

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA9280A

USB Port Multimedia Switch Featuring Automatic Select and Accessory Detection

Features
$\left.\begin{array}{|l|r|}\hline \text { Signals } & \text { Audio, USB, UART, USB Charging } \\ \hline \begin{array}{l}\text { Switch } \\ \text { Mechanism }\end{array} & \begin{array}{r}\text { Automatic Switching with } \\ \text { Available Interrupt }\end{array} \\ \hline \begin{array}{l}\text { Accessory } \\ \text { Detection }\end{array} & \begin{array}{r}\text { Headsets (Headphone/MIC/Remote) } \\ \text { USB Data Port (SDP) } \\ \text { UART Serial Link }\end{array} \\ \hline \text { USB Chargers (Car-Kit, CDP, DCP) } \\ \text { Factory-Mode } \\ \text { TTY Converter }\end{array}\right\}$

Description

The FSA9280A is a high-performance multimedia switch featuring automatic switching and accessory detection for the USB port. This switch allows sharing of a common USB port to pass audio, USB data / charging, as well as factory programmability. In addition, the FSA9280A integrates detection of accessories; such as headphones, headsets (MIC / button), car chargers, USB chargers, and UART data cables; with the ability to use a common USB connector. The FSA9280A can be programmed for manual or automatic switching of data paths based on accessory detected. FSA9280A includes an integrated 28 V over-voltage and 1.5A over-current protected FET.

Applications

- Mobile Phones \& Portable Media Players

Related Resources

- FSA9280A Evaluation Board
- Evaluation Board Users Guide
- For samples, questions or board requests; please contact analogswitch@fairchildsemi.com

Figure 1. Typical Application

Table of Contents

Features 1
Description 1
Applications 1
Related Resources 1
Table of Contents 2
Block Diagram 3
Pin Configuration 3
Pin Descriptions 4

1. Functionality 5
1.1. Functional Overview 5
2. Power-up \& Reset 6
2.1. Reset 6
2.1.1. Hardware Reset 6
2.1.2. Software Reset 6
3. $I^{2} \mathrm{C}$ 7
4. Configuration 8
5. Detection 8
5.1. USB Port Detection 10
5.2. Audio Accessory Detection 12
5.3. OCP and OVP Detection 13
6. Processor Communication 13
7. Switch Configuration 13
7.1. Manual Switching 14
8. Active Signal Performance 15
8.1. USB Data 15
8.2. FS USB 15
8.3. Audio 15
9. Electrical Specifications 16
9.1. Absolute Maximum Ratings 16
9.2. Recommended Operating Conditions 16
9.3. Switch Path DC Electrical Characteristics 16
9.4. Capacitance 18
9.5. Switch Path AC Electrical Characteristics 18
9.6. $I^{2} C$ Controller DC Characteristics 19
9.7. $I^{2} \mathrm{C}$ AC Electrical Characteristics \& Register Map 19
9.8. Factory Modes 23
9.8.1. Factory-Mode Accessory Detection 23
10. Reference Schematic 26
11. Layout Guidelines 27
11.1. PCB Layout Guidelines for High-Speed USB Signal Integrity 27
11.2. Layout for GSM/TDMA Buzz Reduction 27
11.3. Vbus_out Load Timing Requirements 27
11.4. Systems with Multiple USB Controllers 28
Physical Dimensions 29

Block Diagram

Figure 2. Block Diagram

Pin Configuration

Figure 3. Pin Assignments (Top View)

Pin Descriptions

Name	Pin \#	Type	Default State	Description
USB Interface				
DP_HOST	4	Signal Path	Open	D+ signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
DM_HOST	5	Signal Path	Open	D- signal switch path, dedicated USB port to be connected to the resident USB transceiver on the phone
Audio Interface				
Audio_L	2	Signal Path	Open	Left audio channel from mobile phone audio-out CODEC
Audio_R	1	Signal Path	Open	Right audio channel from mobile phone audio-out CODEC
MIC	3	Signal Path	Open	Connected to the mobile phone audio CODEC MIC input pin
UART Interface				
TxD	7	Signal Path	Open	Transmitter (Tx) from resident UART on the mobile phone
RxD	6	Signal Path	Open	Receiver (Rx) from resident UART on the mobile phone

Connector Interface

ID_CON	20	Signal Path	Open	Connected to the USB connector ID pin and used for detecting accessories or button presses
DP_CON	19	Signal Path	Open	Connected to the USB connector D+ pin; depending on the signaling mode, this pin can be switched to DP_HOST, Audio_R, or RxD pins
DM_CON	18	Signal Path	Open	Connected to the USB connector D - pin; depending on the signaling mode, this pin can switched to DM_HOST, Audio_L, or TxD pins
$V_{\text {bus_In }}$	17	Power Path	N/A	Input voltage supply pin to be connected to the $\mathrm{V}_{\text {BUS }}$ pin of the USB connector
Power Interface				
$V_{\text {bat }}$	11	Power	N/A	Input voltage supply pin to be connected to the mobile phone battery output or to an internal regulator on the phone
$\mathrm{V}_{\text {DIIO }}$	9	Power	N/A	Baseband processor interface I/O supply pin
GND	Exposed Center Pad	Ground	N/A	Ground (center ground pad of package makes electrical contact)

Charger Interface

VBUS_OUT	15	Power Path	N/A	Output voltage supply pin to be connected to the source voltage pin on the charger IC
CHG_DET	16	Open-Drain Output	$\mathrm{Hi}-\mathrm{Z}$	Open-drain active LOW output, used to signal the charger IC that a charger has been attached

Factory Interface

JIG	$\mathbf{1 0}$	Open-Drain Output	Hi-Z	Output control signal driven by the FSA9280A and used by the processor for factory test modes
BOOT	$\mathbf{8}$	CMOS Output	LOW	Output control signal driven by the FSA9280A and used by the processor for factory test modes
\mathbf{I}^{2} C Interface				
I2C_SCL	$\mathbf{1 4}$	Input	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{I}^{2} \mathrm{C}$ serial clock signal to be connected to the phone-based I ${ }^{2} \mathrm{C}$ master
I2C_SDA	$\mathbf{1 3}$	Open-Drain I/O	$\mathrm{Hi}-\mathrm{Z}$	I $^{2} \mathrm{C}$ serial data signal to be connected to the phone-based $\mathrm{I}^{2} \mathrm{C}$ master
INTB	$\mathbf{1 2}$	CMOS Output	LOW	Interrupt active LOW output used to prompt the phone baseband processor to read the I ${ }^{2} \mathrm{C}$ register bits, indicates a change in ID_CON pin status or accessory attach status

1. Functionality

The FSA9280A offers a complete solution for a single 5-pin USB interface. Through built-in detection algorithms that monitor the ID and $V_{\text {Bus }}$ pins of the USB interface, the FSA9280A allows seamless sharing of the interface between HS USB, FS USB or UART, and audio sources. The FSA9280A also offers a complete solution for multiple types of USB chargers. The FSA9280A detects different USB charger types and has a dedicated charger IC interface to allow charging through the devices and dynamic current control by the charger IC based on the type of charger detected. Additional over-current protection (OCP) and up to 28 V over-voltage tolerance (OVT) is provided.

The detection features are capable of monitoring the ID pin of the USB interface to detect a full array of USB accessories, including audio accessories with up to 12 buttons.

1.1. Functional Overview

The FSA9280A is designed for minimal software requirements for proper operation. The flow diagram below shows the basic steps of operation and contains references to more detailed information.

2. Power-up \& Reset

The FSA9280A does not need special power sequencing for correct operation. The main power of the device is provided by either $\mathrm{V}_{\text {bus_in }}$ or $\mathrm{V}_{\text {bat }}$. If $\mathrm{V}_{\text {bus_in }}$ is not present and $\mathrm{V}_{\text {bat }}$ is applied, $\mathrm{V}_{\mathrm{BAT}}$ is used to power the device. $\mathrm{V}_{\mathrm{DDIO}}$ is only used for $I^{2} \mathrm{C}$ interface and interrupt processing.

