bmpDraw(bmpfilename, X, y);

For each bitmap. They can be smaller than 320x240 and placed in any location on the screen.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 26 of 73

ﬁ- adafruit learning system
Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics functions for all of our TFT, LCD
and OLED displays. This allows Arduino sketches to easily be adapted between display types with minimal fuss...and
any new features, performance improvements and bug fixes will immediately apply across our complete offering of
color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles, text, etc.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 27 of 73

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-library (https://adafru.it/aPx)
It covers the latest and greatest of the GFX library. The GFX library is used in both 8-bit and SPI modes so the

underlying commands (drawLine() for example) are identical!
(https://adafru.it/aPx)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 28 of 73

http://learn.adafruit.com/adafruit-gfx-graphics-library

ﬁ adafruit learning system
Resistive Touchscreen

The LCD has a 2.8" or 3.2" 4-wire resistive touch screen glued onto it. You can use this for detecting finger-presses,
stylus', etc. You'll need 4 pins to talk to the touch panel, and at least 2 must be analog inputs. The touch screen is a
completely separate part from the TFT, so be aware if you rotate the display or have the TFT off or reset, the touch

screen doesn't "know" about it - its just a couple resistors!

We have a demo for the touchscreen + TFT that lets you 'paint' simple graphics. There's versions for both SPI and 8-bit
mode and are included in the libraries. Just make sure you have gone thru the TFT test procedure already since this
builds on that.

Rememober, if you rotate the screen drawing with setRotation() you'll have to use map() or similar to flip around
D the X/Y coordinates for the touchscreen as well! It doesn't know about drawing rotation

|:| We show the 2.8" version of this breakout in the photos below but the 3.2" TFT is identical, just a lil bit bigger

Download Library

Begin by grabbing our analog/resistive touchscreen library (https://adafru.it/aT1) from the Arduino library manager.

Open up the Arduino library manager:

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 29 of 73

https://github.com/adafruit/Touch-Screen-Library

File Edit [Sketch Tools Help

demo
// Demdg
#includ

#includ
#includ

Verify/Compile
Upload

Ctrl+R
Ctrl+U

Upload Using Programmer Ctrl+Shift+U

Export compiled Binary

Show Sketch Folder
Include Library
Add File...

Ctrl+Alt+5

Crl+K

f/ we light one pixel at a time,

L

Search for the Adafruit TouchScreen library and install it

Type All >

Topic |All

T — A

this is ocur

i

Manage Libraries...
Add ZIP Library...

Arduino libraries
ArduinoHttpClient
ArduincSound
AudioZero

Bridae

rn ol

- IadaF—u t touchscreer|

Adafruit TouchScreen by Adafruit
Adafruit TouchScreen display library. adafruit Touchscreen display library.

Mare info

Version1.0.4 =

Instal

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Touchscreen Paint (SPI mode)

An additional 4 pins are required for the touchscreen. For the two analog pins, we'll use A2 and A3. For the other two
connections, you can pin any two digital pins but we'll be using D9 (shared with D/C) and D8 since they are available.
We can save the one pin by sharing with D/Cbut you can't share any other SPI pins. So basically you can get away with

using only three additional pins.

Wire the additional 4 pins as follows:

Y+ to Arduino A2

Y- to Arduino D8
X-to Arduino A3

X+ to Arduino D9 (Same as D/C)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

Page 30 of 73

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

=

=

>
o~
(=
c
H
=
(=]

NI

W~ 33" ONTNaEY ‘KN

te
s s s my !

Load up the breakoutTouchPaint example from the Adafruit_ILI9341 library and try drawing with your fingernail! You
can select colors by touching the 'pallette' of colors on the right

Touchscreen Paint (8-Bit mode)

Another 4 pins seems like a lot since already 12 are taken up with the TFT but you can reuse some of the pins for the
TFT LCD! This is because the resistance of the panel is high enough that it doesn't interfere with the digital
input/output and we can query the panel in between TFT accesses, when the pins are not being used.

