Features

±15kV ESD-Protected, Quad, Low-Power RS-232 Line Driver

General Description

The MAX1488E quad, low-power line driver is designed for EIA/TIA-232, EIA/TIA-562, and CCITT V.28 communications in harsh environments. Each transmitter output is protected against ±15kV electrostatic discharge (ESD) shocks. The inputs are TTL and CMOS compatible with minimal loading. The outputs feature internally controlled slew-rate limiting and current limiting. This device has a guaranteed 120kbps data rate. Powersupply current is less than 180µA over a ±4.5V to ±13.2V supply voltage range.

The MAX1488E is pin compatible with the MC1488, MC14C88, SN75188, SN75C188, DS1488, and DS14C88. It is available in 14-pin plastic DIP and SO packages.

Applications

PC Motherboards

Modems

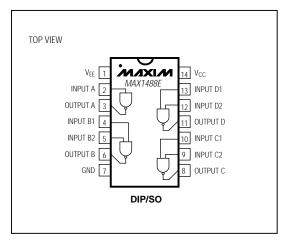
Interface Data Terminal Equipment (DTE) with Data Circuit-Terminating Equipment (DCE)

Equipment Meeting IEC1000-4-2 (formerly IEC801-2) or ±15kV ESD Protection **♦ ESD Protection:**

±15kV—Human Body Model ±6kV—IEC801-2, Contact Discharge ±15kV—IEC801-2, Air-Gap Discharge

- **♦ Latchup Free, Even During an ESD Event**
- ♦ Low 85µA Supply Current from IEE or ICC
- ♦ Guaranteed 120kbps Data Rate
- ♦ No External Capacitors Required for Slew-Rate Limiting
- ♦ Pin Compatible with MC1488, MC14C88, SN75188, SN75C188, DS1488, and DS14C88

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MAX1488ECPD	0°C to +70°C	14 Plastic DIP
MAX1488ECSD	0°C to +70°C	14 SO
MAX1488EC/D	0°C to +70°C	Dice*
MAX1488EEPD	-40°C to +85°C	14 Plastic DIP
MAX1488EESD	-40°C to +85°C	14 SO

^{*} Dice are specified at T_A = +25°C.

Typical Operating Circuit

MAXIM MAXIM TTL/CMOS TTL/CMOS INTERCONNECTING LOGIC LOGIC CABLE MIXIAM MIXIM SIGNAL GROUND PC MODEM MOTHERBOARD (DCE) (DTE)

Pin Configuration

MIXIM

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (V _{CC})	+14V
Negative Supply Voltage (VEE)	14V
Input Voltage (V _{IN})	0.3V to +15V
Driver Output Voltage	±15V
Continuous Power Dissipation (T _A = +70°C)	
Plastic DIP (derate 10.00mW/°C above +70°C)	800mW
SO (derate 8.7mW/°C above +70°C)	695mW

Operating Temperature Ranges	
MAX1488EC_D	0°C to +70°C
MAX1488EE_D	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

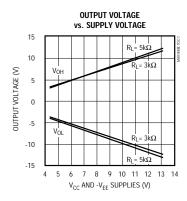
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