Table 1 summarizes the enabled features of each power state of the FSA9280A. The valid voltages levels for each power supply can be found in Section 9.2.

Table 1 - Power States Summary

Valid $V_{\text {Bus in }}$	$\begin{aligned} & \text { Valid } \\ & V_{\text {BAT }} \end{aligned}$	$\begin{aligned} & \text { Valid } \\ & \text { V }_{\text {DDIO }}{ }^{(1)} \end{aligned}$	Power State	Enabled Functionality		
				Charging through FET	Processor Communication (${ }^{2} \mathrm{C}$ \& Interrupts)	Detection
NO	NO	NO	Power Down	NO	NO	NO
NO	NO	YES ${ }^{(2)}$		ILLEGAL STATE		
NO	YES	NO	Powered from $\mathrm{V}_{\text {BAT }}$	NO	NO	YES
NO	YES	YES	Powered from $\mathrm{V}_{\text {BAT }}$	NO	YES	YES
YES	NO	NO	Powered from $\mathrm{V}_{\text {BUS_IN }}$	Yes	NO	YES
YES	YES	NO	Powered from $\mathrm{V}_{\text {BAT }}$	YES	NO	YES
YES	NO	YES ${ }^{(2)}$	Powered from $\mathrm{V}_{\text {Bus_ı }}$	YES	YES	YES
YES	YES	YES	Powered from $\mathrm{V}_{\text {BAT }}$	YES	YES	YES

Notes:

1. $V_{\text {DDIO }}$ is expected to be the same supply used by the baseband I/O's.
2. This is not a typical state: both $\mathrm{V}_{\mathrm{BAT}}$ and $\mathrm{V}_{\mathrm{DDIO}}$ are typically provided simultaneously.

2.1. Reset

When the device is reset, all the registers are initialized to the default values shown in Table 7 and all switch paths are open. After reset or power up, the FSA9280A enters Standby Mode and is ready to detect accessories sensed on its $V_{\text {Bus_In }}$ and / or ID_CON pins.

2.1.1. Hardware Reset

There are three hardware reset mechanisms:

- Power-on reset caused by the initial rising edge of $\mathrm{V}_{\text {BUS }}$ or $V_{\text {bat }}$
- The falling edge of $\mathrm{V}_{\text {DDII }}$.
- With V signals LOW for at least 30 ms .

Note:

3. $I^{2} \mathrm{C}$ controllers that implement clock stretching could cause reset. In this case, GPIOs could be used for the $I^{2} \mathrm{C}$ interface.

2.1.2. Software Reset

The device can be reset through software by writing to the Reset bit in the Register (1BH).

3. $I^{2} \mathrm{C}$

The FSA9280A integrates a fast-mode $I^{2} \mathrm{C}$ slave controller compliant with the $I^{2} \mathrm{C}$ specification version 2.1 requirements. The FSA9280A $I^{2} \mathrm{C}$ interface runs up to 400 KHz .

The slave address is shown in Table 2. Status information and configuration occurs via the $\mathrm{I}^{2} \mathrm{C}$ interface.

Please see Section 9.7 for more information.

Table $2-I^{2} C$ Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	1	0	1	Read / Write

Note: Single Byte write is initiated by Master with P immediately following first data byte.

Figure 4. $\quad I^{2} C$ Write Sequence

Figure 5. $\quad I^{2} C$ Read Sequence

4. Configuration

FSA9280A requires minimal configuration for proper detection and reporting. The following steps can be followed for full configuration. In many cases, only Step 5 needs to be implemented for proper operation.

1. Write Control register (02h) to configure different switching configurations and wait timing.
2. Write Interrupt Mask 1 and 2 registers ($05 \mathrm{~h}, 06 \mathrm{~h}$) to mask any interrupts not required in the application.

5. Detection

The FSA9280A detection algorithms monitor both the $\mathrm{V}_{\text {Bus }}$ and ID pins of the USB interface. Based on the detection results, multiple registers are updated and the INTB pin is asserted to indicate to the baseband processor that an accessory was detected and to read the registers for the complete information.
3. Write Timing Set $1(08 \mathrm{~h})$ register to program required key-press timing and ADC-detection timing.
4. Write Timing Set 2 (09h) register to program required Switching Wait timing and Long Key Press timing.
5. Write Control register (02h) to clear INT Mask bit. This enables interrupts to the baseband.

The detection algorithm allows the application to control the timing of the detection algorithm and the configuration of the internal switches. The flow diagram in Figure 7 shows the operation of the detection algorithm.

The FSA9280A monitors both $\mathrm{V}_{\text {BUs_IN }}$ and ID_CON to detect accessories. The ID_CON detection is a "resistive detection" that detects the resistance to GND on the ID_CON pin to
determine which accessory is attached. Table 3 shows the assignment of accessories based on resistor values.