We'll be building on the wiring used in the previous drawing test for UNO

You can wire up the 4 touchscreen pins as follows. Starting from the top

® Y- connects to digital #9 (also D1)

® The next one down (X-) connects to Analog 2 (also C/D)

® The next one over (Y+) connects to Analog 3 (also CS)

® The last one (X+) connects to digital 8. (also DO)
The X- and Y+ pins pretty much have to connect to those analog pins (or to analog 4/5) but Y-/X+ can connect to any
digital or analog pins.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 31 of 73

b B

—lmh=img= <

elamiadn ®
B
A L5

Load up the tftpaint example from the Adafruit_TFTLCD library and try drawing with your fingernail! You can select
colors by touching the 'pallette' of colors on the right

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 32 of 73

ﬁ- adafruit learning system
Capacitive Touchscreen

B

]

=
=
=]
€
H
z
S

We now have a super-fancy capacitive touch screen version of this shield. Instead of a resistive controller that needs
calibration and pressing down, the capacitive has a hard glass cover and can be used with a gentle fingertip. It is a
single-touch capacitive screen only!

The capacitive touch screen controller communicates over 12C, which uses two hardwire pins. However, you can share
these pins with other sensors and displays as long as they don't conflict with I2C address Ox38.

The capacitive touch chip shares the same power and ground as the display, the only new pins you must connect are
SDA and SCL - these must connect to the Arduino 12C pins.

® Connect the SCL pin to the 12C clock SCL pin on your Arduino. On an UNO & '328 based Arduino, this is also
known as AB, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3

® Connect the SDA pin to the 12C data SDA pin on your Arduino. On an UNO & '328 based Arduino, this is also
known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2

This demo uses the SPI 'side' of the display so get the SPI drawing demos working before you continue!You can
adapt the code for use with the 8-bit side, just instantiate the FT6206 library and see the reference below!

Download the FT6206 Library

To control the touchscreen you'll need one more library (https://adafru.it/dGG) - the FT6206 controller library which

does all the low level chatting with the FT6206 driver chip. Use the library manager and search for FT6206 and select
the Adafruit FT6206 library:

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 33 of 73

https://github.com/adafruit/Adafruit_FT6206_Library

Library Manager . e u

I Type [al | Topic [all - | |ft6206

Adafruit FT6206 Library by Adafruit Version 1.0.2 INSTALLED .~
Arduino library for FT6206-based Capacitive touch screen Arduino library for FT6206-based Capacitive touch screen
inf

M
¥

Once you have the library installed, restart the IDE. Now from the examples->Adafruit_FT6206 menu select
CapTouchPaint and upload it to your Arduino.

The touch screen is made of a thin glass sheet, and its very fragile - a small crack or break will make the
entire touch screen unusable. Don't drop or roughly handle the TFT and be especially careful of the corners

and edges. When pressing on the touchscreen, remember you cannot use a fingernail, it must be a fingerpad.
Do not press harder and harder until the screen cracks!

FT6206 Library Reference

Getting data from the touchscreen is fairly straight forward. Start by creating the touchscreen object with
Adafruit_FT6206 ts = Adafruit_FT6206();

We're using hardware 12C which is fixed in hardware so no pins are defined.
Then you can start the touchscreen with

ts.begin()

Check to make sure this returns a True value, which means the driver was found. You can also call begin(threshvalue)
wish a number from 0-255 to set the touch threshhold. The default works pretty well but if you're having too much
sensitivity (or not enought) you can try tweaking it

Now you can call
if (ts.touched())

to check if the display is being touched, if so call:
TS_Point p = ts.getPoint();

To get the touch point from the controller. TS_Point has .x and .y data points. The x and y points range from O to 240
and O to 320 respectively. This corresponds to each pixel on the display. The FT6206 does not need to be 'calibrated'
but it also doesn't know about rotation. So if you want to rotate the screen you'll need to manually rotate the x/y
points!

Touchscreen Interrupt pin

Advanced users may want to get an interrupt on a pin (or even, just test a pin rather than do a full SPI query) when the
touchscreen is pressed. That's the IRQ pin, which is a 3V logic output from the breakout, you can connect it to any
interrupt pin and use it like a 'button press' interrupt. We find that querying/polling the chip is fast enough for most

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 34 of 73

beginner Arduino projects!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 35 of 73

* adafruit learning system

FT6206 Library
Reference

FT6206 Library Reference (https://adafru.it/Atz)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 36 of 73

https://adafruit.github.io/Adafruit_FT6206_Library/class_adafruit___f_t6206.html

* adafruit learning system
CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro MO Express or the Metro M4 Express. You
can also use boards such as the Feather MO Express or the Feather M4 Express. We recommend either the Metro M4
or the Feather M4 Express because it's much faster and works better for driving a display. For this guide, we will be
using a Feather M4 Express. The steps should be about the same for the Feather MO Express or either of the Metros. If
you haven't already, be sure to check out our Feather M4 Express (https://adafru.it/EEm) guide.

