Property of Lite-On Only #### **Features** - * Lead (Pb) free product RoHS compliant. - * Low power consumption. - * High efficiency. - * Versatile mounting on P.C. Board or panel. - * I.C. Compatible/low current requirement. - * 3.1 mm diameter package.. ### **Package Dimensions** #### NOTES: - 1. All dimensions are in millimeters (inches). - 2. Tolerance is ± 0.25 mm(.010") unless otherwise noted. - 3. Protruded resin under flange is 1.0mm(.04") max. - 4. Lead spacing is measured where the leads emerge from the package. - 5. Specifications are subject to change without notice. Property of Lite-On Only ### Absolute Maximum Ratings at TA=25°C | Parameter | Maximum Rating | Unit | | |---|---------------------|-------|--| | Power Dissipation | 100 | mW | | | Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) | 120 | mA | | | DC Forward Current | 30 | mA | | | Derating Linear From 50°C | 0.4 | mA/°C | | | Reverse Voltage | 5 | V | | | Operating Temperature Range | -55°C to + 100°C | | | | Storage Temperature Range | -55°C to + 100°C | | | | Lead Soldering Temperature [1.6mm(.063") From Body] | 260°C for 5 Seconds | | | Part No.: LTL-1CHGE-0D1A Page: 2 of 11 Property of Lite-On Only ### Electrical / Optical Characteristics at TA=25°C | Parameter | Symbol | Min. | Тур. | Max. | Unit | Test Condition | |--------------------------|--------|------|------|------|---------|----------------------------| | Luminous Intensity | Iv | 12.6 | 40 | | mcd | IF = 10mA
Note 1,4 | | Viewing Angle | 201/2 | | 45 | | deg | Note 2 (Fig.6) | | Peak Emission Wavelength | λР | | 565 | | nm | Measurement @Peak (Fig.1) | | Dominant Wavelength | λd | 568 | 573 | 578 | nm | Note 3 | | Spectral Line Half-Width | Δλ | | 30 | | nm | | | Forward Voltage | VF | | 2.1 | 2.6 | V | $I_F = 20 \text{mA}$ | | Reverse Current | Ir | | | 100 | μ A | $V_R = 5V$ | | Capacitance | С | | 35 | | pF | $V_F = 0$, $f = 1MHz$ | - Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve. - 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. - 4. The Iv guarantee should be added $\pm 15\%$. | Part No.: LTL-1CHGE-0D1A | Page: 3 | of | 11 | |--------------------------|---------|----|-----| | Turt 110 ETE TEHOE OBITE | 1 450. | O1 | 1 1 | Property of Lite-On Only ### Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted) Fig.1 Relative Intensity vs. Wavelength Ambient Temperature Ta(°C) Fig.5 Luminous Intensity vs. Ambient Temperature Fig.6 Spatial Distribution Part No.: LTL-1CHGE-0D1A Page: 4 of 11 Property of Lite-On Only ### **Features** - * Compatible with radial lead automatic insertion equipment. - * Most radial lead plastic lead lamps available packaged in tape and folding. - * 5mm (0.197") formed lead and 2.54mm (0.1") straight lead spacing available. - * Folding packaging simplifies handling and testing. ### **Package Dimensions** | | | Specification | | | | | |---------------------------------------|--------|---------------|------------|---------|-------|--| | Item | Symbol | Minimum | | Maximum | | | | | | mm | inch | mm | inch | | | Tape Feed Hole Diameter | D | 3.8 | 0.149 | 4.2 | 0.165 | | | Component Lead Pitch | F | 4.8 | 0.188 | 5.8 | 0.228 | | | Front to Rear Deflection | ΔН | | | 2.0 | 0.078 | | | Height of Seating Plane | Н | 15.5 | 0.610 | 16.5 | 0.649 | | | Feed Hole to Bottom of Component | H1 | 23.8 | 0.937 | 25.8 | 1.016 | | | Feed Hole to Overall Component Height | H2 | 28.7 1.129 | | 31.3 | 1.232 | | | Lead Length After Component Height | L | W0 11.0 0.4 | | 0.433 | | | | Feed Hole Pitch | P | 12.4 | 12.4 0.488 | | 0.511 | | | Lead Location | P1 | 3.15 | 0.124 | 4.55 | 0.179 | | | Center of Component Location | P2 | 5.05 | 0.198 | 7.65 | 0.301 | | | Total Taped Thickness | T | | | 0.90 | 0.035 | | | Feed Hole Location | W0 | 8.5 | 0.334 | 9.75 | 0.384 | | | Adhesive Tape Width | W1 | 14.5 | 0.571 | 15.5 | 0.610 | | | Adhesive Tape Position | W2 | 0 | 0 | 3.0 | 0.118 | | | Tape Width | W3 | 17.5 | 0.689 | 19.0 | 0.748 | | Part No.: LTL-1CHGE-0D1A Page: 5 of 11 ### Packing Spec 3000 pcs per inner carton Tolerance: ±5mm 10 Inner cartons per outer carton total 30000 pcs per outer carton In every shipping lot, only the last pack will be non-full packing Part No.: LTL-1CHGE-0D1A Page: 6 of 11 Property of Lite-On Only ### **Bin Code List For Reference** | Luminous Intensity Unit : n | | mcd @20mA | |-----------------------------|------|-----------| | Bin Code | Min. | Max. | | 1 | 60 | 75 | | 2 | 48 | 60 | | 3 | 36 | 48 | | 4 | 24 | 36 | Note: Tolerance of each bin limit is $\pm 15\%$ | Dominant Wavelength Unit | | nm @20mA | |--------------------------|-------|----------| | Bin Code | Min. | Max. | | GE2 | 572.5 | 575.0 | | PG | 570.0 | 572.5 | | GG | 567.5 | 570.0 | | GE5 | 565.0 | 567.5 | Note: Tolerance of each bin limit is ± 1 nm Part No.: LTL-1CHGE-0D1A Page: 7 of 11 Property of Lite-On Only ### **CAUTIONS** ### 1. Application The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices). ### 2. Storage The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient. ### 3. Cleaning Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary. ### 4. Lead Forming & Assembly During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens. Do not use the base of the lead frame as a fulcrum during forming. Lead forming must be done before soldering, at normal temperature. During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress. #### 5. Soldering When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point. Dipping the lens into the solder must be avoided. Do not apply any external stress to the lead frame during soldering while the LED is at high temperature. Recommended soldering conditions: | Soldering iron | | Wave soldering | | | |-------------------------------|--|---|--|--| | Temperature
Soldering time | 300°C Max.
