

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n

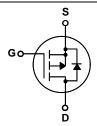
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

November 2010

FQD3P50TM_F085

500V P-Channel MOSFET

General Description


These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for electronic lamp ballast based on complimentary half bridge.

Features

- -2.1A, -500V, $R_{DS(on)}$ = 4.9 Ω @V_{GS} = -10 V Low gate charge (typical 18 nC)
- Low Crss (typical 9.5 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- Qualified to AEC Q101
- · RoHS Compliant

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQD3P50TM_F085	Units
V _{DSS}	Drain-Source Voltage		-500	V
I _D	Drain Current - Continuous (T _C = 25°C)	-2.1	Α
	- Continuous (T _C = 100°C	C)	-1.33	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.4	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		250	mJ
I _{AR}	Avalanche Current	(Note 1)	-2.1	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		-4.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		2.5	W
_	Power Dissipation (T _C = 25°C)		50	W
	- Derate above 25°C	T T	0.4	W/°C
T_J , T_{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-500			V
ΔBV_{DSS} / ΔT_J	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		0.42		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -500 V, V _{GS} = 0 V		-	-1	μА
		V _{DS} = -400 V, T _C = 125°C			-10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
	racteristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-3.0		-5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -1.05 \text{ A}$		3.9	4.9	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = -50 \text{ V}, I_{D} = -1.05 \text{ A} \text{ (Note 4)}$		2.1		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		510 70 9.5	90 12	pF pF
	ing Characteristics			9.5	12	рг
t _{d(on)}	Turn-On Delay Time	V _{DD} = -250 V, I _D = -2.7 A,		12	35	ns
t _r	Turn-On Rise Time	$R_{G} = 25 \Omega$		56	120	ns
t _{d(off)}	Turn-Off Delay Time	1.6 2022		35	80	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		45	100	ns
Qg	Total Gate Charge	V _{DS} = -400 V, I _D = -2.7 A,		18	23	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -10 V		3.6		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		9.2		nC
Drain-S	Source Diode Characteristics at Maximum Continuous Drain-Source Dio	ode Forward Current			-2.1	А
	maximum r dissa si am socios si origina samoni				-8.4	Α
I _{SM}						
I _{SM} V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.1 \text{ A}$		-	-5.0	V
	Drain-Source Diode Forward Voltage Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_S = -2.1 \text{ A}$ $V_{GS} = 0 \text{ V, } I_S = -2.7 \text{ A,}$ $dI_F / dt = 100 \text{ A/}\mu\text{s}$ (Note 4)		270	-5.0 	V ns

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 102mH, I_{AS} = -2.1A, V_{DD} = -50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq -2.7A, di/dt \leq 200 Δ /μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

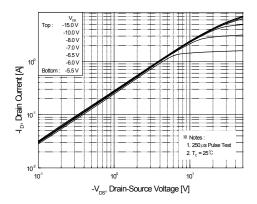


Figure 1. On-Region Characteristics

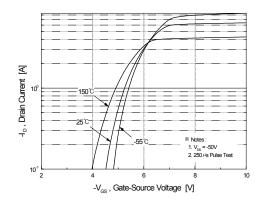


Figure 2. Transfer Characteristics

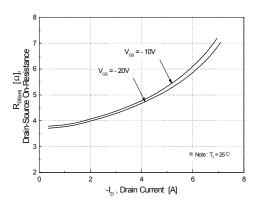


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

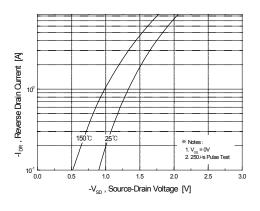


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

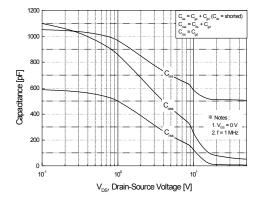


Figure 5. Capacitance Characteristics

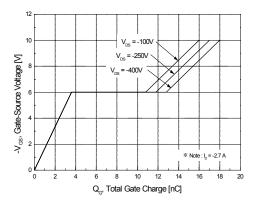
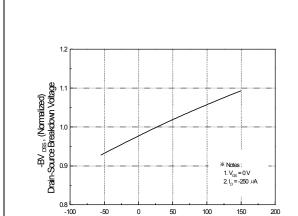
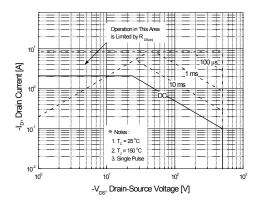



Figure 6. Gate Charge Characteristics


Typical Characteristics (Continued)

2.5 (Nonline 1.10 (Nonline 1.1

Figure 7. Breakdown Voltage Variation vs. Temperature

 T_J , Junction Temperature [°C]