Adafruit Feather M4 Express - Featuring ATSAMDS51

OUT OF STOCK

Out Of Stock

For this guide, we'll assume you have a Feather M4 Express. The steps should be about the same for the Feather MO
Express. To start, if you haven't already done so, follow the assembly instructions for the Feather M4 Express in
our Feather M4 Express guide (https://adafru.it/EEm).

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to it. Be sure to check out
the Adafruit Guide To Excellent Soldering (https://adafru.it/drl). Also, follow the SPI Wiring and Test page of this guide
to be sure your display is setup for SPI. After that, the breakout should be ready to go.

Wiring the Breakout to the Feather

3-5V Vin connects to the Feather 3V pin

GND connects toFeather ground

CLK connects to SPI clock. On the Feather that's SCK.

MISO connects to SPI MISO. On the Feather that's Ml

MOSI connects to SPI MOSI. On the Feather that's MO

CS connects to our SPI Chip Select pin. We'll be using Digital 9 but you can later change this to any pin

D/C connects to our SPI data/command select pin. We'll be using Digital 10 but you can later change this pin too.
RST connects to our reset pin. We'll be using Digital 6 but you can later change this pin too.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 37 of 73

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-guide-excellent-soldering

320x240

fritzing

https://adafru.it/Fyk

https://adafru.it/Fyk

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

https://adafru.it/EGe

https://adafru.it/EGe

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.
Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install
these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great
page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.
Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

® adafruit_ili9341
Before continuing make sure your board's lib folder or root filesystem has the adafruit_ili9341 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get

overly complicated.
https://adafru.it/FiA

https://adafru.it/FiA

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 38 of 73

https://cdn-learn.adafruit.com/assets/assets/000/079/468/original/2.8-breakout-feather-m4.fzz?1565820316
https://github.com/adafruit/Adafruit_CircuitPython_ILI9341/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to
the lib folder on your CircuitPython device.

CircuitPython Code Example

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 39 of 73

This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text. All drawing is done
using native displayio modules.

Pinouts are for the 2.4" TFT FeatherWing or Breakout with a Feather M4 or MO.
import board

import terminalio

import displayio

from adafruit display text import label

import adafruit ili9341

Release any resources currently in use for the displays
displayio.release displays()

spi = board.SPI()
tft_cs = board.D9
tft _dc = board.D10

display bus = displayio.FourWire(
spi, command=tft dc, chip select=tft cs, reset=board.D6

)
display = adafruit ili9341.ILI9341(display bus, width=320, height=240)

Make the display context
splash = displayio.Group(max size=10)
display.show(splash)

Draw a green background

color bitmap = displayio.Bitmap(320, 240, 1)
color palette = displayio.Palette(1)

color palette[0] = Ox0O0FFOO # Bright Green

bg sprite = displayio.TileGrid(color bitmap, pixel shader=color palette, x=0, y=0)
splash.append(bg sprite)

Draw a smaller inner rectangle

inner bitmap = displayio.Bitmap(280, 200, 1)

inner palette = displayio.Palette(1)

inner_palette[0] = OxAA0O88 # Purple

inner sprite = displayio.TileGrid(inner bitmap, pixel shader=inner palette, x=20, y=20)
splash.append(inner sprite)

Draw a label

text group = displayio.Group(max size=10, scale=3, x=57, y=120)
text = "Hello World!"

text area = label.lLabel(terminalio.FONT, text=text, color=0xFFFF00)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

while True:
pass

Code Details

Let's take a look at the sections of code one by one. We start by importing the board so that we can initialize SPI,

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 40 of 73

displayio, terminalio for the font, a label, and the adafruit ili9341 driver.

import board

import displayio

import terminalio

from adafruit display_text import label
import adafruit ili9341

Next we release any previously used displays. This is important because if the Feather is reset, the display pins are not
automatically released and this makes them available for use again.

displayio.release displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it
finds the SPI module and initializes using the default SPI parameters. Next we set the Chip Select and Data/Command
pins that will be used.

spi = board.SPI()
tft cs = board.D9
tft _dc = board.D10

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs, reset=board.D6)

Finally, we initialize the driver with a width of 320 and a height of 240. If we stopped at this point and ran the code, we
would have a terminal that we could type at and have the screen update.

