

8-Bit Digital-to-Analog Converter with Two-Wire Interface

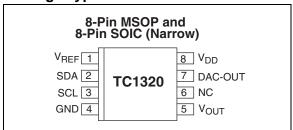
Features

- 8-bit Digital-to-Analog Converter
- ±2 LSB INL
- +0.8 LSB DNL
- · 2.7-5.5V Single Supply Operation
- Simple SMBus/I²C™ Serial Interface
- Low Power: 350μA Operation, 0.5μA Shutdown
- 8-Pin SOIC and 8-Pin MSOP Packages

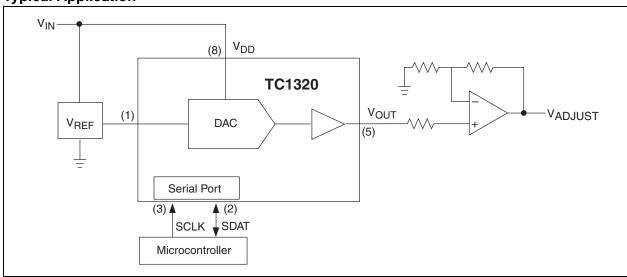
Applications

- Programmable Voltage Sources
- Digital Controlled Amplifiers/Attenuators
- · Process Monitoring and Control

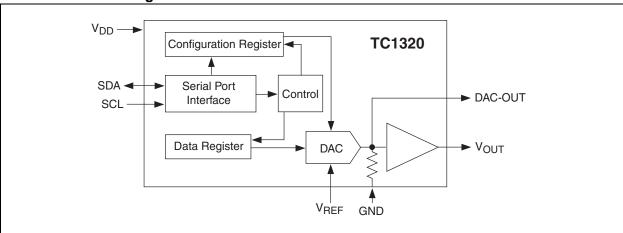
Device Selection Table


Part Number	Package	Temperature Range
TC1320EOA	8-Pin SOIC (Narrow)	-40°C to +85°C
TC1320EUA	8-Pin MSOP	-40°C to +85°C

General Description


The TC1320 is a serially accessible 8-bit voltage output digital-to-analog converter (DAC). The DAC produces an output voltage that ranges from ground to an externally supplied reference voltage. It operates from a single power supply that can range from 2.7V to 5.5V, making it ideal for a wide range of applications. Built into the part is a Power-on Reset function that ensures that the device starts at a known condition.

Communication with the TC1320 is accomplished via a simple 2-wire SMBus/ I^2C^{TM} compatible serial port with the TC1320 acting as a slave only device. The host can enable the SHDN bit in the CONFIG register to activate the Low Power Standby mode.


Package Type

Typical Application

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage (V _{DD})	+6V
Voltage on any Pin (GND – 0.3V	') to (V _{DD} + 0.3V)
Current on any Pin	±50mA
Package Thermal Resistance (θ_{JA})	330°C C/W
Operating Temperature (T _A)	See Below
Storage Temperature (T _{STG})	-65°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1320 ELECTRICAL SPECIFICATIONS