Table 3. ID_CON Accessory Detection

Binary Value ${ }^{(4)}$	ID_CON Resistance to GND			Accessory Detected ${ }^{(5)}$
	Min.	Typ.	Max.	
00000	GND	GND	GND	DO NOT USE
00001	$1.9 \mathrm{k} \Omega$	$2.0 \mathrm{k} \Omega$	$2.1 \mathrm{k} \Omega$	Audio Send/End Button
00010	$2.470 \mathrm{k} \Omega$	$2.604 \mathrm{k} \Omega$	$2.730 \mathrm{k} \Omega$	Audio Remote S1 Button ${ }^{(6)}$
00011	$3.050 \mathrm{k} \Omega$	$3.208 \mathrm{k} \Omega$	3.370 k ת	Audio Remote S2 Button ${ }^{(6)}$
00100	$3.810 \mathrm{k} \Omega$	$4.014 \mathrm{k} \Omega$	$4.210 \mathrm{k} \Omega$	Audio Remote S3 Button ${ }^{(6)}$
00101	$4.58 \mathrm{k} \Omega$	$4.82 \mathrm{k} \Omega$	$5.06 \mathrm{k} \Omega$	Audio Remote S4 Button ${ }^{(6)}$
00110	$5.73 \mathrm{k} \Omega$	$6.03 \mathrm{k} \Omega$	$6.33 \mathrm{k} \Omega$	Audio Remote S5 Button ${ }^{(6)}$
00111	$7.63 \mathrm{k} \Omega$	$8.03 \mathrm{k} \Omega$	$8.43 \mathrm{k} \Omega$	Audio Remote S6 Button ${ }^{(6)}$
01000	$9.53 \mathrm{k} \Omega$	$10.03 \mathrm{k} \Omega$	$10.53 \mathrm{k} \Omega$	Audio Remote S7 Button ${ }^{(6)}$
01001	$11.43 \mathrm{k} \Omega$	$12.03 \mathrm{k} \Omega$	$12.63 \mathrm{k} \Omega$	Audio Remote S8 Button ${ }^{(6)}$
01010	$13.74 \mathrm{k} \Omega$	$14.46 \mathrm{k} \Omega$	$15.18 \mathrm{k} \Omega$	Audio Remote S9 Button ${ }^{(6)}$
01011	$16.40 \mathrm{k} \Omega$	$17.26 \mathrm{k} \Omega$	$18.12 \mathrm{k} \Omega$	Audio Remote S10 Button ${ }^{(6)}$
01100	$19.48 \mathrm{k} \Omega$	$20.50 \mathrm{k} \Omega$	$21.53 \mathrm{k} \Omega$	Audio Remote S11 Button ${ }^{(6)}$
01101	$22.87 \mathrm{k} \Omega$	$24.07 \mathrm{k} \Omega$	$25.27 \mathrm{k} \Omega$	Audio Remote S12 Button ${ }^{(6)}$
01110	$27.27 \mathrm{k} \Omega$	$28.70 \mathrm{k} \Omega$	$30.14 \mathrm{k} \Omega$	Reserved Accessory \#1
01111	$32.3 \mathrm{k} \Omega$	$34.0 \mathrm{k} \Omega$	$35.7 \mathrm{k} \Omega$	Reserved Accessory \#2
10000	$38.19 \mathrm{k} \Omega$	$40.20 \mathrm{k} \Omega$	$42.21 \mathrm{k} \Omega$	Reserved Accessory \#3
10001	$47.41 \mathrm{k} \Omega$	$49.90 \mathrm{k} \Omega$	$52.40 \mathrm{k} \Omega$	Reserved Accessory \#4
10010	$61.66 \mathrm{k} \Omega$	$64.90 \mathrm{k} \Omega$	$68.15 \mathrm{k} \Omega$	Reserved Accessory \#5
10011	$76.1 \mathrm{k} \Omega$	$80.7 \mathrm{k} \Omega$	$84.1 \mathrm{k} \Omega$	DO NOT USE
10100	$96.9 \mathrm{k} \Omega$	$102.0 \mathrm{k} \Omega$	$107.1 \mathrm{k} \Omega$	DO NOT USE
10101	$115 \mathrm{k} \Omega$	$121 \mathrm{k} \Omega$	$127 \mathrm{k} \Omega$	TTY Converter
10110	$143 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	$157 \mathrm{k} \Omega$	UART Cable
10111	$190 \mathrm{k} \Omega$	$200 \mathrm{k} \Omega$	$206 \mathrm{k} \Omega$	USB: See Table 4
11000	$247.3 \mathrm{k} \Omega$	$255 \mathrm{k} \Omega$	$262.7 \mathrm{k} \Omega$	Factory Mode Boot OFF-USB
11001	$292 \mathrm{k} \Omega$	$301 \mathrm{k} \Omega$	$310 \mathrm{k} \Omega$	Factory Mode Boot ON-USB
11010	$347 \mathrm{k} \Omega$	$365 \mathrm{k} \Omega$	$383 \mathrm{k} \Omega$	Audio Cradle
11011	$428.7 \mathrm{k} \Omega$	$442.0 \mathrm{k} \Omega$	$455.3 \mathrm{k} \Omega$	USB: See Table 4
11100	$507.3 \mathrm{k} \Omega$	$523 \mathrm{k} \Omega$	$538.7 \mathrm{k} \Omega$	Factory Mode Boot OFF-UART
11101	$600.4 \mathrm{k} \Omega$	$619 \mathrm{k} \Omega$	$637.6 \mathrm{k} \Omega$	Factory Mode Boot ON-UART
11110	$750 \mathrm{k} \Omega$	$1000 \mathrm{k} \Omega$	$1050 \mathrm{k} \Omega$	Audio Type 1 with Remote ${ }^{(8)}$
	$750 \mathrm{k} \Omega$	$1002 \mathrm{k} \Omega$	$1050 \mathrm{k} \Omega$	Audio Type 1 / Only Send-End ${ }^{(8)}$
11111	$20 \mathrm{M} \Omega^{(7)}$	Open ${ }^{(7)}$		USB Mode, Dedicated Charger or Accessory Detach

Notes:

4. The binary values are reported in the binary register (07 h) with each valid accessory detection.
5. The accessory type is reported in the Device Type 1 (0Bh), Device Type 2 (0Bh), Button 1 (0Ch), and Button 2 (0Dh) registers with each valid accessory detection.
6. These resistor values are created by multiple standard resistor values in series to form the button presses on the wired remote (see Figure 12).
7. For the ID float, ID "open" is recommended; otherwise, capacitance should be minimized.
8. Audio devices with remote and audio devices with only send/end are both reported as Audio Type 1 in the Device Type 1 register (see the Audio Accessory Detection section below). Type 1 is for passive resistor audio accessories and a future Audio Type 2 is designated for active audio accessories.

Figure 8. ID-Based Accessories, No $\mathrm{V}_{\text {bus_ı }}$ Attach Timing with Default Switching Wait Bits of 10 ms

5.1. USB Port Detection

The multiple types of USB 2.0 ports that the FSA9280A can detect are summarized in Table 4. These devices are unique in that $\mathrm{V}_{\text {BUS }}$ must be present to detect these accessories.

Table 4. ID_CON and $V_{\text {Bus_in }}$ Detection for USB Devices

$\begin{gathered} \text { ADC } \\ \text { Value }^{(9)} \end{gathered}$	$\mathrm{V}_{\text {Bus_In }}$	DP_CON	DP_CON	ID_CON Resistance to GND			Accessory Detected ${ }^{(10)}$
				Min.	Typ.	Max.	
10111	5 V	X	X	190k Ω	200k Ω	206k Ω	Car Kit Type 1 Charger ${ }^{(11)}$
11011	5 V	X	X	$428.7 \mathrm{k} \Omega$	$442 \mathrm{k} \Omega$	$455.3 \mathrm{k} \Omega$	Car Kit Type 2 Charger ${ }^{(11)}$
11111	5V	(12)	(12)	$20 \mathrm{M} \Omega$	Open	Open	USB Dedicated Charging Port, Travel Adapter or Dedicated Charger (DCP)
11111	5 V	(12)	(12)	$20 \mathrm{M} \Omega$	Open	Open	USB Charging Downstream Port (CDP)
11111	5 V	(12)	(12)	$20 \mathrm{M} \Omega$	Open	Open	USB Standard Downstream Port (SDP)

Notes:

9. The ADC values are reported in the ADC register (07 h) with an each valid accessory detection.
10. The accessory type is reported in the Device Type 1 (0 Bh) and Car Kit Status (0Eh) registers with an each valid accessory detection.
11. Follows the ANSI/CEA-936-A USB Car Kit specification.
12. The FSA9280A follow the Battery Charging 1.1 specification, which uses DP_CON and DM_CON to determine what USB accessory is attached (refer to the specification for details).

The following figures show the attach timing of the USB accessories and the relationship between the INTB assertion and the CHG_DET assertion. FSA9280A implements the optional data contact detection (DCD) feature of the USB Battery Charging specification. The DCD detection ensures

Figure 9. USB Dedicated Charging Port (DCP) or Charging Downstream Port (CDP) Attach Timing

Figure 10. USB Standard Downstream Port Attach Timing

Figure 11. Car Kit Type 1 and 2 Attach Timing

5.2. Audio Accessory Detection

Audio accessories are detected when the ID_CON pin resistance to GND is approximately $1 \mathrm{M} \Omega$. Configurations for this audio accessory shown in Figure 12 and Figure 13.

Figure 12. Audio Accessory with Just Send/End Button (1\% or 5\% Resistors)

Figure 13. Audio Accessory with Full Wired Remote Control (1\% Resistors)

The FSA9280A can detect and differentiate between regular key presses, long key presses, and a stuck key. The definition of the key press timing is user configurable by
writing the Timing Set 1 (08h) and Timing Set 2 (09h) registers. Timing diagrams for the key press detection are shown below in Figure 14 and Figure 15.

Figure 15. Long Key-Press Timing Diagram

5.3. OCP and OVP Detection

With $\mathrm{V}_{\text {BUS_IN }}$ greater than $6.8 \mathrm{~V}, \mathrm{~V}_{\text {BUS_IN }}$ is disconnected, protecting the FSA9280A and all application circuitry from excess voltage. This block is capable of withstanding continuous 28 V in Shutdown Mode. Upon entering Shutdown Mode, the OVP_EN bit in the Interrupt 1 register is set HIGH and an interrupt is sent to the baseband. The Over-Current Protection (OCP) feature limits current through the charger FET to $\leq 1.5 \mathrm{~A}$. The FSA9280A automatically senses an over-current event, shuts down $V_{\text {busout, and }}$ reports this to the baseband by asserting OCP_EN in the Interrupt 1 register. OCP Mode is only implemented when $\mathrm{V}_{\text {BUS_IN }}$ is provided by the attached accessory. Removal of an OVP or OCP condition triggers another interrupt sent to the processor clearing the OCP_EN and/or the OVP_EN bits and setting the OCP_OVP_DIS bit in the Interrupt 1 register.