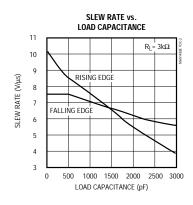
ELECTRICAL CHARACTERISTICS

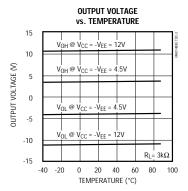
 $(V_{CC} = 4.5V \text{ to } 13.2V, V_{EE} = -4.5V \text{ to } -13.2V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS			1			•	
Output Voltage High		$V_{CC} = -V_{EE} = 5.0V$, $R_L = 3k\Omega$	3.7	4.0		V	
	Voн	$V_{CC} = -V_{EE} = 6.5V$, $R_L = 3k\Omega$	5	5.4			
Catput Voltage Flight	VOI1	$V_{CC} = -V_{EE} = 12.0V$, $R_L = 3k\Omega$	10	10.5		<u> </u>	
		$V_{CC} = -V_{EE} = 13.2V$, $R_L = open$		4.5	13.2		
		$V_{CC} = -V_{EE} = 5.0V$, $R_L = 3k\Omega$ $V_{CC} = -V_{FF} = 6.5V$, $R_L = 3k\Omega$		-4.5 -5.8		-3.7 -5 V	
Output Voltage Low	V _{OL}	$V_{CC} = -V_{EE} = 0.5V, R_L = 3K\Omega$ $V_{CC} = -V_{EE} = 12.0V, R_L = 3k\Omega$		-10.8	-10		
		$V_{CC} = V_{FF} = 13.2V, R_{L} = open$	-13.2	10.0	10	1	
0 " " " "	Vcc	00 22 7 2 77	4.5		13.2		
Operating Voltage Range	VEE		-13.2		-4.5	V	
Positive Supply Current	Icc	No load		85	180	μA	
Negative Supply Current	I _{EE}	No load	-180	-85		μΑ	
Output Short-Circuit Current	los	Output shorted to ground (Note 1)	±4	±20	±45	mA	
Input High Voltage	V _{IH}		2.0			V	
Input Low Voltage	V _{IL}				0.8	V	
Input Current	l _{IN1}			0	±2	μΑ	
Output Resistance	Ro	$V_{CC} = V_{EE} = 0V V_O \le 2.0V$		300		Ω	
TIMING CHARACTERISTICS (see Figure 1)					•	
	tpLH	V _{CC} = 4.5V, V _{EE} = -4.5V, C _L = 50pF		2.4	3.5	μs	
Output Propagation Delay, Low to High		V _{CC} = 9.0V, V _{EE} = -9.0V, C _L = 50pF		2.8	3.9		
LOW to riigh		V _{CC} = 12.0V, V _{EE} = -12.0V, C _L = 50pF		3.1	4.2		
Output Propagation Delay, High to Low		V _{CC} = 4.5V, V _{EE} = -4.5V, C _L = 50pF		2.1	4.5		
	tPHL	V _{CC} = 9.0V, V _{EE} = -9.0V, C _L = 50pF		2.4	5.1	μs	
		V _{CC} = 12.0V, V _{EE} = -12.0V, C _L = 50pF		2.6	5.4		
December 1 and 1 a		V _{CC} = 4.5V, V _{EE} = -4.5V, C _L = 50pF		0.25			
Propagation Delay Skew, tplh - tphl	tsĸ	V _{CC} = 9.0V, V _{EE} = -9.0V, C _L = 50pF		0.42		μs	
		V _{CC} = 12.0V, V _{EE} = -12.0V, C _L = 50pF		0.42		1	
ESD CHARACTERISTICS			1				
		Human Body Model		±15		T	
ESD Protection	IEC-1000-4-2 (Contact Discharge) ±6			kV			
		IEC-1000-4-2 (Air-Gap Discharge)		±15		1	

ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC} = 4.5V \text{ to } 13.2V, V_{EE} = -4.5V \text{ to } -13.2V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.$)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Output Rise Time	t _{R1}	C_L = 1500pF, R_L = 5k Ω , V_{OUTPUT} from -3.3V to 3.3V				ne	
	t _{R2}	C_L = 1500pF, R_L = 5k Ω , VOUTPUT_ from -3.0V to 3.0V		740		- ns	
Output Fall Time	t _{F1}	$C_L = 1500 pF$, $R_L = 5k\Omega$, $V_{OUTPUT_}$ from -3.3V to 3.3V		860	o ns		
	t _{F2}	C_L = 1500pF, R_L = 5k Ω , VOUTPUT_ from -3.0V to 3.0V	765		1 115		
Output Slew Rate	SR	C_L = 15pF to 2500pF, R_L = 3k Ω to 7k Ω , V_{CC} = 12V, V_{EE} = -12V, T_A = +25°C, V_{OUTPUT} from -3.0V to 3.0V	4		30	V/µs	
Guaranteed Data Rate		C_L = 15pF to 2500pF, R_L = 3k Ω to 7k Ω , V_{CC} = 12V, V_{EE} = -12V, T_A = +25°C	120			kbps	


Note 1: The los value is for one output at a time. If more than one output is shorted simultaneously, damage may occur.

_Typical Operating Characteristics

 $(V_{CC} = 12V, V_{EE} = -12V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1	V _{EE}	-4.5V to -13.2V Supply Voltage Input
2, 4, 5, 9, 10, 12, 13	INPUT_	Driver Inputs
3, 6, 8, 11	OUTPUT_	Driver Outputs
7	GND	Ground
14	Vcc	+4.5V to +13.2V Supply Voltage Input

Detailed Description

The MAX1488E provides ±15kV of ESD protection when operating or when powered down. After an ESD event, the MAX1488E will not latch up. Internal slew-rate-limiting circuitry eliminates the need for external capacitors. The MAX1488E has a guaranteed 120kbps data rate.

Tables 1 and 2 describe the output states. The output voltage level is affected by both the load current and supply voltage, and is stable over temperature. Refer to the Typical Operating Characteristics to see how the output voltage varies with supply voltage, load capacitance, and temperature.

Table 1. Driver A Functions

INPUT A	OUTPUTA
Н	
L	Н

Table 2. Driver B-D Functions

INPUT_1	INPUT_2	OUTPUT_
Н	Н	L
L	X	Н
X	L	Н

The driver inputs determine the driver output states (Tables 1 and 2). Driver inputs B, C, and D have two inputs. Connect unused inputs to ground or V_{CC}-

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The MAX1488E driver outputs have extra protection against static electricity found in normal

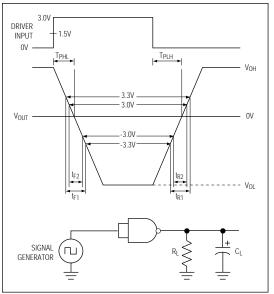


Figure 1. Slew-Rate Test Circuit and Timing Diagram

operation. Maxim's engineers developed state-of-theart structures to protect these pins against ESD of ±15kV, without damage. After an ESD event, the MAX1488E keeps working without latchup.

