Typical Applications The HMC637A is ideal for: - Telecom Infrastructure - Microwave Radio & VSAT - Military & Space - Test Instrumentation - Fiber Optics ## **Functional Diagram** #### **Features** P1dB Output Power: +30.5 dBm Gain: 14 dB Output IP3: +41 dBm Bias Supplies: +12V, +6V, -1V 50 Ohm Matched Input/Output Die Size: 2.98 x 2.48 x 0.1 mm #### **General Description** The HMC637A is a GaAs MMIC MESFET Distributed Power Amplifier die which operates between DC and 6 GHz. The amplifier provides 14 dB of gain, +41 dBm output IP3 and +30.5 dBm of output power at 1 dB gain compression while requiring 400mA from a +12V supply. Gain flatness is excellent at ±0.5 dB from DC to 6 GHz making the HMC637A ideal for EW, ECM, Radar and test equipment applications. The HMC637A amplifier I/Os are internally matched to 50 Ohms facilitating integration into Mutli-Chip-Modules (MCMs). All data is taken with the chip connected via two 0.025mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils). # Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +12V, Vgg2 = +6V, $Idd = 400 \text{mA}^{[1]}$ | Parameter | Frequency | Min. | Тур. | Max. | Units | |--|-----------------------------|------|---------|------|----------| | Gain | DC - 6.0 GHz | 11 | 14 | | dB | | Gain Flatness | DC - 6.0 GHz | | ±0.5 | | dB | | Gain Variation Over Temperature | DC - 6.0 GHz | | 0.008 | | dB/ °C | | Input Return Loss | DC - 6.0 GHz | | 14 | | dB | | Output Return Loss | DC - 6.0 GHz | | 18 | | dB | | Output Power for 1 dB Compression (P1dB) | DC - 6.0 GHz | | 30.5 | | dBm | | Saturated Output Power (Psat) | DC - 6.0 GHz | | 31.5 | | dBm | | Output Third Order Intercept (IP3) [2] | DC - 6.0 GHz | | 43 | | dBm | | Noise Figure | DC - 2 GHz
2.0 - 6.0 GHz | | 12
4 | | dB
dB | | Supply Current (Idd) | | | 400 | | mA | ^[1] Adjust Vgg1 between -2V to 0V to achieve Idd= 400mA typical. ^[2] Two-Tone Output Power = 0dBm Per Tone, 1 MHz Spacing. # Broadband Gain & Return Loss ## Gain vs. Temperature ## Input Return Loss vs. Temperature ## **Output Return Loss vs. Temperature** ## Reverse Isolation vs. Temperature ## Noise Figure vs. Temperature ## P1dB vs. Temperature ## Psat vs. Temperature ## Output IP3 vs. Temperature ## Gain, Power & Output IP3 vs. Supply Voltage @ 3 GHz, Fixed Vgg ## **Output IP3 vs. Output Tone Power** ## **Absolute Maximum Ratings** | Drain Bias Voltage (Vdd) | +14 Vdc | | |--|----------------|--| | Gate Bias Voltage (Vgg1) | -3 to 0 Vdc | | | Gate Bias Voltage (Vgg2) | +4 to +7V | | | RF Input Power (RFIN)(Vdd = +12V Vdc) | +25 dBm | | | Channel Temperature | 175 °C | | | Continuous Pdiss (T= 85 °C)
(derate 95 mW/°C above 85 °C) | 5.6 W | | | Thermal Resistance (channel to die bottom) | 10.5 °C/W | | | Storage Temperature | -65 to +150 °C | | | Operating Temperature | -55 to +85 °C | | | ESD Sensitivity (HBM) | Class 1B | | # Typical Supply Current vs. Vdd | Vdd (V) | Idd (mA) | | |---------|----------|--| | 11.5 | 375 | | | 12.0 | 400 | | | 12.5 | 430 | | | | | | ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS ## **Outline Drawing** ## Die Packaging Information [1] | Standard | Alternate | | |-----------------|-----------|--| | GP-1 (Gel Pack) | [2] | | [1] Refer to the "Packaging Information" section for die packaging dimensions. [2] For alternate packaging information contact Hittite Microwave Corporation. #### NOTES: - 1. ALL DIMENSIONS IN INCHES [MILLIMETERS] - 2. DIE THICKNESS IS 0.004 (0.100) - 3. TYPICAL BOND PAD IS 0.004 (0.100) SQUARE - 4. BOND PAD METALIZATION: GOLD - 5. BACKSIDE METALLIZATION: GOLD - 6. BACKSIDE METAL IS GROUND - 7. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS - 8. OVERALL DIE SIZE IS ±.002 ## **Pad Descriptions** | Pad Number | Function | Description | Interface Schematic | |------------|------------|---|---------------------| | 1 | IN | This pad is DC coupled and matched to 50 Ohms. Blocking capacitor is required. | IN O | | 2 | Vgg2 | Gate control 2 for amplifier. Attach bypass capacitors per application circuit herein. For nominal operation +6V should be applied to Vgg2. | Vgg20 | | 3 | ACG1 | Low frequency termination. Attach bypass capacitor per application circuit herein. | IN O ACG1 | | 4 | ACG2 | Low frequency termination. Attach bypass capacitor per application circuit herein. | ACG2 OVV- U OUT | | 5 | OUT & Vdd | RF output for amplifier. Connect DC bias (Vdd) network to provide drain current (Idd). See application circuit herein. | <u> </u> | | 6, 7 | ACG3, ACG4 | Low frequency termination. Attach bypass capacitor per application circuit herein. | | | 8 | Vgg1 | Gate control 1 for amplifier. Attach bypass capacitors per application circuit herein. Please follow "MMIC Amplifier Biasing Procedure" application note. | Vgg10 | | Die Bottom | GND | Die bottom must be connected to RF/DC ground. | → GND
= | ## **Application Circuit** NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee with low series resistance and capable of providing 500mA ## **Assembly Diagram** 0.076mm (0.003") 0.102mm (0.004") Thick GaAs MMIC RF Ground Plane Figure 1 Wire Bond 0.127mm (0.005") Thick Alumina Thin Film Substrate ## Mounting & Bonding Techniques for Millimeterwave GaAs MMICs The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). Microstrip substrates should be placed as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils). #### **Handling Precautions** Follow these precautions to avoid permanent damage. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. **Cleanliness:** Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. Static Sensitivity: Follow ESD precautions to protect against ESD strikes. **Transients:** Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick- up. General Handling: Handle the chip along the edges with a vacuum collet or with a sharp 0.102mm (0.004") Thick GaAs MMIC Wire Bond 0.076mm (0.003") RF Ground Plane 0.150mm (0.005") Thick Moly Tab 0.254mm (0.010") Thick Alumina Thin Film Substrate Figure 2. **General Handling:** Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip may have fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. #### Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule. #### Wire Bonding RF bonds made with two 1 mil wires are recommended. These bonds should be thermosonically bonded with a force of 40-60 grams. DC bonds of 0.001" (0.025 mm) diameter, thermosonically bonded, are recommended. Ball bonds should be made with a force of 40-50 grams and wedge bonds at 18-22 grams. All bonds should be made with a nominal stage temperature of 150 °C. A minimum amount of ultrasonic energy should be applied to achieve reliable bonds. All bonds should be as short as possible, less than 12 mils (0.31 mm). Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331