3 sec. Max.
(one time only) | Pre-heat Pre-heat time Solder wave Soldering time | 100°C Max.
60 sec. Max.
260°C Max.
10 sec. Max. | | Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR reflow is not suitable process for through hole type LED lamp product. | Part No.: LTL-1CHGE-0D1A | Page: | 8 | of | 11 | | |--------------------------|-------|---|----|----|--| |--------------------------|-------|---|----|----|--| Property of Lite-On Only ### 6. Drive Method An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below. #### Circuit model A #### Circuit model B - (A) Recommended circuit - (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs ### 7. ESD (Electrostatic Discharge) Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage: - Use a conductive wrist band or anti- electrostatic glove when handling these LEDs - All devices, equipment, and machinery must be properly grounded - Work tables, storage racks, etc. should be properly grounded - Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing Part No.: LTL-1CHGE-0D1A Page: 9 of 11 ### LITE() \ LITE-ON TECHNOLOGY CORPORATION ### Property of Lite-On Only ### Suggested checking list: ### Training and Certification - 1. Everyone working in a static-safe area is ESD-certified? - 2. Training records kept and re-certification dates monitored? #### Static-Safe Workstation & Work Areas - 1. Static-safe workstation or work-areas have ESD signs? - 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V? - 3. All ionizer activated, positioned towards the units? - 4. Each work surface mats grounding is good? ### Personnel Grounding - 1. Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring? - 2. If conductive footwear used, conductive flooring also present where operator stand or walk? - 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*? - 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs? - 5. All wrist strap or heel strap checkers calibration up to date? Note: *50V for Blue LED. ### **Device Handling** - 1. Every ESDS items identified by EIA-471 labels on item or packaging? - 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation? - 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items? - 4. All flexible conductive and dissipative package materials inspected before reuse or recycle? #### Others - 1. Audit result reported to entity ESD control coordinator? - 2. Corrective action from previous audits completed? - 3. Are audit records complete and on file? Part No.: LTL-1CHGE-0D1A Page: 10 of 11 Property of Lite-On Only ### 8. Reliability Test | Classification | Test Item | Test Condition | Reference Standard | |-------------------|---|--|--| | | Room Temp.
Operation Life | If=50mA DC
Ta= 25°C
t= 1000hrs | MIL-STD-750D:1026 (1995)
MIL-STD-883D:1005 (1991)
JIS C 7021:B-1 (1982) | | Endurance
Test | High Temperature
Operation Life | If=30mA DC
Ta= 55 °C
t= 1000hrs | Liteon Request | | | High Temperature
High Humidity Life | If=10mA DC
Ta= 85 °C, 85%
t= 1000hrs | Liteon Request | | | High Temperature
High Humidity
Reverse BIAS | $Ta=65\pm5$ °C
$RH=90 \sim 95\%$
VR=-5V
$Test\ Time=500hrs$ | MIL-STD-202: 103В
JIS C 7021 : В-11(1982) | | | High Temperature
Storage | Ta= 100 °C
t= 1000hrs | MIL-STD-883D:1008 (1991)
JIS C 7021:B-10 (1982) | | | Low Temperature
Storage | Ta= -55 °C
t= 1000hrs | JIS C 7021:B-12 (1982) | | | Thermal
Shock | 100 ± 5 °C \sim -40 °C ± 5 °C
30mins 5mins 30mins
500 Cycles | MIL-STD-883:1010 | | Environmental | Thermal
Shock (2) | 80 ± 5 °C \sim -40 °C ± 5 °C
30mins 2mins 30mins
500 Cycles | Liteon Request | | Test | Solder
Resistance | T.sol = 260 ± 5 °C
Dwell Time= 10 ± 1 secs
3 times dip. | MIL-STD-202F:210A(1980)
MIL-STD-750D:2031(1995)
JIS C 7021: A-1(1982) | | | Solderability | T. sol = 230 ± 5 °C
Dwell Time= 5 ± 1 secs | MIL-STD-202F:208D(1980)
MIL-STD-750D:2026(1995)
MIL-STD-883D:2003(1991)
JIS C 7021: A-2(1982) | ### 9. Others The appearance and specifications of the product may be modified for improvement, without prior notice. | | 1 | | | | \dashv | |---------------------------|-------|----|----|----|----------| | Part No. : LTL-1CHGE-0D1A | Page: | 11 | of | 11 | | ### **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Lite-On: LTL-1CHGE-0D1A Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию . Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331