Figure 8. On-Resistance Variation vs. Temperature

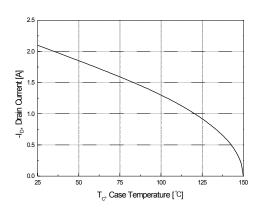


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

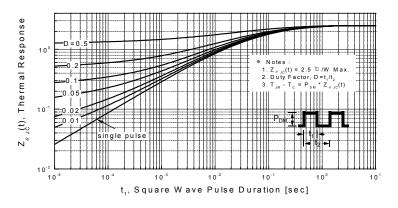
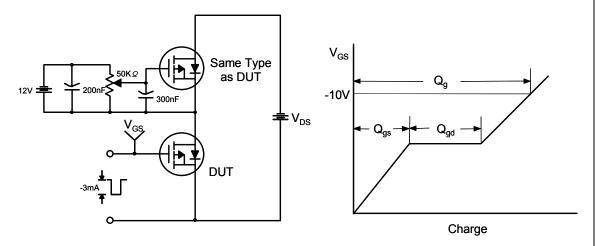
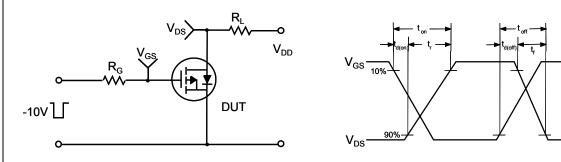
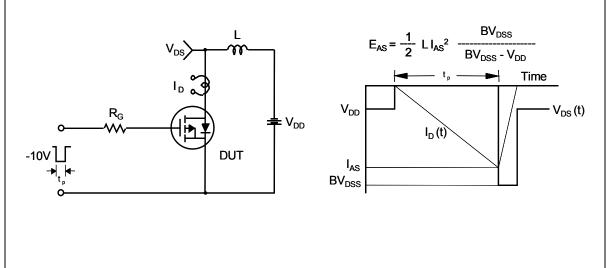
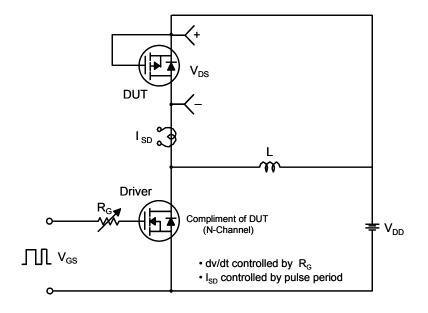
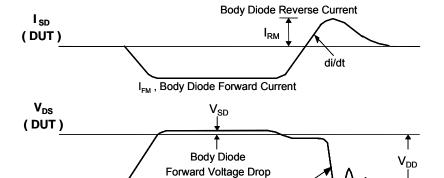




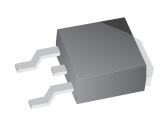
Figure 11. Transient Thermal Response Curve

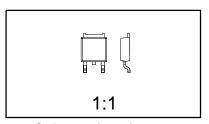

Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms


Unclamped Inductive Switching Test Circuit & Waveforms

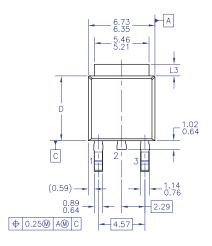
Peak Diode Recovery dv/dt Test Circuit & Waveforms

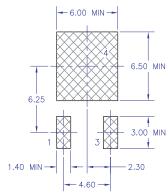




Body Diode Recovery dv/dt

Mechanical Dimensions


TO-252 (DPAK) (FS PKG Code 36)



Scale 1:1 on letter size paper Dimensions shown below are in: millimeters

Part Weight per unit (gram): 0.33

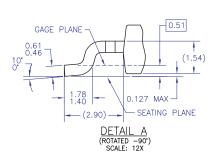
SEE NOTE D

SEE DETAIL A

LAND PATTERN RECOMMENDATION

- 0.58 0.46

10.41 9.40



△ 0.10 B

- ALL DIMENSIONS ARE IN MILLIMETERS.
 THIS PACKAGE CONFORMS TO JEDEC, TO-252,
 ISSUE C, VARIATION AA & AB, DATED NOV. 1999.
- DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M-1994.
 HEAT SINK TOP EDGE COULD BE IN CHAMFERED
 CORNERS OR EDGE PROTRUSION.
 DIMENSIONS L3,D,E1&D1 TABLE:

DIMETROTOTTO EGYDYETOOD T II						
	OPTION AA	OPTION AB				
L3	0.89-1.27	1.52-2.03				
D	5.97-6.22	5.33-5.59				
E1	4.32 MIN	3.81 MIN				
D1	5.21 MIN	4.57 MIN				

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® Auto-SPM™ Global Power Resource SM Build it Now™

CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™

Gmax™

IntelliMAX™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

OptoHiT™

Motion-SPM™

OPTOLOGIC®

OPTOPLANAR®

ISOPLANAR™

MICROCOUPLER™

GTO™

CROSSVOLT™ $\mathsf{CTL^{\mathsf{TM}}}$

Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT®

FlashWriter®*

FastvCore™ FETBench™

PDP SPM™ **FPSTM**

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

OFFT QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

. SupreMOS™ SyncFET™ Sync-Lock™

The Power Franchise® bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™

UHC Ultra FRFET™ UniFET™ **VCX**TM VisualMax™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 148

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FQD3P50TM_F085 FQD3P50TM-F085

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331