6. Processor Communication

Typical communication steps between the processor and the FSA9280A during accessory detection are:

1. INTB asserted LOW, indicating change in accessory detection.
a) CHG_DET asserted LOW if USB charger detected.
2. Processor reads Interrupt registers to determine which event occurred.
a) Interrupt 1 (03h): Indicates if an attach, detach, key press, long key press, long key release, OVP / OCP event, or OVP / OCP event recovery was detected. Each bit can be masked by setting the corresponding bit in the Interrupt Mask 1 (05h) register.
b) Interrupt 2 (04h): Indicates if a reserved accessory, ADC change, stuck key, or stuck key recovery was detected. Each bit can be masked by setting the corresponding bit in the Interrupt Mask 2 (06h) register.
3. Processor reads Status registers to determine exact accessory detected.
a) Device Type 1 (0Ah): Indicates which USB, Car Kit UART, or audio accessory was detected.
b) Device Type 2 (0Bh): Indicates which factory mode was detected or if a TTY cable was detected.
c) Button 1 (0Ch \& ODh): Indicates which button press was detected with Audio Type 1 accessories.
d) Car Kit Status (0Eh): Indicates which type of car kit charger was detected.

6.1. Interrupts

The baseband processor recognizes interrupt signals by observing the INTB signal, which is active LOW. Interrupts are masked upon reset or power up via the INT Mask register bit (bit 0 of Control register, address 02h in Table 7. Register Map) and INTB pin defaults LOW right after this reset or power up. After the INT Mask bit is cleared by the baseband processor, the INTB pin is driven HIGH in preparation for a future interrupt. When an interruptible event
occurs, INTB transitions LOW and returns HIGH when the processor reads the Interrupt register at address 03h. Subsequent to the initial power up or reset; if the processor writes a " 1 " to INT Mask bit when the system is already powered up, the INTB pin stays HIGH and ignores all interrupts until the INT Mask bit is cleared. If an event happens that would ordinarily cause an interrupt when the INT Mask bit is set, the INTB pin is LOW for $\mathrm{t}_{\text {INT_mAsk }}$ after the INT Mask bit is cleared.

Figure 16. Power-up Interrupt Timing Diagram

Figure 17. $V_{\text {DDIO }}$ Reset Interrupt Timing Diagram

Figure 18. INT Mask to INTB Interrupt Timing Diagram

7. Switch Configuration

FSA9280A devices have two modes of operation when configuring the internal switches. The FSA9280A can autoconfigure the switches or the switches can be configured manually by the processor. Typical applications can use the Auto-Configuration Mode and do not require interaction with the baseband to configure the switches correctly.

Table 5. Auto-Configurations

Note:
13. Use of FS USB on the UART path requires manual switching, as described in Section 11.4 - Systems with Multiple USB Controllers.

7.1. Manual Switching

Manual switching is enabled by writing the following registers:

- Manual Switch 1 (13h): Configures the switches for DM_CON, DP_CON, and VBUs_IN.
- Manual Switch 2 (14h): Configures the CHG_DET, BOOT, and JIG pins.

8. Active Signal Performance

8.1. USB Data

Figure 19. Pass Through Eye Compliance Testing Input Signal

Figure 20. USB 2.0 Eye Compliance Test Results at Output

8.2. FS USB

Figure 21. FS USB Eye Compliance for UART Path

8.3. Audio

Figure 22. THD+N Plot for Audio Channels

9. Electrical Specifications

9.1. Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
$\mathrm{V}_{\text {BAT }} / \mathrm{V}_{\text {DDIO }}$	Supply Voltage from Battery / Baseband			-0.5	6.0	V
$\mathrm{V}_{\text {BUS_IN }}$	Supply Voltage from Micro-USB Connector			-0.5	28.0	V
$\mathrm{V}_{\text {Sw }}$	Switch I/O Voltage	USB		-1.0	$\mathrm{V}_{\text {BUS }}+0.5$	V
		Stereo / Mono Audio Path Active		-1.5	$\mathrm{V}_{\mathrm{BAT}}+0.5$	
		All Other Channels		-0.5	$\mathrm{V}_{\text {BAT }}+0.5$	
$\mathrm{I}_{\text {K }}$	Input Clamp Diode Current			-50		mA
$\mathrm{I}_{\text {CHG }}$	Charger Detect CHG_DET Pin Current Sink Capability				30	mA
Isw	Switch I/O Current (Continuous)	USB			50	mA
		Audio			60	
		All Other Channels			50	
$I_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1ms Duration, <10\% Duty Cycle)	USB			150	mA
		Audio			150	
		Charger FET			2	A
		All Other Channels			150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)				+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System ESD	USB Connector Pins (DP_CON, DM_CON, $\mathrm{V}_{\text {Bus_IN, }}$ ID_CON) to GND	Air Gap Contact	15.0 8.0		kV
	Human Body Model, JEDEC JESD22-A114	JIG, BOOT, INTB		3.5		
		All Other Pins, Including DP_CON, DM_CON,ID_CON and VBUS_IN		5.0		
	Charged Device Model, JEDEC JESD22-C101		All Pins	2.0		

9.2. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {BAT }}$	Battery Supply Voltage ${ }^{(14)}$		3.0	4.4	V
$V_{\text {BUSIN }}$	Supply Voltage from V ${ }_{\text {BUS_IN }}$ Pin $^{(15)}$		4.0	5.5	V
$\mathrm{V}_{\text {DDIO }}$	Processor Supply Voltage		1.8	3.6	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage	USB Path Active	0	3.6	V
		Audio Path Active	-1.2	1.2	
		All Other Pins	0	5.0	
$1 \mathrm{D}_{\text {CAP }}$	Capacitive Load on ID_CON Pin for Reliable Accessory Detection			1.0	nF
T_{A}	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

Note:

14. Fairchild does not guarantee operation below 3.0 V .
15. Between 5.5 to OVP starting voltage, the charger FET is still closed so that charger IC can charge battery even with 5.9~6.0V travel adaptor.

9.3. Switch Path DC Electrical Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{BAT}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
Host Interface Pins (JIG, BOOT, INTB, CHG-DET)							
V_{OH}	Output High Voltage ${ }^{(16)}$	3.0 to 4.4	$\mathrm{I}_{\text {он }}=2 \mathrm{~mA}$	$\begin{aligned} & 0.7 x \\ & V_{\text {DDIO }} \end{aligned}$			V
VoL	Output Low Voltage	3.0 to 4.4	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.4	V

Switch OFF Characteristics

loff	Power-Off Leakage Current	0	All Data Ports Except MIC $\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V}$ to 4.4 V			10	$\mu \mathrm{A}$
I_{NO}	Switch Open Leakage Current with Device Powered	3.0 to 4.4	$\mathrm{V}_{\mathrm{BAT}}=4.4 \mathrm{~V}$; I/O Pins=0.3V, 4.1 V , or Floating, Except MIC	-0.100	0.001	0.100	$\mu \mathrm{A}$
lidshrt	Short-Circuit Current ${ }^{(17)}$	3.0 to 4.4	Current Limit if ID_CON=0V		5		mA
USB Switch ON Path							
USB Analog Signal Range		3.0 to 4.4		0		3.6	V
Ronusb	USB Switch On Resistance ${ }^{(18)}$	3.0 to 4.4	$\mathrm{V}_{\mathrm{D}+/ \mathrm{D}-}=0 \mathrm{~V}, 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}=8 \mathrm{~mA}}$		8	10	Ω

