

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

August 2015

MOC205M, MOC206M, MOC207M, MOC211M, MOC212M, MOC213M, MOC216M, MOC217M 8-pin SOIC Single-Channel Phototransistor Output Optocoupler

Features

- Closely Matched Current Transfer Ratios
- Minimum BV_{CEO} of 70 V Guaranteed
- MOC205M, MOC206M, MOC207M
- Minimum BV_{CEO} of 30 V Guaranteed
 - MOC211M, MOC212M, MOC213M, MOC216M, MOC217M
- Low LED Input Current Required for Easier Logic Interfacing
 - MOC216M, MOC217M
- Convenient Plastic SOIC-8 Surface Mountable Package Style, with 0.050" Lead Spacing
- Safety and Regulatory Approvals:
 - UL1577, 2,500 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage

Applications

- Feedback Control Circuits
- Interfacing and Coupling Systems of Different Potentials and Impedances
- General Purpose Switching Circuits
- Monitor and Detection Circuits

Schematic

Description

These devices consist of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector, in a surface mountable, small outline, plastic package. They are ideally suited for high-density applications, and eliminate the need for through-the-board mounting.

Package Outline

Figure 2. Package Outline

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification	· · · · · · · · · · · · · · · · · · ·	55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC		904	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	4000	V _{peak}
	External Creepage	≥ 4	mm
	External Clearance	≥ 4	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τ _S	Case Temperature ⁽¹⁾	150	°C
I _{S,INPUT}	Input Current ⁽¹⁾	200	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	300	mW
R _{IO}	Insulation Resistance at T _S , $V_{IO} = 500 V^{(1)}$	> 10 ⁹	Ω

Note:

1. Safety limit values - maximum values allowed in the event of a failure.

MOC20xM, MOC21xM — 8-pin SOIC Single-Channel Phototransistor Output Optocoupler

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Rating	Value	Unit
TOTAL DEVIC	CE		
T _{STG}	Storage Temperature	-40 to +125	°C
T _A	Ambient Operating Temperature	-40 to +100	°C
Τ _J	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
Р	Total Device Power Dissipation @ $T_A = 25^{\circ}C$	240	mW
PD	Derate above 25°C	2.94	mW/°C
EMITTER			
١ _F	Continuous Forward Current	60	mA
I _F (pk)	Forward Current – Peak (PW = 100 µs, 120 pps)	1.0	А
V _R	Reverse Voltage	6.0	V
D	LED Power Dissipation @ T _A = 25°C	90	mW
PD	Derate above 25°C	0.8	mW/°C
DETECTOR			
۱ _C	Continuous Collector Current	150	mA
V _{CEO}	Collector-Emitter Voltage	30	V
V _{ECO}	Emitter-Collector Voltage	7	V
	Detector Power Dissipation @ T _A = 25°C	150	mW
PD	Derate above 25°C	1.76	mW/°C

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER	I					
	Input Forward Voltage					
V _F	MOC216M, MOC217M	$I_F = 1 \text{ mA}$		1.07	1.3	V
۷F	MOC205M, MOC206M, MOC207M MOC211M, MOC212M, MOC213M	I _F = 10 mA		1.15	1.5	V
I _R	Reverse Leakage Current	V _R = 6 V		0.001	100	μA
CIN	Input Capacitance			18		pF
DETECTO	DR					
I _{CEO1}	Collector Emitter Dark Current	V _{CE} = 10 V, T _A = 25°C		1.0	50	nA
I _{CEO2}	Collector-Emitter Dark Current	V _{CE} = 10 V, T _A = 100°C		1.0		μA
	Collector-Emitter Breakdown Voltage					
BV _{CEO}	MOC205M, MOC206M, MOC207M	I _C = 100 μA	70	100		V
DVCEO	MOC211M, MOC212M, MOC213M, MOC216M, MOC217M	I _C = 100 μA	30	100		V
ΒV _{CBO}	Collector-Base Breakdown Voltage	I _C = 10 μA	70	120		V
ΒV _{ECO}	Emitter-Collector Breakdown Voltage	I _E = 100 μA	7	10		V
C _{CE}	Collector-Emitter Capacitance	f = 1.0 MHz, V _{CE} = 0		7		pF
COUPLED	0					
	Collector-Output Current					
	MOC205M	I _F = 10 mA, V _{CE} = 10 V	40		80	%
	MOC206M	I _F = 10 mA, V _{CE} = 10 V	63		125	%
	MOC207M	I _F = 10 mA, V _{CE} = 10 V	100		200	%
CTR	MOC211M	I _F = 10 mA, V _{CE} = 10 V	20			%
	MOC212M	$I_{F} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	50			%
	MOC213M	I _F = 10 mA, V _{CE} = 10 V	100	8		%
	MOC216M	I _F = 1 mA, V _{CE} = 5 V	50			%
	MOC217M	I _F = 1 mA, V _{CE} = 5 V	100			%
	Collector-Emitter Saturation Voltage					
V _{CE(SAT)}	MOC205M, MOC206M, MOC207M MOC211M, MOC212M, MOC213M	I _C = 2 mA, I _F = 10 mA			0.4	V
	MOC216M, MOC217M	I _C = 100 μA, I _F = 1 mA			0.4	V
t _{on}	Turn-On Time	$I_{C} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_{L} = 100 \Omega \text{ (Figure 12)}$		7.5		μs
t _{off}	Turn-Off Time	$I_{C} = 2 \text{ mA}, V_{CC} = 10 \text{ V}, \\ R_{L} = 100 \Omega \text{ (Figure 12)}$		5.7		μs
t _r	Rise Time	$\label{eq:lc} \begin{array}{l} I_{C} = 2 \text{ mA}, \ V_{CC} = 10 \text{ V}, \\ R_{L} = 100 \ \Omega \ (\text{Figure 12}) \end{array}$		3.2		μs
t _f	Fall Time	$I_{C} = 2 \text{ mA}, V_{CC} = 10 \text{ V},$ $R_{L} = 100 \Omega \text{ (Figure 12)}$		4.7		μs

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	2500			VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz		0.2		pF
R _{ISO}	Isolation Resistance	$V_{I-O} = \pm 500 \text{ VDC}, T_A = 25^{\circ}C$	10 ¹¹			Ω
						R

Figure	13.	Reflow	Profile

Profile Freature Pb-Free Assembly F		
Temperature Minimum (Tsmin)	150°C	
Temperature Maximum (Tsmax)	200°C	
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds	
Ramp-up Rate (t _L to t _P)	3°C/second maximum	
Liquidous Temperature (T _L)	217°C	
Time (t _L) Maintained Above (T _L)	60–150 seconds	
Peak Body Package Temperature	260°C +0°C / –5°C	
Time (t _P) within 5°C of 260°C	30 seconds	
Ramp-down Rate (T _P to T _L)	6°C/second maximum	
Time 25°C to Peak Temperature	8 minutes maximum	

Ordering Information⁽²⁾

Part Number	Package	Packing Method
MOC205M	Small Outline 8-Pin	Tube (100 Units)
MOC205R2M	Small Outline 8-Pin	Tape and Reel (2500 Units)
MOC205VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 Units)
MOC205R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	Tape and Reel (2500 Units)

Note:

2. The product orderable part number system listed in this table also applies to the MOC20XM and MOC21XM products.

Marking Information

Figure 14. Top Mark

Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "4"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MOC205R2VM MOC205VM MOC205R2M MOC205M

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331