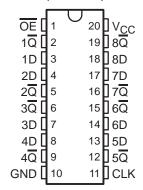
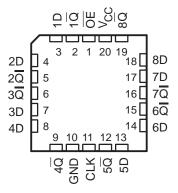
SN54ABT534, SN74ABT534A OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS187F - JANUARY 1991 - REVISED JANUARY 1997


- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Plastic (N) and Ceramic (J) DIPs, and Ceramic Flat (W) Package

description


These 8-bit flip-flops with 3-state outputs are designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK), the Q outputs are set to the complement of the logic levels set up at the data (D) inputs.

SN54ABT534...J OR W PACKAGE SN74ABT534A...DB, DW, N, OR PW PACKAGE (TOP VIEW)

SN54ABT534 . . . FK PACKAGE (TOP VIEW)

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

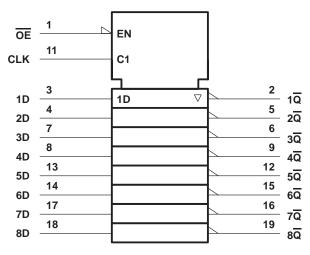
OE does not affect the internal operations of the flip-flop. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

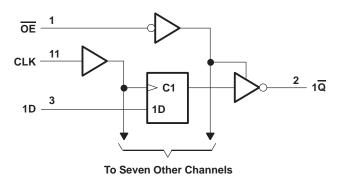
The SN54ABT534 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT534A is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated



SCBS187F - JANUARY 1991 - REVISED JANUARY 1997


FUNCTION TABLE (each flip-flop)

	INPUTS		ОU <u>Т</u> РUТ
OE	CLK	D	Q
L	1	Н	L
L	\uparrow	L	Н
L	H or L	Χ	\overline{Q}_0
Н	Χ	Χ	Z

logic symbol†

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		–0.5 V to 7 V
Voltage range applied to any output in the high	or power-off state, VO	
Current into any output in the low state, Io: SN	54ABT534	96 mA
		128 mA
Input clamp current, I_{IK} ($V_I < 0$)		–18 mA
Output clamp current, I _{OK} (V _O < 0)		
Package thermal impedance, θ_{JA} (see Note 2):	DB package	115°C/W
3,1 · · · ,		97°C/W
	N package	67°C/W
	PW package	
Storage temperature range, T _{sta}		–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS187F - JANUARY 1991 - REVISED JANUARY 1997

recommended operating conditions (see Note 3)

			SN54A	BT534	SN74AB	T534A	UNIT
				MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
V _{IH} High-level input voltage		2		2		V	
VIL	V _{IL} Low-level input voltage			0.8		0.8	V
VI	/ _I Input voltage		0	VCC	0	VCC	V
loh	High-level output current			-24		-32 mA	
lOL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
TA	Operating free-air temperature		<i>–</i> 55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

BARAMETER	TEST CONDITIONS		1	A = 25°0	;	SN54ABT534		SN74ABT534A		LINUT	
PARAMETER		IESI CONDIII	UNS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT
VIK	$V_{CC} = 4.5 V$,	$I_{I} = -18 \text{ mA}$				-1.2		-1.2		-1.2	V
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$		2.5			2.5		2.5		
Vari	V _{CC} = 5 V,	I _{OH} = -3 mA		3			3		3		V
VOH	V _{CC} = 4.5 V	I _{OH} = -24 m/	1	2			2]
	VCC = 4.5 V	$I_{OH} = -32 \text{ m/s}$	٨	2*					2	<u>'</u>	
Voi	V _{CC} = 4.5 V	I _{OL} = 48 mA				0.55		0.55			V
VOL	VCC = 4.5 V	I _{OL} = 64 mA				0.55*				0.55	V
V _{hys}					100						mV
lį	$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or C	SND			±1		±1		±1	μΑ
lozh	$V_{CC} = 5.5 V$,	$V_0 = 2.7 \text{ V}$				10‡		10‡		10‡	μΑ
lozL	$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.5 V$				-10 [‡]		-10 [‡]		-10 [‡]	μΑ
l _{off}	$V_{CC} = 0$,	V_I or $V_O \le 4.5$	5 V			±100				±100	μΑ
ICEX	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V	Outputs high			50		50		50	μΑ
ΙΟ§	$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V		-50	-100	-180‡	-50	-180‡	-50	-180‡	mA
	.,		Outputs high		1	250		250		250	μΑ
Icc	$V_{CC} = 5.5 \text{ V}, \text{ I}_{C}$ $V_{I} = V_{CC} \text{ or GI}$		Outputs low		24	30		30		30	mA
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AL = ACC OL GIAD			0.5	250		250		250	μΑ
ΔI _{CC} ¶	V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA	
Ci	V _I = 2.5 V or 0.5 V			3.5						pF	
Co	$V_0 = 2.5 \text{ V or } 0$).5 V			6.5						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This data sheet limit may vary among suppliers.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT534, SN74ABT534A OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS187F - JANUARY 1991 - REVISED JANUARY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				SN54ABT534				
			V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT	
			MIN	MAX				
fclock	Clock frequency			125		125	MHz	
t _W	Pulse duration	CLK high or low	3.5		3.5		ns	
t _{su}	Setup time, data before CLK↑	High or low	1.6		1.6		ns	
t _h	Hold time, data after CLK↑	High or low	1.6		1.6		ns	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