display = adafruit ili9341.ILI9341(display bus, width=320, height=240)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 41 of 73

(=]

O ‘ Code done running. Waiting for reload,
|

Next we create a background splash image. We do this by creating a group that we can add elements to and adding
that group to the display. In this example, we are limiting the maximum number of elements to 10, but this can be
increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max size=10)
display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the
same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We
create a Palette with one color and set that color to OxXOOFFOO which happens to be green. Colors are Hexadecimal
values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what
those 256 different colors are.

color bitmap = displayio.Bitmap(320, 240, 1)
color palette = displayio.Palette(1)
color palette[®] = OxOOFFOO # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which
represents the display's upper left.

bg sprite = displayio.TileGrid(color bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

This creates a solid green background which we will draw on top of.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 42 of 73

Next we will create a smaller purple rectangle. The easiest way to do this is the create a new bitmap that is a little
smaller than the full screen with a single color and place it in a specific location. In this case we will create a bitmap
that is 20 pixels smaller on each side. The screen is 320x240, so we'll want to subtract 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

inner bitmap = displayio.Bitmap(280, 200, 1)
inner palette = displayio.Palette(1)
inner palette[0] = OxAAQO88 # Purple
inner sprite = displayio.TileGrid(inner bitmap,
pixel shader=inner_palette,
x=20, y=20)
splash.append(inner sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top. Here's what it looks like now.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 43 of 73

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font and scale it
up by a factor of three. To scale the label only, we will make use of a subgroup, which we will then add to the main

group.

Labels are centered vertically, so we'll place it at 120 for the Y coordinate, and around 57 pixels make it appear to be
centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with
some yellow text, so we'll pass it a value of 0xFFFFOO .

text group = displayio.Group(max size=10, scale=3, x=57, y=120)
text = "Hello World!"

text area = label.lLabel(terminalio.FONT, text=text, color=0xFFFF00)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a
terminal.

while True:
pass

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 44 of 73

Using Touch

We won't be covering how to use the touchscreen with CircuitPython in this guide, but the libraries required to use it
are:

® For enabling capacitive touch use the Adafruit_CircuitPython_FocalTouch (https://adafru.it/Fsy) library.
® For enabling resistive touch use the Adafruit_CircuitPython_STMPEG10 (https://adafru.it/Fsz) library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 45 of 73

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio

* adafruit learning system
Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB Display (https://adafru.it/u1C) module.
This module allows you to easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.
Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other
platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the TFT. However, this is handy
when you can't install an fbtft driver, and want to use the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware SPI support, and not all
single board computers have an SPI device so check before continuing

ILI9341 and HX-8357-based Displays
2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.
Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 46 of 73

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

“ s e 8
DR

]

LI I I I R
L A A

..

2.2" TFT

.f ; 320x240

.
.
.
.
.
.
.
.
-
.
.

L]
Y
..
L)
..
.
.
..
.
..

L I I

R

L A

TEEEEEEES

S
.

fritzing

https://adafru.it/H6C

https://adafru.it/H6C

2.4",2.8" 3.2" and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them for SPI. To do that, you'll need to
either solder bridge some pads on the back or connect the appropriate IM lines to 3.3V with jumper wires. Check the
back of your display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.

D These larger displays are set to use 8-bit data lines by default and may need to be modified to use SPI.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 47 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

2. Rl

320x240

fritzing

https://adafru.it/H7a

https://adafru.it/H7a

ST7789 and ST7735-based Displays

1.3",1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

0zexXore
141 SdI .02

fritzing

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 48 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

https://adafru.it/H7d

https://adafru.it/H7d

0.96", 114", and 1.44" Displays

® Vin connects to the Raspberry Pi's 3V pin
® GND connects to the Raspberry Pi's ground
® CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
® MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
® CS connects to our SPI Chip Select pin. We'll be using CEO
® RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
® D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.
DST (BISPLAY) : : | Q
. .
)
lats Rt s] ©
(v¥3uv2) 15D L : : : : : : : : : : i
eTHERET seccell cecee
: : L B B A) L B : :
fritzing
https://adafru.it/H7B
https://adafru.it/H7B
1.8" Display
® GND connects to the Raspberry Pi's ground
® Vin connects to the Raspberry Pi's 3V pin
® RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.
® D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.
® CS connects to our SPI Chip Select pin. We'll be using CEO
® MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
® CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
[]