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Power Supp			- 71			
- '	<u>, </u>	0.7	250	500	Δ.	
V _{DD}	Supply Voltage	2.7	350	500	μΑ	
I _{DD}	Operating Current		0.35	0.5	mA	V _{DD} = 5.5V, V _{REF} = 1.2V Serial Port Inactive (Note 1)
I _{DD-STANDBY}	Standby Supply Current	_	0.1	1	μΑ	V _{DD} = 3.3V Serial Port Inactive (Note 1)
Static Perfor	mance - Analog Section					
	Resolution	_	_	8	Bits	
INL	Integral Non-Linearity at FS, T _A = +25°C	_	_	±2	LSB	(Note 2)
FSE	Full Scale Error	_	_	±3	%FS	
DNL	Differential Non-Linearity, T _A = +25°C	_	_	±0.8	LSB	All Codes (Note 2)
Vos	Offset Error at V _{OUT}	_	±0.3	±8	mV	(Note 2)
TCV _{OS}	Offset Error Tempco at V _{OUT}	_	10	_	μν/°C	
PSRR	Power Supply Rejection Ratio	_	80	_	dB	V _{DD} at DC
V _{REF}	Voltage Reference Range	0	_	V _{DD} – 1.2	V	
I _{REF}	Reference Input Leakage Current	_	_	±1.0	μА	
V _{SW}	Voltage Swing	0	_	V_{REF}	V	$V_{REF} \le (V_{DD} - 1.2V)$
R _{OUT}	Output Resistance @ V _{OUT}	_	5	_	Ω	R _{OUT} (Ω)
l _{out}	Output Current (Source or Sink)	_	2	_	mA	
I _{SC}	Output Short-Circuit Current	_	30	50	mA	Source
	V _{DD} = 5.5V		20	50	mA	Sink
Dynamic Per	rformance					
SR	Voltage Output Slew Rate	_	0.8	_	V/μs	
t _{SETTLE}	Output Voltage Full Scale Settling Time	_	10	_	μsec	
t _{WU}	Wake-up Time	_	20	_	μS	
	Digital Feed Through and Crosstalk	_	5	_	nV-s	SDA = V _{DD} , SCL = 100kHz
Serial Port Ir	nterface					
V _{IH}	Logic Input High	2.4	_	V_{DD}	V	
V _{IL}	Logic Input Low	_	_	0.6	_	
V _{OL}	SDA Output Low	_	_	0.4	V	I _{OL} = 3mA (Sinking Current)
			_	0.6	V	I _{OL} = 6mA
C _{IN}	Input Capacitance SDA, SCL		5	0.4	pF	
I _{LEAK}	I/O Leakage	_	-	±1.0	μΑ	

Note 1: SDA and SCL must be connected to $V_{\mbox{\scriptsize DD}}$ or GND.

2: Measured at $V_{OUT} \ge 50 \text{mV}$ referred to GND to avoid output buffer clipping.

TC1320 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical C	haracteristics: $V_{DD} = 2.7V \text{ to } 5.5V, -40^{\circ}\text{C}$	≤ T _A ≤ +85	°C, V _{REF} =	1.2V unless	otherwise	noted.
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Serial Port A	AC Timing	•			•	
f _{SMB}	SMBus Clock Frequency	10	_	100	kHz	
t _{IDLE}	Bus Free Time Prior to New Transition	4.7	_	_	μsec	
t _{H(START)}	START Condition Hold Time	4.0	_	_	μsec	
t _{SU(START)}	START Condition Setup Time	4.7	_	_	μsec	90% SCL to 10% SDA (for Repeated START Condition)
t _{SU(STOP)}	STOP Condition Setup Time	4.0	_	_	μsec	
t _{H-DATA}	Data In Hold Time	100	_	_	nsec	
t _{SU-DATA}	Data In Setup Time	100	_	_	nsec	
t _{LOW}	Low Clock Period	4.7	_	_	μsec	10% to 10%
t _{HIGH}	High Clock Period	4	_	_	μsec	90% to 90%
t _F	SMBus Fall Time	_	_	300	nsec	90% to 10%
t _R	SMBus Rise Time	_	_	1000	nsec	10% to 90%
t _{POR}	Power-on Reset Delay	_	500	_	μsec	V _{DD} ≥ V _{POR} (Rising Edge)

Note 1: SDA and SCL must be connected to V_{DD} or GND.
 2: Measured at V_{OUT} ≥ 50mV referred to GND to avoid output buffer clipping.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Symbol	Туре	Description
1	V _{REF}	Input	Input. Voltage Reference Input can range from 0V to 1.2V below V _{DD} .
2	SDA	Bi-Directional	Bi-directional. Serial data is transferred on the SMBus in both directions using this pin.
3	SCL	Input	Input. SMBus serial clock. Clocks data into and out of the TC1320.
4	GND	Power	Ground.
5	V _{OUT}	Output	Output. Buffered DAC output voltage. This voltage is a function of the reference voltage and the contents of the DATA register.
6	NC	None	No connection.
7	DAC-OUT	Output	Output. Unbuffered DAC output voltage. This voltage is a function of the reference voltage and the contents of the DATA register. This output is unbuffered and care must be taken that the pin is connected only to a high-impedance node.
8	V _{DD}	Power	Positive power supply input. See electrical specifications.