ESD protection can be tested in various ways; the transmitter outputs are characterized for protection to the following:

- 1) ± 15 kV using the Human Body Model
- 2) ±6kV using the Contact-Discharge Method specified in IEC1000-4-2 (formerly IEC801-2)
- 3) ±15kV using the Air-Gap Method specified in IEC1000-4-2 (formerly IEC801-2).

ESD Test Conditions

ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 2a shows the Human Body Model, and Figure 2b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

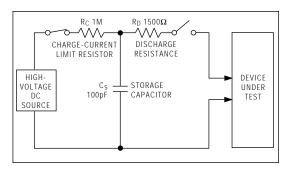
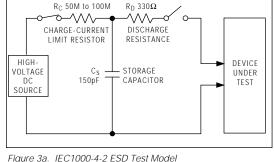



Figure 2a. Human Body ESD Test Model

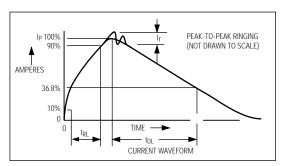


Figure 2b. Human Body Model Current Waveform

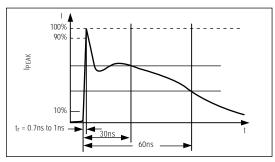
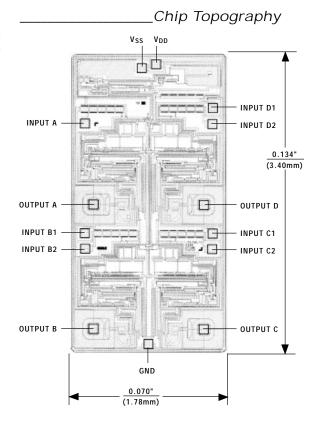


Figure 3b. IEC1000-4-2 ESD Generator Current Waveform

IEC1000-4-2

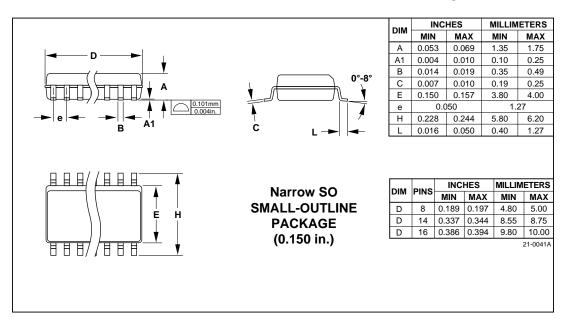
The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX1488E helps you design equipment that meets Level 4 (the highest level) of IEC1000-4-2, without additional ESD-protection components.

The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2. Because series resistance is lower in the IEC1000-4-2 ESD test model (Figure 3a), the ESD withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 3b shows the current waveform for the ±6kV IEC1000-4-2 Level 4 ESD Contact-Discharge

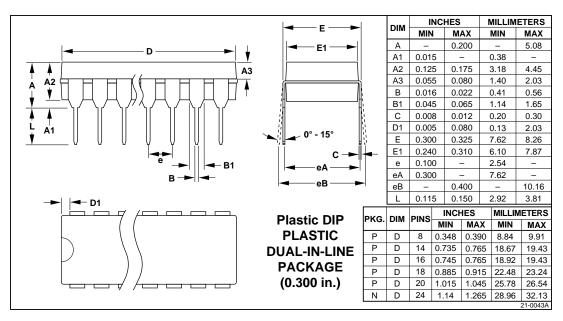

The Air-Gap test involves approaching the device with a charged probe. The Contact-Discharge method connects the probe to the device before the probe is energized.

Machine Model

The Machine Model for ESD testing uses a 200pF storage capacitor and zero-discharge resistance. Its objective is to mimic the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins (not just RS-232 inputs and outputs) require this protection during manufacturing. Therefore, the Machine Model is less relevant to the I/O ports than the Human Body Model and IEC1000-4-2.


Applications Information

Use proper layout to ensure other devices on your board are not damaged in an ESD strike. Currents as high as 60A can instantaneously pass into the ground, so it is important to minimize the ground-lead return path to the power supply. A separate return path to the power supply is recommended. Trace widths should be greater than 40 mils. VCC and VEE must be bypassed with 0.1µF capacitors as close to the part as possible to ensure maximum ESD protection.


TRANSISTOR COUNT: 95
SUBSTRATE CONNECTED TO GND

Package Information

NIXIN

_Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

⁸ _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331