Charging FET ON Path

Vovp	Over-Voltage Protection (OVP) Threshold Voltage		6.2	6.8	7.2	V
Ronfet	Charging FET On Resistance ${ }^{(17)}$	$\mathrm{V}_{\text {BUS_IN }}=4.2 \mathrm{~V}-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=1 \mathrm{~A}$		200		$\mathrm{m} \Omega$
locp	Over-Current Protection (OCP) Threshold Current ${ }^{(17)}$	$\mathrm{V}_{\text {BUS_IN }}=5.2 \mathrm{~V}$	1.1	1.3	1.5	A

Audio_R/Audio_L Switch ON Paths

Audio Analog Signal Range	3.0 to 4.4		-1.2		3.0	V	
$\mathrm{R}_{\text {ON }}$	Audio Switch On Resistance ${ }^{(18)}$	3.0 to 4.4	$\mathrm{~V}_{\mathrm{LR}}=-0.8 \mathrm{~V}, 0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA}$,			3	Ω
$\mathrm{R}_{\text {FLAT }}$	Audio R R ${ }_{\text {ON }}$ Flatness ${ }^{(19)}$	3.0 to 4.4	$\mathrm{f}=0-470 \mathrm{kHz}$			0.1	Ω

MIC and UART Switch ON Paths

Analog Signal Range ${ }^{(20)}$		3.0 to 4.4		0		5	V
Ron	MIC Path ON Resistance	3.0 to 4.4	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V}, 4.4 \mathrm{~V}, \mathrm{l}_{\mathrm{on}}=30 \mathrm{~mA}$		40		Ω
	UART Path ON Resistance ${ }^{(17)}$				25	30	

Total Current Consumption

ICcSL	Battery Supply Standby Mode Current (No Accessory Attached)	3.0 to 4.4	No Accessory Static Current During Standby Mode	10	25	$\mu \mathrm{~A}$
ICcsLwA	Battery Supply Standby Mode Current with Accessory Attached	3.8	With Accessory Static Current During Standby Mode	30	40	$\mu \mathrm{~A}$

Notes:

16. Does not apply to CHG_DET or JIG pins because they are open drain.
17. Limits based on electrical characterization data.
18. On resistance is the voltage drop between the two terminals at the indicated current through the switch.
19. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.
20. The MIC bias applied by the baseband should not exceed 2.8 V .
21. Applies to all accessories except Audio Type 1 and Factory-Mode accessories.

9.4. Capacitance

Symbol	Parameter	$V_{B A T}$ (V)	Condition	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
Conusb	DP_CON, DM_CON On Capacitance (USB Mode)	3.8	$\mathrm{V}_{\text {BIAS }}=0.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		8		pF

9.5. Switch Path AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{BAT}}=3.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter		Condition	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			Unit	
			Min.	Typ.	Max.			
Xtalk	Active Channel Crosstalk DP_CON to DM_CON	Audio Mode		$\mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=32 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-50		dB
		USB Mode	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-60			
			$\mathrm{f}=240 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-40			
OIRR	Off Isolation	Audio Mode	$\mathrm{f}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=32 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		-90		dB	
		USB Mode	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{L}=0 \mathrm{pF}$		-90			
PSRR	Power Supply Rejection Ratio, MIC on $\mathrm{V}_{\text {BUS_I }}$		Power Supply Noise 300 mV vp, $\mathrm{f}=217 \mathrm{~Hz}$		-100		dB	
THD	Total Harmonic Distortion (Audio Path)		20 Hz to $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 / 16 \Omega$, Input Signal Range $2 \mathrm{~V}_{\mathrm{PP}}$		0.03		\%	
			20 Hz to $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=32 / 16 \Omega$, Input Signal Range -1.2 V to 1.2 V		0.05			
tsk(P)	Skew of Opposite Transitions of the Same Output (USB Mode)		$\begin{aligned} & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=750 \mathrm{ps}(10-90 \%) \text { at } 240 \mathrm{MHz}, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		30		ps	
$\mathrm{t}_{\text {I2CRST }}$	Time When I2C_SDA and I2C_SCL Both LOW to Cause a Reset		See Figure 6	30			ms	
tintmask	Time after INT Mask Cleared to "0" until INTB Goes LOW to Signal the Interrupt after Interruptible Event while INT Mask Bit Set to "1"		See Figure 18		10		ms	
$t_{\text {sDPDET }}$	Time from $\mathrm{V}_{\text {bus_in }}$ Valid to $\mathrm{V}_{\text {Bus_out }}$ Valid with Charger FET Closed and USB Switches Closed for USB Standard Downstream Port		See Figure 10		130		ms	
$\mathrm{t}_{\text {chgout }}$	Time from $\mathrm{V}_{\text {Bus_In }}$ Valid to $\mathrm{V}_{\text {bus_out }}$ Valid with the Charger FET Closed for Both USB Charging Ports (CDP and DCP)		See Figure 9		170		ms	
$\mathrm{t}_{\text {carkit }}$	Time from V ${ }_{\text {bus_ı }}$ Valid to Car Kit Type 1 or Type 2 Charger Detected		See Figure 11		200		ms	
$\mathrm{t}_{\text {chg }}$	Time from $V_{\text {bus_out }}$ Valid to CHG_DET Output LOW for Both USB Charging Ports (CDP and DCP) and for Car Kit Chargers		See Figure 9, Figure 11		100		ms	
tidDet	Time from ID_CON Not F Signal Accessory Attache Resistance-Based Only (ting to INTB LOW to that is ID_CON us_ın Not Valid)	See Figure 8		200		ms	
$\mathrm{t}_{\text {Jigvbus }}$	Time from $V_{\text {Bus_in }}$ Valid to JIG LOW and $V_{\text {Bus_out }}$ Valid with Charger FET Closed for Both Factory Mode Operation with $V_{\text {BUS_in }}$ Present		See Figure 25		200		ms	
	Time from V ${ }_{\text {Bus_IN }}$ Valid to JIG LOW for Factory Mode Operation without $\mathrm{V}_{\text {BUs_in }}$ Present		See Figure 26		200		ms	

9.6. $I^{2} \mathrm{C}$ Controller DC Characteristics

Symbol	Parameter		Fast Mode (400kHz)		
			Min.	Max.	Units
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		-0.5	$0.3 \mathrm{~V}_{\text {DDIO }}$	V
V_{IH}	High-Level Input Voltage		$0.7 \mathrm{~V}_{\text {DDIO }}$		V
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis of Schmitt Trigger Inputs	$\mathrm{V}_{\text {DDIO }}>2 \mathrm{~V}$	$0.05 \mathrm{~V}_{\text {DdIO }}$		V
		$\mathrm{V}_{\text {DDIO }}<2 \mathrm{~V}$	$0.1 \mathrm{~V}_{\text {DDIO }}$		
$\mathrm{V}_{\text {OL1 }}$	Low-Level Output Voltage at 3mA Sink Current (Open-Drain)	$\mathrm{V}_{\text {DIIO }} \times 2 \mathrm{~V}$	0	0.4	V
		$\mathrm{V}_{\text {DIIO }}<2 \mathrm{~V}$		$0.2 \mathrm{~V}_{\text {DDIO }}$	
112 C	Input Current of I2C_SDA and I2C_SCL Pins, Input Voltage 0.26V to 2.34V		-10	10	$\mu \mathrm{A}$
Cl_{1}	Capacitance for Each I/O Pin			10	pF