3.0 DETAILED DESCRIPTION

The TC1320 is a monolithic 8-bit digital-to-analog converter, that is designed to operate from a single supply that can range from 2.7V to 5.5V. The DAC consists of a data register (DATA), a configuration register (CONF), and a current output amplifier. The TC1320 uses an external reference, which also determines the maximum output voltage.

The TC1320 uses a current steering DAC, based on an array of matched current sources. This current, along a precision resistor, converts the contents of the Data Register and V_{REF} into an output voltage, V_{OUT} given by:

 $V_{OUT} = V_{RFF} (DATA/256)$

3.1 Reference Input

The reference pin, V_{REF} , is a buffered high-impedance input and because of this, the load regulation of the reference source needs only to be able to tolerate leakage levels of current (less than $1\mu A$). V_{REF} accepts a voltage range from 0 to $(V_{DD}-1.2V)$. Input capacitance is typically 10pF.

3.2 Output Amplifier

The TC1320 DAC output is buffered with an internal unity gain rail-to-rail input/output amplifier, with a typical slew rate of $0.8V/\mu sec$. Maximum full scale transition settling time is $10\mu sec$ to within $\pm 1/2LSB$ when loaded with $1k\Omega$ in parallel with 100pF.

3.3 Standby Mode

The TC1320 allows the host to put it into a Low Power ($I_{DD} = 0.5 \mu A$, typical) Standby mode. In this mode, the D/A conversion is halted. The SMBus port operates normally. Standby mode is enabled by setting the SHDN bit in the CONFIG register. The table below summarizes this operation.

TABLE 3-1: STANDBY MODE OPERATION

SHDN Bit	Operating Mode
0	Normal
1	Standby

3.4 SMBus Slave Address

The TC1320 is internally programmed to have a default SMBus address value of 1001 000b. Seven other addresses are available by custom order (contact factory). See Figure 3-1 for locating address bits in SMBus protocol.

FIGURE 3-1: SMBus PROTOCOLS

Write	1-Byte	Format

S	Address	R/W	ACK	Command	ACK	Data	ACK	Р
	7-Bits	0		8-Bits		8-Bits		

Slave Address

Command Byte: selects which register you are writing to.

Data Byte: data goes into the register set by the command byte.

Read 1-Byte Format

s	Address	R/W	ACK	Command	ACK	S	Address	R/W	ACK	Data	NACK	Р
	7-Bits	0		8-Bits			7-Bits	1		8-Bits		

Slave Address

Command Byte: selects which register you are reading from.

Slave Address: repeated due to change in data flow direction.

Data Byte: reads from the register set by the command byte.

Receive 1-Byte Format

	··· - , ·· - ,					
S	Address	R/W	ACK	Data	NACK	Р
	7-Bits	1		8-Bits		

S = START Condition
P = STOP Condition
Shaded = Slave Transmission

Data Byte: reads data from the register commanded by the last Read Byte or Write

Byte transmission.

4.0 SERIAL PORT OPERATION

The Serial Clock input (SCL) and bi-directional data port (SDA) form a 2-wire bi-directional serial port for programming and interrogating the TC1320. The following conventions are used in this bus architecture:

TABLE 4-1: TC1320 SERIAL BUS CONVENTIONS

Term	Explanation				
Transmitter	The device sending data to the bus.				
Receiver	The device receiving data from the bus.				
Master	The device which controls the bus: initiating transfers (START), generating the clock, and terminating transfers (STOP).				
Slave	The device addressed by the master.				
START A unique condition signaling the beginni a transfer indicated by SDA falling (High - Low) while SCL is high.					
STOP	A unique condition signaling the end of a transfer indicated by SDA rising (Low - High) while SCL is high.				
ACK	A Receiver Acknowledges the receipt of each byte with this unique condition. The Receiver drives SDA low during SCL high of the ACK clock pulse. The Master provides the clock pulse for the ACK cycle.				
Busy	Communication is not possible because the bus is in use.				
Not Busy	When the bus is IDLE, both SDA and SCL will remain high.				
Data Valid	The state of SDA must remain stable during the High period of SCL in order for a data bit to be considered valid. SDA only changes state while SCL is low during normal data transfers. (See START and STOP conditions.)				