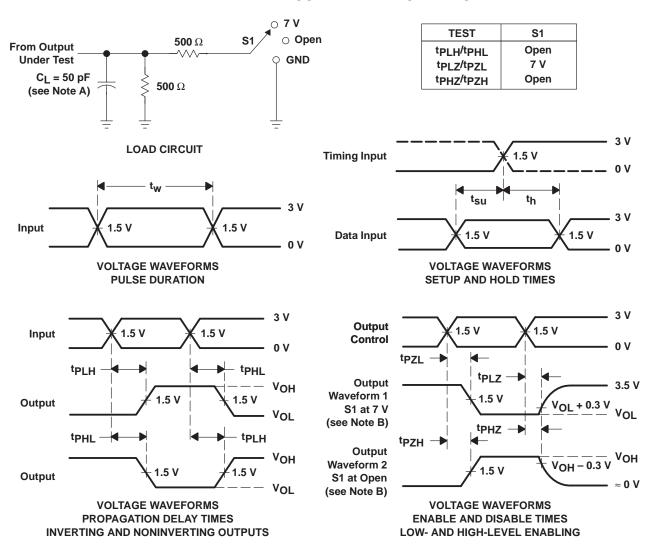
					SN74ABT534A				
			V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT		
		MIN	MAX						
fclock	Clock frequency			125		125	MHz		
t _W	Pulse duration	CLK high or low	3.5		3.5		ns		
t _{su}	Setup time, data before CLK↑	High or low	1.6	·	1.6	·	ns		
t _h	Hold time, data after CLK↑	High or low	2†		2†		ns		

[†] This data sheet limit may vary among suppliers.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V A = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
f _{max}			125	175		125		MHz
t _{PLH}	CLK	Q	2.6	4.5	6.1	2.6	7	ns
^t PHL		Q	3.4	5.5	6.7	3.4	7.9	113
^t PZH	ŌĒ	Q	1	3.4	5.2	1	5.8	ns
tPZL	OE	Q	2.6	4	5.8	2.6	7	115
^t PHZ	ŌĒ	Q	2.4	4.7	6.6	2.4	7.6	ns
t _{PLZ}	OE .	ų ų	2.3	3.8	5.8	2.3	6.8	115

SN54ABT534, SN74ABT534A OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS


SCBS187F - JANUARY 1991 - REVISED JANUARY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V 4 = 25°C	/, ;	MIN	MAX	UNIT
			MIN	TYP	MAX			
fmax			125	175		125		MHz
^t PLH	CLK	Ω	2.6	4.5	5.9	2.6	6.7	ns
t _{PHL}		Q	3.4	5.5	6.7	3.4	7.6	115
^t PZH	ŌĒ	ā	1	3.4	4.2	1	5	ns
^t PZL	OE	Q	2.6	4	5.8	2.6	6.8	115
^t PHZ	ŌĒ	ā	2.4	4.7	6.6	2.4	7.3	ns
t _{PLZ}	OE OE	l ^Q	2.3	3.8	5.8	2.3	6.5	115

SCBS187F - JANUARY 1991 - REVISED JANUARY 1997

PARAMETER MEASUREMENT INFORMATION

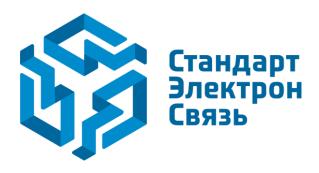
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Q} = 50 Ω , t_{f} \leq 2.5 ns, t_{f} \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.


TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331