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately control the backlight.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 49 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392
https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

8ZTX09T

141 .8°1

SN
RN N Y L

“ s 8 88
"0 e 8w

fritzing

https://adafru.it/H8a

https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 50 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

1.5" OLED
128x128

(¥Y43uY2) I3D

=
T
a
o

ETHERNET

—
s
——

LIC R B B B O B B B R I IO B B B I R

LI B B O B O O RO O O)
* 8 8 8 s e e e e e

* & 8 8 s s s e e e e e

® 8 8 0 s e e e e

U I T T O T O O B R A

LI T R R A

LI R B R B R R

" e e e e e e e e

fritzing

https://adafru.it/H8e

https://adafru.it/H8e

SSD133%1-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CEO

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 51 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

i e

DSI (DISPLAY)

R
* 8 0 00

0.96" OLED

. " e 00
" 00 00

TR R YRR Y Y e

THERNET s & : : : : : : o &
{0 i
fritzing

https://adafru.it/H8D

https://adafru.it/H8D

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also require
enabling SPI on your platform and verifying you are running Python 3. Since each platform is a little different, and Linux
changes often, please visit the CircuitPython on Linux guide to get your computer ready (https://adafru.it/BSN)!

D If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in

order to run this example.

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:
® sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use
CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:

® sudo apt-get install python3-pip

DejaVu TTF Font

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 52 of 73

https://cdn-learn.adafruit.com/assets/assets/000/084/675/original/0.96_OLED.fzz?1574277476
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the following to
install it:

® sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with custom fonts. There are several
system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

® sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 53 of 73

Python Usage

* adafruit learning system

|:| If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you will need to remove it first in

order to run this example.

Now that you have everything setup, we're going to look over three different examples. For the first, we'll take a look at
automatically scaling and cropping an image and then centering it on the display.

Displaying an Image

Here's the full code to the example. We will go through it section by section to help you better understand what is
going on. Let's start by downloading an image of Blinka. This image has enough border to allow resizing and cropping
with a variety of display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script. Here's the code we'll be loading onto
the Raspberry Pi. We'll go over the interesting parts.

import
import

digitalio
board

from PIL import Image, ImageDraw

import
import
import
import
import
import

adafruit rgb display.
adafruit rgb display.
adafruit rgb display.
adafruit rgb display.
adafruit rgb display.
adafruit rgb display.

i1i9341 as il1i9341

st7789 as st7789 # pylint: disable=unused-import
hx8357 as hx8357 # pylint: disable=unused-import
st7735 as st7735 # pylint: disable=unused-import
ssd1351 as ssd1351 # pylint: disable=unused-import
ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs _pin = digitalio.DigitalInOut(board.CEOQ)

dc pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

© Adafruit Industries

https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

Page 54 of 73

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14"

ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, # 1.44"
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Crop and center the image

x = scaled width // 2 - width // 2
y = scaled height // 2 - height // 2

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

ST7735R

Page 55 of 73

lmage = 1mage.crop((x, y, X + widtn, y + neignt))

Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the display drivers. That is followed by
defining a few pins here. The reason we chose these is because they allow you to use the same code with the PiTFT if
you chose to do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as i1i9341
import adafruit rgb display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit rgb display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs _pin = digitalio.DigitalInOut(board.CEOQ)

dc pin = digitalio.DigitalInOut(board.D25)
reset pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of displays. The exception to this is
the SSD1351 driver, which will automatically limit it to 16MHz even if you pass 24MHz. We'll set up out SPI bus and then
initialize the display.

We wanted to make these examples work on as many displays as possible with very few changes. The ILI9341 display
is selected by default. For other displays, go ahead and comment out the line that starts with:

disp = ili9341.1L19341(spi,

and uncomment the line appropriate for your display. The displays have a rotation property so that it can be set in just
one place.

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = i1i9341.ILI9341(spi, rotation=90, #2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin, dc=dc pin, rst=reset pin, baudrate=BAUDRATE)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 56 of 73

Next we read the current rotation setting of the display and if it is 90 or 270 degrees, we need to swap the width and
height for our calculations, otherwise we just grab the width and height. We will create an image with our dimensions
and use that to create a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't strictly necessary since it will be
overwritten by the image, but it kind of sets the stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in the same directory that you are
running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or height of the
display, depending on which is smaller, so that we have some of the image to chop off when we crop it. So we start by
calculating the width to height ration of both the display and the image. If the height is the closer of the dimensions, we
want to match the image height to the display height and let it be a bit wider than the display. Otherwise, we want to
do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using a Bicubic rescaling
method, we reassign the newly rescaled image back to image . Pillow has quite a few different methods to choose
from, but Bicubic does a great job and is reasonably fast.