9.7. $I^{2} \mathrm{C}$ AC Electrical Characteristics \& Register Map

Symbol	Parameter	Fast Mode		
		Min.	Max.	Unit
$\mathrm{f}_{\mathrm{SCL}}$	SCL Clock Frequency	0	400	kHz
$\mathrm{t}_{\text {HD; STA }}$	Hold Time (Repeated) START Condition	0.6		$\mu \mathrm{s}$
tıow	LOW Period of SCL Clock	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	HIGH Period of SCL Clock	0.6		$\mu \mathrm{s}$
tsu;STA	Set-up Time for Repeated START Condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; DAT }}$	Data Hold Time	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su;DAT }}$	Data Set-up Time ${ }^{(22)}$	100		ns
tr_{r}	Rise Time of SDA and SCL Signals ${ }^{(23)}$	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
t_{f}	Fall Time of SDA and SCL Signals ${ }^{(23)}$	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
tsu;Sto	Set-up Time for STOP Condition	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	BUS-Free Time between STOP and START Conditions	1.3		$\mu \mathrm{s}$
tsp	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

Notes:

22. A fast-mode $\mathrm{I}^{2} \mathrm{C}$-Bus $®$ device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-Bus system, but the requirement $\mathrm{t}_{\text {Su;DAT }} \geq \square 250 \mathrm{~ns}$ must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $\mathrm{t}_{r_{-} \max }+\mathrm{t}_{\text {SU;DAT }}=1000+250$ $=1250 \mathrm{~ns}$ (according to the standard-mode I ${ }^{2} \mathrm{C}$ bus specification) before the SCL line is released.
23. C_{b} equals the total capacitance of one BUS line in pF . If mixed with high-speed devices, faster fall times are allowed according to the $I^{2} \mathrm{C}$ specification.

Figure 23. Definition of Timing for Full-Speed Mode Devices on the $I^{2} C$ Bus
Table 6. $1^{2} \mathrm{C}$ Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	1	0	1	R/W

Table 7. Register Map

Address	Register	Type	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01H	Device ID	Read	00000000	Version ID: 0xb001					Vendor ID (Fairchild): 000		
02H	Control	Read / Write	00011111	Reserved: - Read XXX - Write 000			Switch Open	ADC Interrupt Disable	Manual Switch	Configuration Delay	Global Interrupt Mask
							0: Open All switches	0 : Report interrupt when detection is complete on ID_CON	0 : Automatic configuration disabled, switch configuration based on Manual Switch registers (13H, 14H)	0: After wait time expires delay configuration indefinitely until this bit is written to 1 by host	0: Does not Mask Interrupts
							1: Switch based on detection	1: ADC change interrupt is disabled	1: Automatic configuration is enabled	1: If wait time has expired configure the switches immediately (See figure 2(flow chart))	1: Mask interrupts
03H	Interrupt 1	Read/ Clear	00000000	OVP \& OCP Recovery	OCP Event	OVP Event	Long Key Release	Long Key Press	Key Press	Detach	Attach
				0: OVP and/or OCP event not recovered	0: No OCP event	0: No OVP event	0: No Interrupt				
				1: OVP and/or OCP event recovered	1: OCP event	1: OVP event	1: Long key release detected	1: Long key press detected	1: Key press detected	1: Accessory detached	1: Accessory attached
04H	Interrupt 2	Read/ Clear	00000000	Reserved: - Read XXX - Write 000			Stuck Key Recovery	Stuck Key	ADC Change	Reserved Attach	Reserved: - Read X - Write 0
							0: No Interrupt				
							1: Stuck key recovered	1: Stuck key detected	1: Valid ADC detection	1: Reserved accessory attached	
05H	Interrupt Mask 1	Read/ Write	00000000	OVP \& OCP	OCP	OVP	Long Key Release	Long Key Press	Key Press	Detach	Attach
				0: No Interrupt Mask							
				1: Mask Interrupt 1 [OVP \& OCP Recovery]	1: Mask Interrupt 1 [OCP Event]	1: Mask Interrupt 1 [OVP Event]	1: Mask Interrupt 1 [Long Key Release]	1: Mask Interrupt 1 [Long Key Press]	1: Mask Interrupt 1 [Key Press]	1: Mask Interrupt 1 [Detach]	1: Mask Interrupt 1 [Attach]
06H	Interrupt Mask 2	Read / Write	00000000	Reserved: - Read XXX - Write 000			Stuck Key Recovery	Stuck Key	ADC Change	Reserved Attach	Reserved: - Read X - Write 0
							0: No Interrupt Mask				
							1: Mask Interrupt 2 [Stuck Key Recovery]	$\begin{gathered} \text { 1: Mask - } \\ \text { Interrupt 2 } 2 \text { Stuck } \\ \text { Key] } \\ \hline \end{gathered}$	1: Mask Interrupt 2 [ADC Change]	1: Mask - Interrupt 2 [Reserved Attach]	
07H	ADC	Read	00011111	Reserved: - Read XXX, - Write 000			ADC Value (See Table 8)				
08H	Timing Set 1	Read / Write	00000000	Key Press Time (See Table 8)			ADC Detection Time (See Table 8)				
09H	Timing Set 2	Read / Write	00000000	Switching Wait Time (See Table 8)			Long Key Press Time (See Table 8)				

Continued on the following page...

Address	Register	Type	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OAH	Device Type 1	Read	00000000	Reserved: - Read X - Write 0	$\begin{array}{\|c\|} \hline \text { USB Charging } \\ \text { (DCP) } \end{array}$	$\begin{aligned} & \text { USB Charging } \\ & \text { (CDP) } \\ & \hline \end{aligned}$	Car Kit Charger	UART	USB Data (SDP)	Reserved: - Read X - Write 0	$\begin{gathered} \text { Audio Type } \\ 1 \\ \hline \end{gathered}$
					0: No detect						0 : No detect
					1: USB dedicated charging port (DCP) detected	1: USB charging downstream port (CDP) detected	1: Car Kit charger detected	1: UART detected	1: USB standard downstream port (SDP) detected		1: Audio Type 1 accessory detected
OBH	Device Type 2	Read	00000000	Reserved: - Read XX - Write 00		TTY	Reserved: - Read X - Write 0	Factory Mode - See Table 9			
						0: No detect		0: No detect			
						1: TTY detected		1: Jig: UART - Boot_OFF	1: Jig: UART Boot ON	1: Jig: USB - Boot_OFF	$\begin{gathered} \text { 1: Jig: USB - } \\ \text { Boot_ON } \end{gathered}$
OCH	Button 1	Read	00000000	Button 7	Button 6	Button 5	Button 4	Button 3	Button 2	Button 1	Send End
				0: Not Pressed							
				1: Pressed							
ODH	Button 2	Read	00000000	Reserved: - Read XX - Write 00		Key Press Error	Button 12	Button 11	Button 10	Button 9	Button 8
						$\begin{array}{\|c} \hline 0: \begin{array}{c} \text { No Key Press } \\ \text { Error } \end{array} \\ \hline \end{array}$	0: Not Pressed				
						1: Key Press Error detected (too short)	1: Pressed				
				Reserved: - Read XXXXXX - Write 000000						Charger Type	
OEH	Car Kit Status	Read	00000000							00: No connection 01: Reserved Charger 10: Car Kit charger type 1 11: Car Kit charger type 2	
OFH	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
10H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
11H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
12H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
				DM_CON Connection			DP_CON Connection			$\mathrm{V}_{\text {bus }}$ Connection	
13H	Manual Switch 1	Read / Write	00000000	000: Open DM_CON switch 001: DM_CON connected to DM_HOST of USB port 010: DM_CON connected to Audio_L 011: DM_CON connected to TxD of UART port			000: Open DP_CON switch 001: DP_CON connected to DP_HOST of USB port 010: DP_CON connected to Audio_R 011: DP_CON connected to RxD of UART port			00: Open VBUS switch 01: VBUS_OUT connected to VBUS_IN (Host - current sourced from the phone to accessory, max. load current is 5 mA) 10: VBUS_IN connected to MIC 11: VBUS_IN connected to VBUS_OUT (Standard USB - phone sinks current from attached accessory)	
14H	Manual Switch 2	Read / Write	00000000	Reserved: - Read XXX - Write 000			CHG_DET	BOOT	JIG	Reserved: - Read XXX - Write 000	
							0 : High Impedance	0: Low	0 : High Impedance		
							1: Low	1: High	1: Low		

Continued on the following page..