All transfers take place under control of a host, usually a CPU or microcontroller, acting as the Master, which provides the clock signal for all transfers. The TC1320 always operates as a Slave. The serial protocol is illustrated in Figure 3-1. All data transfers have two phases; all bytes are transferred MSB first. Accesses are initiated by a START condition (START), followed by a device address byte and one or more data bytes. The device address byte includes a Read/Write selection bit. Each access must be terminated by a STOP Condition (STOP). A convention called Acknowledge (ACK) confirms receipt of each byte. Note that SDA can change only during periods when SCL is LOW (SDA changes while SCL is HIGH is reserved for START and STOP Conditions).

4.1 START Condition (START)

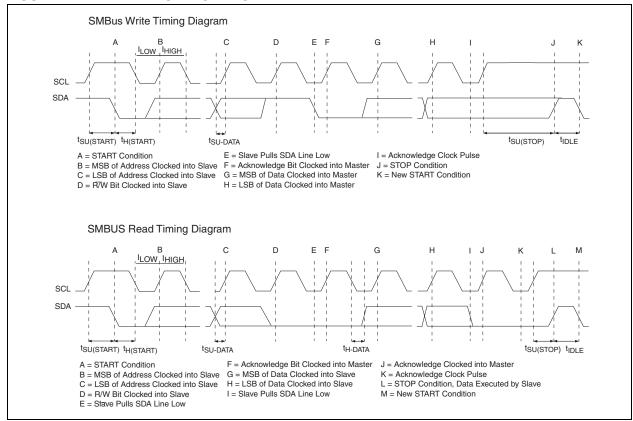
The TC1320 continuously monitors the SDA and SCL lines for a START condition (a HIGH to LOW transition of SDA while SCL is HIGH), and will not respond until this condition is met.

4.2 Address Byte

Immediately following the START Condition, the host must transmit the address byte to the TC1320. The 7-bit SMBus address for the TC1320 is 1001000. The 7-bit address transmitted in the serial bit stream must match for the TC1320 to respond with an Acknowledge (indicating the TC1320 is on the bus and ready to accept data). The eighth bit in the Address Byte is a Read/Write bit. This bit is a 1 for a read operation, or 0 for a write operation. During the first phase of any transfer, this bit will be set = 0 to indicate that the command byte is being written.

4.3 Acknowledge (ACK)

Acknowledge (ACK) provides a positive handshake between the host and the TC1320. The host releases SDA after transmitting eight bits, then generates a ninth clock cycle to allow the TC1320 to pull the SDA line LOW to Acknowledge that it successfully received the previous eight bits of data or address.


4.4 Data Byte

After a successful ACK of the address byte, the host must transmit the data byte to be written, or clock out the data to be read. (See the appropriate timing diagrams.) ACK will be generated after a successful write of a data byte into the TC1320.

4.5 STOP Condition (STOP)

Communications must be terminated by a STOP condition (a LOW to HIGH transition of SDA while SCL is HIGH). The STOP Condition must be communicated by the transmitter to the TC1320. Refer to Figure 4-1, Timing Diagrams for serial bus timing.

4.6 Register Set and Programmer's Model

TABLE 4-2: TC1320 COMMAND SET (SMBus READ_BYTE AND WRITE_BYTE)

Command Byte Description							
Command	Code	Function					
RWD	00h	Read/Write Data (DATA)					
RWCR	01h	Read/Write Configuration (CONFIG)					

TABLE 4-3: CONFIGURATION REGISTER (CONFIG), 8-BIT, READ/WRITE

	Configuration Register (CONFIG)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	
	Reserved						SHDN	
В	Bit		Function		Туре	Operation		
D[0]		0	Standby Switch		Read/ Write	1 = Standby 0 = Normal		
D[7]-D[1]		0	Reserved; Always returns Zero when Read		N/A	N/A		

TABLE 4-4: DATA REGISTER (DATA), 8-BIT, READ/WRITE

Data Register (DATA)							
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	Χ	Χ	Χ	Χ	Χ	Χ	LSB