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen_ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that it ends up

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 57 of 73

centered. We do that by using a standard centering function, which is basically requesting the difference of the center
of the display and the center of the image. Just like with scaling, we replace the image variable with the newly
cropped image.

Crop and center the image

x = scaled width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the exact same dimensions at the display
and fill it completely.

disp.image(image)

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio example, but it
uses Pillow instead. Here's the code for that.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit rgb display.ili9341 as i1i9341

import adafruit rgb display.st7789 as st7789 # pylint: disable=unused-import
import adafruit rgb display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit rgb display.st7735 as st7735 # pylint: disable=unused-import
import adafruit rgb display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit rgb display.ssd1331 as ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 58 of 73

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
cs pin = digitalio.DigitalInOut(board.CE0)

dc pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14"

ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y offset=3, # 1.44"
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle

draw. rectangle(
(BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

Load a TTF Font

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

ST7735R

Page 59 of 73

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)

Draw Some Text
text = "Hello World!"
(font_width, font_height) = font.getsize(text)
draw. text(
(width // 2 - font width // 2, height // 2 - font height // 2),
text,
font=font,
fill=(255, 255, 0),

Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the ImageFont Pillow module because
we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as i1i9341

Next we'll define some parameters that we can tweak for various displays. The BORDER will be the size in pixels of
the green border between the edge of the display and the inner purple rectangle. The FONTSIZE will be the size of
the font in points so that we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation, and create a draw object.If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example. After that, we will setup the background with a green rectangle that takes up the full screen. To get green,
we pass in a tuple that has our Red, Green, and Blue color values in it in that order which can be any integer from 0 to
255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our example in displayio quickstart, except
the hexadecimal values have been converted to decimal. We use the BORDER parameter to calculate the size and
position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the location in the code. We
also make use of the FONTSIZE parameter that we discussed earlier.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 60 of 73

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering calculation was the
same one we used to center crop the image in the previous example. In this example though, we get the font size
values using the getsize() function of the font object.

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

_.®.

BZEXBHC

wC'C

Hello World!

" ntnijepe hg
141

C

\'v.
—
—
[

JB¥EE

Displaying System Information

In this last example we'll take a look at getting the system information and displaying it. This can be very handy for
system monitoring. Here's the code for that example:

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit rgb display.ili9341 as i1i9341

import adafruit rgb display.st7789 as st7789 # pylint: disable=unused-import
import adafruit rgb display.hx8357 as hx8357 # pylint: disable=unused-import

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 61 of 73

import adafruit rgb display.st7735 as st7735 # pylint: disable=unused-import
import adafruit rgb display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit rgb display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs pin = digitalio.DigitalInOut(board.CEO)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54" ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14"

ST7789
disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, # 1.44"
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = i1i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc _pin,

rst=reset pin,
baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

First define some constants to allow easy positioning of text.

padding = -2
x =0

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2

ST7735R

Page 62 of 73

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:

https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-
cpu-load

cmd = "hostname -I | cut -d' ' -f1"

IP = "IP: " + subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\"'"'

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zoneO/temp | awk '{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Write four lines of text.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#OOFF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#000OFF")
y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Display image.
disp.image(image)
time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're adding two more imports. The first
oneis time so that we can add a small delay and the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as i1i9341

Next, just like in the first two examples, we will set up the display, setup the rotation, and create a draw object. If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example.

Just like in the first example, we're going to draw a black rectangle to fill up the screen. After that, we're going to set up
a couple of constants to help with positioning text. The first is the padding and that will be the Y-position of the top-