Address	Register	Type	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
15H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
16H	Reserved	N/A	XXXXXXX0	Reserved: - Read XXXXXXXX, - Write 00000000							
17H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
18H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
19H	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
1AH	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000							
1BH	Reset	R/W	X0001000	Reserved: - Read XXXXXXX, - Write 0000100							Reset 0: No Reset 1: Reset (Always reads 0)
1CH	Reserved	N/A	XXXXX001	Reserved: - Read XXXXXXXX, - Write 00000001							
1DH	Reserved	N/A	00000000	Reserved: - Read XXXXXXXX, - Write 00000000						VBus_ın VALID $0:$ V $_{\text {Bus_ın }}$ Not Valid $1: V_{\text {Bus_ın }}$ Valid	Reserved: - Read X, Write 0
1EH	Reserved	N/A	$\underset{X}{\mid X X X X X X}$	Reserved: - Read XXXXXXXX, - Write 00000000							
1FH	Reserved	N/A		Reserved: - Read XXXXXXXX, - Write 00000000							
20 H	DCD Configuration	Read/Write	XXXXXX00	Reserved: - Read XXXXXXXX, - Write 00000000					Enable DCD Timeout 0: DCD Timeout Not Enabled 1: DCD Timeout Enabled	Reserved: Read XX, - Write 00	
21H	Reserved	N/A	XXXXXX00	Reserved: - Read XXXXXXXX, - Write 00000000							

Table 8 - Timing for Timing Set 1 \& 2 Registers

Setting Value ${ }^{(24)}$	ADC Detection Time	Key Press Time	Long Key Press Time	Switching Wait Time
0000	50 ms	100 ms	300 ms	10 ms
0001	100 ms	200 ms	400 ms	30 ms
0010	150 ms	300 ms	500 ms	50 ms
0011	200 ms	400 ms	600 ms	70 ms
0100	300 ms	500 ms	700 ms	90 ms
0101	400 ms	600 ms	800 ms	110 ms
0110	500 ms	700 ms	900 ms	130 ms
0111	600 ms	800 ms	1000 ms	150 ms
1000	700 ms	900 ms	1100 ms	170 ms
1001	800 ms	1000 ms	1200 ms	190 ms
1010	900 ms		1300 ms	210 ms
1011	1000 ms		1400 ms	
1100			1500 ms	
$1101-1111$				

Note:

24. Each of the four registers can have unique register setting values.

9.8. Factory Modes

The FSA9280A has four dedicated Factory Modes that allow efficient factory testing of a platform. Factory Modes are initiated with the attachment of special test hardware, called a "JIG box" used for factory testing. FSA9280A automatically configures switch paths to any factory-mode accessories when $\mathrm{V}_{\text {DDIO }}$ is present, without detaching and attaching the micro-USB cable. Since the processor may not be awake when a factory-mode accessory is detected, $I^{2} C$ read acknowledge is not required, nor does the FSA9280A employ a switching wait timer found in the Timing Set 2 register for the initial switch configuration. A change of resistor on the ID_CON pin dynamically switches between factory modes and auto-configures the appropriate switch paths without detaching and attaching the cable.

JIG output signals when a factory-mode accessory is plugged in and BOOT output signals the baseband processor to boot up, allowing tests to be conducted with and without the baseband processor powered up. As soon as the factory-mode cable is removed, the FSA9280A returns to a standard accessory flow that requires a device detach between accessory type configurations changes (except Audio Type 1 accessory described in the Audio Accessory Detection section above). The typical key sensing for Audio Type 1 accessories for wired remote is not active for factory-mode test.

9.8.1. Factory-Mode Accessory Detection

The different factory-mode accessories with the associated resistor values (1% standard resistors) on the ID_CON pin, the JIG and BOOT logic states, and switch configurations are listed in Table 9.

Notes:

25. The charger FET closes for factory-mode BOOT ON-UART or factory-mode BOOT OFF-UART if VBUS_IN is valid only during the time when the cable is first plugged in or a new ID_CON resistor is detected.
26. Audio-type device configuration is entered as part of the factory-mode flow shown in Figure 24 where the ID_CON pin is not monitored for key presses and JIG remains LOW until the factory jig box is detached from the phone. MIC is not connected in this audio type case. Figure 24 provides the attach flow diagram for the JIG box accessory. If any of the factory modes is first entered and JIG=LOW; then and only then, can the ID_CON resistor ($1 \mathrm{M} \Omega$) dynamically switch to Audio Type 1 accessory without a cable detach. For the latter case, factory-mode Audio Type 1 accessory autoconfigures the switches such that: Audio_L = DM_CON.
27. MIC is left unconnected.
28. The typical key sensing for Audio Type 1 accessories for wired remote is not active for this factory-mode test.

Figure 24. Factory Mode Flow

Figure 25. FACTORY Box Attach Timing (VBus_in Valid)

Figure 26. FACTORY Box Attach Timing without $\mathrm{V}_{\text {BUs_IN }}$
10. Reference Schematic

Figure 27. Reference Schematic

11. Layout Guidelines

11.1. PCB Layout Guidelines for High-Speed USB Signal Integrity

1. Place FSA9280A as close to the USB controller as possible. Shorter traces mean less loss, less chance of picking up stray noise, and may radiate less EMI.
a) Keep the distance between the USB controller and the device less than one inch (<1in).
b) For best results, this distance should be $<18 \mathrm{~mm}$. This keeps it less than one quarter ($1 / 4$) of the transmission electrical length.
2. Use an impedance calculator to ensure 90Ω differential impedance for DP_COM/DM_CON lines.
3. Select the best transmission line for the application.
a) For example, for a densely populated board, select an edge-coupled differential stripline.
4. Minimize the use of vias and keep HS USB lines on same plane in the stack.
a) Vias are an interruption in the impedance of the transmission line and should be avoided.
b) Try to avoid routing schemes that generally force the use of at least two vias: one on each end to get the signal to and from the surface.
5. Cross lines, only if necessary, orthogonally to avoid noise coupling (traces running in parallel couple).
6. If possible, separate HS USB lines with GND to improve isolation
a) Routing GND, power, or components close to the transmission lines can create impedance discontinuities.
7. Match transmission line pairs as much as possible to improve skew performance.
8. Avoid sharp bends in PCB traces; a chamfer or rounding is generally preferred.
9. Place decoupling for power pins as close to the device as possible.
a) Use low-ESR capacitors for decoupling if possible.
b) A tuned PI filter should be used to negate the effects of switching power supplies and other noise sources if needed.

11.2. Layout for GSM/TDMA Buzz Reduction

There are two possible mechanisms for TDMA/GSM noise to negatively impact the FSA9280A device's performance. The first is the result of large current draw by the phone transmitter during active signaling when the transmitter is at full or almost full power. With the phone transmitter dumping large amounts of current in the phone GND plane; it is possible for there to be temporary voltage excursions in the GND plane if not properly designed. This noise can be coupled back up through the GND plane into the FSA9280A device and, although the FSA9280A has very good isolation; if the GND noise amplitude is large enough, it can result in noise coupling to the $\mathrm{V}_{\text {Bus_in/mic }}$ pin. The second path for GSM noise is through electromagnetic coupling onto the signal lines themselves.
In most cases, the noise introduced as a result of this noise is on the $\mathrm{V}_{\text {BAT }}$ and/or GND supply rails. Following are recommendations for PCB board design that help address these two sources of TDMA/GSM noise.