The DAC output voltage is a function of reference voltage and the binary value of the contents of the Data register. The transfer function is given by the expression:

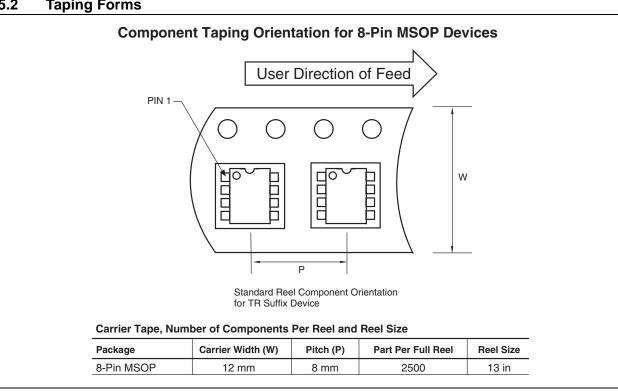
EQUATION 4-1:

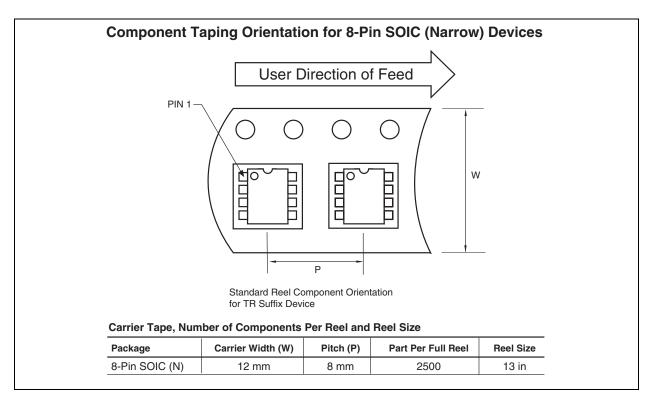
$$V_{OUT} = V_{REF} x \left[\frac{DATA}{256} \right]$$

4.7 Register Set Summary

The TC1320's register set is summarized in Table 4-5 below. All registers are 8-bits wide.

TABLE 4-5: TC1320 REGISTER SET SUMMARY

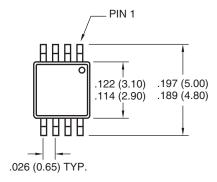

Name	Description	POR State	Read	Write
Data	Data Register	0000 0000b	Х	Х
Config	CONFIG Register	0000 0000b	Х	Х

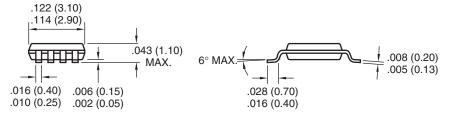

5.0 **PACKAGING INFORMATION**

5.1 **Package Marking Information**

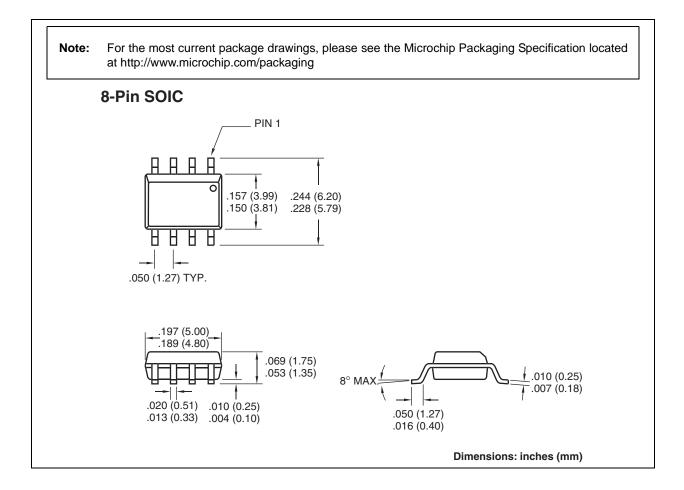
Package marking data not available at this time.

5.2 **Taping Forms**





5.3 Package Dimensions


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

8-Pin MSOP

Dimensions: inches (mm)

6.0 REVISION HISTORY

Revision C (November 2012)

Added a note to each package outline drawing.

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620767849

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087

Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka

Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/27/12

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331