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 63 of 73

most text and the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
X =0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True:, it will loop until Control+C is pressed on the keyboard. The
first item inside here, we clear the screen, but notice that instead of giving it a tuple like before, we can just pass 0
and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the Operating System to get information.
The in each command is passed through awk in order to be formatted better for the display. By having the OS do the

work, we don't have to. These little scripts came from https://unix.stackexchange.com/questions/119126/command-to-
display-memory-usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '"$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zoneO/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass color information. We can pass it as
a color string using the pound symbol, just like we would with HTML. With each line, we take the height of the line
using getsize() and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#0OFF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Finally, we write all the information out to the display using disp.image() . Since we are looping, we tell Python to sleep
for 0.1 seconds so that the CPU never gets too busy.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 64 of 73

disp.image(image)
time.sleep(.1)

pinJjepe

w
(=]
0
w
o
L)

o
N3
2
-

=
zZl

CIN_‘J
JBHEBITN/N LAl ,2°T OTEXBHT

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 65 of 73

* adafruit learning system
Downloads

Datasheets & Files

® |L|9341 TFT controller chip datasheet (https://adafru.it/d4l) (this is what you want to refer to if porting or if you
want to look at the TFT command set)

Raw 2.8" Resistive TFT datasheet (https://adafru.it/sEt)

Raw 3.2" Resistive TFT datasheet (https://adafru.it/Edc)

Raw 2.8" Capacitive TFT datasheet (https://adafru.it/rwA)

FT6206 Datasheet (https://adafru.it/sEu) & App note (https://adafru.it/dRn) (capacitive chip)

Fritzing objects in Adafruit Fritzing Library (https://adafru.it/c7M)

2.8" TFT with Capacitive Touch EagleCAD files (https://adafru.it/pAr)

2.8" TFT with Resistive Touch EagleCAD files (https://adafru.it/pAs)

2.8" and 3.2" Resistive Touch Schematic

:
:
&
:
:

.:I;[‘.‘r; | |H

[¢lef
.
S
il
:—'VM%

i A . 5D &MMC c

ilig341 v2.3

3/18/2014 4117137 PH | Sheet: 1/1
Orauing: >AUTHOR Adafruit Industries
4 I 5 I 8

sl ol e

o
=
(51 T)
| Il
| SEBIAL _LDOIE. 7T P .} p—_——
feal i

Capacitive Touch Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 66 of 73

http://www.adafruit.com/datasheets/ILI9341.pdf
http://www.adafruit.com/datasheets/MI0283QT-11%20V1.1.PDF
https://cdn-learn.adafruit.com/assets/assets/000/072/378/original/QC032TM50TP__REV.C___C3105-B__1_.pdf?1551893869
https://cdn-learn.adafruit.com/assets/assets/000/035/819/original/SPEC-DT280QV10-CT_Rev.B.pdf
http://www.adafruit.com/datasheets/FT6x06%20Datasheet_V0.1_Preliminary_20120723.pdf
http://www.adafruit.com/datasheets/FT6x06_AN_public_ver0.1.3.pdf
https://github.com/adafruit/Fritzing-Library/
https://github.com/adafruit/Adafruit-2.8-TFT-with-Capacitive-Touch-PCB
https://github.com/adafruit/2.8-TFT-Breakout-PCB

AR

WL

I 06T

w)
(o I I
(= = |

Backlite @

LCD Data - 1/0—Tooch LEeD comr‘al PLIR

Input
Bi- dlrecuonal P
- 8-bit 8PBB-type parallel

*adafrmt,;ﬂ

Cae t.j ZEEEE
ILIS341

TFET LCD Breakout Board+
4 mf@ Resistive Touchscreen
e Pouwer with 3.3U-
Lagie | at |8-3U- 5U
SPI Inte_r;-Face

o
=
E

:

9 Card Detect
2

WiCard CS
9 IMe

wIMl

1M

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 67 of 73

3.2" TFT Layout Diagram

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 68 of 73

e I L L 1 &
o oo O ONCh OV K = XK o
L OISR §
.- - f
LCD“Data LA 0—Toughsgreeng
i—di ti 1 puts
Bi—-directional X
I

| 8-bit 32321typg %araftel

L
\ 4 ¢

AA1LN e

|
L

§-wire Recsistive Touchscreéer
o & Pover with 3.3VU-5V b 3
Logic| at |[3.3U-5V i
SPI Imer%aco:; i

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 69 of 73

* adafruit learning system
F.A.Q.

If | drive this display at very high speeds | get 'video tearing' effects, how can | synchronize the display
refreshes?