1. Provide a wide, low-impedance GND return path to both the FSA9280A and to the power amplifier that sources the phone transmit block.
2. Provide separate GND connections to PCB GND plane for each device. Do not share GND return paths between devices.
3. Add as large a decoupling capacitor as possible ($\geq 1 \mu \mathrm{~F}$) between the $\mathrm{V}_{\text {bat }}$ pin and GND to shunt any power supply noise away from the FSA9280A. Also add decoupling capacitance at the PA (see the reference application schematic in Figure 27 for recommended decoupling capacitor values).
4. Add $33 p F$ shunt capacitors on any PCB nodes with the potential to collect radiated energy from the phone transmitter. At a minimum, add these 33 pF capacitors to the MIC pin (see Figure 27).
5. Add a series $R_{\text {BAT }}$ resistor prior to the decoupling capacitor on the $\mathrm{V}_{\text {BAT }}$ pin to attenuate noise prior to reaching the FSA9280A.

11.3. $\mathrm{V}_{\text {Bus_out }}$ Load Timing Requirements

The FSA9280A includes over-current protection (OCP) used to protect the FSA9280A and any downstream devices from a high-current event. In addition, the FSA9280A has an inrush-limiting feature that helps protect against high-current transient currents during initial charger FET closure. For these two reasons, it is recommended that the system designer delay current draw >250mA from the FSA9280A $V_{\text {bus_out }}$ pin until at least 10 ms after $\mathrm{V}_{\text {bus_out }}$ is valid. Failure to observe this timing requirement could result in false OCP triggering and, in some cases, could result in the FSA9280A staying in OCP Mode until the load is removed and re-attached.

11.4.Systems with Multiple USB Controllers

Many phone platforms have separate full-speed and highspeed controllers; however, the FSA9280A only has one designated USB switch path. The FSA9280A high-speed USB path is only designed to allow one HS USB controller to be multiplexed on to the USB connector. To allow for multiple USB controllers on the USB port, it may be tempting to use one of Fairchild's existing USB switches to multiplex the HS and FS controllers onto the shared HS USB switch path of the FSA9280A, as illustrated in Figure 28. It is NOT recommended that the USB signals be multiplexed at the input the FSA9280A DP_Host or DM_Host pins for the following reasons:

- The FSA9280A employs a passive USB switch path. It does not buffer, amplify, or enhance the USB signal in any way. The FSA9280A is designed to have minimal impact on the HS USB eye performance; however, there is some limited reduction in signal amplitude and edge rate resulting from the inherent resistance and capacitance of the USB switch within the FSA9280A.
- Standard USB switches like the FSUSB42 are also passive and cannot improve a USB signal. They result in a slight degradation of the HS USB signal as well.
- When placed in series, as shown in Figure 28, the cumulative effect of the two series passive USB switches impacts the HS eye performance and could result in failure of the HS eye mask test per the USB 2.0 specification.
- When factoring in the additional routing required for the two switches in series and the additional signal path discontinuities introduced, the likelihood of eye degradation is increased.

Figure 28. NOT RECOMMENDED - Multiplexing High-Speed and Full-Speed USB onto the DP_Host, DM_Host
For the reasons outlined above, it is recommend that only the HS USB controller be connected to the FSA9280A DP_Host and DM_Host pins. The following solutions are recommended for those applications that require both a HS and FS USB controller. The FSA9280A must be used for all of these solutions since it has the available UART switch path. The HS USB signal is highly sensitive and should only be routed through the specially designed HS USB signal path of the FSA9280A. Conversely, the FS USB signal operates at much slower data rates, which makes it much more resilient to signal path discontinuities. FS USB only
operates at 12 Mbps and has a full 3.6 V swing, which makes it much less sensitive to capacitive loading. Compared to HS USB, FS USB has a large voltage swing, which makes it less sensitive to switch on resistance. Therefore, the FS USB signal can be alternately routed through the UART signal path. Figure 29 provides an alternative application diagram.

Figure 29. RECOMMENDED Configuration for Systems with High-Speed, Full-Speed, and UART

In every case where the FS USB path is not routed through the dedicated USB path of the FSA9280A, the phone designers must place the FSA9280A into manual mode to configure the switch path properly. On initial attachment of a USB accessory, the FSA9280A detects and auto-configures for USB, resulting in the DP_Con and DM_Con pins being connected to the DP_Host and DM_Host pins, respectively. In this configuration, the HS USB controller is automatically connected and no further action is needed by the baseband to send and receive data from the HS controller. For the application shown in Figure 29, the FSA9280A must be changed to manual mode to enable FS USB through the UART TxD and RxD switch paths. After initial USB detection and attach signaled by the FSA9280A, do the following:

1. Write the hex value ' 1 A ' to the Control register (02 h) (see Table 7. Register Map). This enables Manual Switch Mode and the FSA9280A automatically opens all switch paths, breaking the HS USB signal path and forcing the USB host to re-enumerate when the FS device is configured.
2. To configure the FSA9280A switch paths such that the FS device is connected through the UART switch path, write the hex value ' 6 Ch ' into the Manual Switch register (13h) $>125 \mu \mathrm{~s}$ later to ensure enumeration. This connects the RxD and TxD to DP_CON and DM_CON, respectively.
3. When FS USB data communication is complete, disable manual switch mode by writing '1E' back in to the Control register (02h).
4. Configure the FSUSB42 input select back to the UART source to allow UART communication.

Physical Dimensions

Figure 30. 20-Lead Ultrathin Molded Leadless Package (UMLP), $3 \times 4 \times 0.55 \mathrm{~mm}, 0.5 \mathrm{~mm}$ Pitch

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

A/ways visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications:
http://www.fairchildsemi.com/packaging/3x4UMLP2O TNR.pdf.

Part Number	Operating Temperature Range	Top Mark	Package
FSA9280AUMX	-40 to $+85^{\circ} \mathrm{C}$	9280 A	$20-$ Lead Ultrathin Molded Leadless Package (UMLP), $3 \times 4 \times 0.55 \mathrm{~mm}, 0.5$ Pitch

FAIRCHILD
 SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

$2 \mathrm{Cool}{ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
AccuPower ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the
AX-CAP ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {TM }}$	P wer
BitSiC ${ }^{\text {™ }}$	GreenBridge ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	franchise
Build it Now ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
CorePLUS ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {Tm }}$
CorePOWER ${ }^{\text {™ }}$	Gmax ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CROSSVOLT ${ }^{\text {m }}$	GTO ${ }^{\text {™ }}$	$\bigcirc{ }^{\text {TM }}$	TINYOPTOTM
CTL ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{KW}$ at a time ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$ making ${ }^{\text {a }}$	SignalWise ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {d }}$	Making Small Speakers Sound Louder and Better ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {m }}$ M
EcoSPARK ${ }^{\text {® }}$	MegaBuck ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TranSic ${ }^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {m }}$	Solutions for Your Success ${ }^{T M}$ SPM ${ }^{\text {® }}$	TriFault Detect ${ }^{\text {TM }}$ TRUECURRENT ${ }^{\text {® }}$
ESBC ${ }^{\text {™ }}$	MicroFET ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	μ SerDes $^{\text {m }}$
$\overbrace{}^{(8)}$	MicroPak ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	M
Fairchild ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	SerDes*
Fairchild Semiconductor ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$ - 6	UHC ${ }^{(8)}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionMax ${ }^{\text {mW }}$	SuperSOT ${ }^{\text {TM }}$ - 8	Ultra FRFET ${ }^{\text {m }}$
FACT ${ }^{\text {® }}$	mWSaver ${ }^{\text {m/m }}$	SupreMOS ${ }^{\text {® }}$	UniFET ${ }^{\text {m }}$
FAST ${ }^{\text {® }}$	OptoHiTm OPTOLOGIC ${ }^{\circledR}$	SyncFET ${ }^{\text {m }}$	VCX ${ }^{\text {™ }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	Sync-Lock ${ }^{\text {TM }}$	Visual Max ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$		$\square_{\text {GENERAL }}{ }^{\text {S }}$	VoltagePlus ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {® }}$ * FPS			XS ${ }^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