We don't break out the TE (tearing effect line) because we use these with small microcontrollers, but if you do need
to synchronize you can solder to the TE pad on the TFT using fine silicone wire. (See this forum thread)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 70 of 73

https://forums.adafruit.com/viewtopic.php?f=47&t=77714&p=404931#p404931

Card Detect
Card cs=M
Me
i1
(7]

7
L &

- N
Close IM1/IM2/IH
for SPI z

US34D5UDN0| SANISISSY 94IM-4
+pJecg no3¥ea4g 4371 141 ,8°

n

1

guanjﬁanOJ‘

]
]
=g
L0
e
Qg
O
=
m"’.
V=
~+ 4
Sr
W
(/5
W
|| =
al |
(=)
&

sindug ¥
HMd 1oaued 037

—

Display does not work on initial power but does work after a reset.

The display driver circuit needs a small amount of time to be ready after initial power. If your code tries to write to the
display too soon, it may not be ready. It will work on reset since that typically does not cycle power. If you are having
this issue, try adding a small amount of delay before trying to write to the display.

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust the amount of delay as needed to
see how little you can get away with for your specific setup.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 71 of 73

© Adafruit Industries https://learn.adafruit.com/adafruit-2-dot-8-color-tft-touchscreen-breakout-v2 Page 72 of 73

© Adafruit Industries Last Updated: 2020-06-19 03:59:40 PM EDT Page 73 of 73

CraHpapT
INeKTpPOoH
ﬂ CBAA3b

Mbl MOf04aA M aKTUBHO Pa3BMBAIOLLAACA KOMMAHWA B 061acTM MOCTaBOK
3NEKTPOHHbIX KOMMOHEHTOB. Mbl NOCTAaBASEM 3/IEKTPOHHbIE KOMMOHEHTbI
OTEYEeCTBEHHOIrO U MMMOPTHOIO NMPOWU3BOACTBA HAMPAMYIO OT NPOU3BOAMUTENEN U C
KpYMHEMLWKNX CKNaZ0B MUpa.

Enaro,a,apﬂ coTpygHn4ecTtesy C MMpPOBbIMU NOCTaBWMKaMWN Mbl OCYLLECTBIAEM
KOMMNNEKCHbIE N NN1aHOBblE MNMOCTABKU LumpoqaﬁLuero CNEeKTpa 3/1EKTPOHHbIX
KOMMOHEHTOB.

CobcTtBeHHan 3¢p@eKTUBHAA NOrMCTUKA M CKNag B obecneunBaeT HageKHYHo
MOCTaBKy MNPOAYKLMM B TOYHO YKa3aHHble CPOKM Mo Bcel Poccum.

Mbl ocyuiecTBisem TEXHUYECKYI0 MNOALEPKKY HAWWM K/IMEHTaMm U
npeanpoaaxkHyto NPOBEPKY KayecTsa NpoayKumu. Ha Bce noctaBnsiemble NpoAyKTbl
Mbl MPEAOCTaBASEM TFAPaAHTUIO .

OcyuwiectBndem nNOCTaBKM NpoOAYKUMM nog, KoHTponem Bl MO PO Ha
npeanpuATUA BOEHHO-NPOMbIWIEHHOTO KoMnaekca Poccuun , a TakKe paboTtaem B
pamkax 275 ®3 c OTKpbITUEM OTAE/bHbIX CHETOB B YNONHOMOYEHHOM BaHKe. Cuctema
MeHeXMeHTa KayecTBa KomnaHum cooTBeTcTByeT TpeboBaHuam FOCT ISO 9001.

MWHUMaNbHbIE CPOKM MNOCTAaBKW, TMOKME UeHbl, HeorpaHWYeHHbIN
aCCOPTUMEHT UM WHAMBMAYANbHbLIN MNOAXOA K KAMEHTaM ABAAIOTCA OCHOBOW ANA
BbICTPAMBaHMA A0FOCPOYHOIO M 3GPEKTUBHOIO COTPYAHMYECTBA C NPEeANPUATUAMM
PaANO3NEKTPOHHOMW NPOMBIWAEHHOCTU, NPEeanPUATUAMM BMNK u HayuHo-
nccnenoBaTeNbCKUMKU MHCTUTYTaMm Poccun.

C Hamu Bbl CTAaHOBMUTECH elle ycnewHee!

[HaLLIM KOHTAKTbI: \

TenedoH: +7 812 627 14 35

dNeKTpPOHHaA nouTa: sales@st-electron.ru

Appec: 198099, CaHkT-MNeTepbypr,
MpomblwneHHasa yn, gom Ne 19, nutepa H,
nometleHune 100-H Oduc 331

_

J

mailto:sales@st-electron.ru

