InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### **Typical Applications** An excellent cascadable 50 Ohm Gain Block or LO Driver for: - Microwave & VSAT Radios - Test Equipment - Military EW, ECM, C³I - Space Telecom ### **Functional Diagram** ### **Features** Gain: 12 dB P1dB Output Power: +14 dBm Stable Gain Over Temperature 50 Ohm I/O's Small Size: 0.38 x 0.58 x 0.1 mm ### **General Description** The HMC396 die is a GaAs InGaP Heteroiunction Bipolar Transistor (HBT) Gain Block MMIC DC to 8 GHz amplifier. This amplifier can be used as either a cascadable 50 Ohm gain stage or to drive the LO of HMC mixers with up to +16 dBm output power. The HMC396 offers 12 dB of gain and an output IP3 of +30 dBm while requiring only 56 mA from a +5V supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components. The HMC396 can easily be integrated into Multi-Chip-Modules (MCMs) due to its small (0.22mm²) size. All data is with the chip in a 50 Ohm test fixture connected via 0.025mm (1 mil) diameter wire bonds of minimal length 0.5mm (20 mils). # Electrical Specifications, Vs=+5.0V, Rbias=22 Ohm, $T_A=+25^{\circ} C$ | Parameter | | Min. | Тур. | Max. | Units | |--|-------------------------------|------|----------------|------|------------------| | Gain | DC - 4.0 GHz
4.0 - 8.0 GHz | | 12
11 | | dB
dB | | Gain Variation Over Temperature | DC - 4.0 GHz
4.0 - 8.0 GHz | | 0.004
0.015 | | dB/ °C
dB/ °C | | Input Return Loss | DC - 4.0 GHz
4.0 - 8.0 GHz | | 15
12 | | dB
dB | | Output Return Loss | DC - 4.0 GHz
4.0 - 8.0 GHz | | 19
17 | | dB
dB | | Reverse Isolation | DC - 8.0 GHz | | 16 | | dB | | Output Power for 1 dB Compression (P1dB) | DC - 4.0 GHz
4.0 - 8.0 GHz | | 14
13 | | dBm
dBm | | Output Third Order Intercept (IP3) | DC - 4.0 GHz
4.0 - 8.0 GHz | | 30
24 | | dBm
dBm | | Noise Figure | DC - 8.0 GHz | | 6 | | dB | | Supply Current (Icq) | | | 56 | | mA | Note: Data taken with broadband bias tee on device output. # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### Gain & Return Loss ### Gain vs. Temperature ### Input Return Loss vs. Temperature ### **Output Return Loss vs. Temperature** ### Reverse Isolation vs. Temperature ### Noise Figure vs. Temperature # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### P1dB vs. Temperature **ANALOG**DEVICES ### Psat vs. Temperature ### Power Compression @ 1 GHz ### Power Compression @ 8 GHz ### Output IP3 vs. Temperature # Gain, Power, OIP3 & Supply Current vs. Supply Voltage @ 1 GHz # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### **Absolute Maximum Ratings** | Collector Bias Voltage (Vcc) | +7 Vdc | | |--|----------------|--| | RF Input Power (RFIN)(Vcc = +5.0 Vdc) | +10 dBm | | | Junction Temperature | 150 °C | | | Continuous Pdiss (T= 85 °C)
(derate 5.21 mW/°C above 85 °C) | 0.339 W | | | Thermal Resistance (junction to die bottom) | 192 °C/W | | | Storage Temperature | -65 to +150 °C | | | Operating Temperature | -55 to +85 °C | | ### **Outline Drawing** - 1. ALL DIMENSIONS IN INCHES [MILLIMETERS] - 2. ALL TOLERANCES ARE ±0.001 (0.025) 3. DIE THICKNESS IS 0.004 (0.100) BACKSIDE IS GROUND - 4. BOND PADS ARE 0.004 (0.100) SQUARE - 5. BOND PAD SPACING, CTR-CTR: 0.006 (0.150) 6. BACKSIDE METALLIZATION: GOLD - 7. BOND PAD METALLIZATION: GOLD # Die Packaging Information [1] | Standard | Alternate | |-----------------|-----------| | GP-3 (Gel Pack) | [2] | [1] Refer to the "Packaging Information" section for die packaging dimensions. [2] For alternate packaging information contact Hittite Microwave Corporation. # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### **Pad Descriptions** | Pad Number | Function | Description | Interface Schematic | | |---------------|----------|---|---------------------|--| | 1 | RFIN | This pin is DC coupled.
An off chip DC blocking capacitor is required. | RFOUT | | | 2 | RFOUT | RF output and DC Bias for the output stage. | | | | Die
Bottom | GND | Die bottom must be connected to RF/DC ground. | → GND
= | | ## **Application Circuit** ### Note: - 1. Select Rbias to achieve Icq using equation below, Rbias ≥ 22 Ohm. - 2. External blocking capacitors are required on RFIN and RFOUT. $$lcq = \frac{Vs - 3.9}{Rbias}$$ ### **Recommended Component Values** | Component | Frequency (MHz) | | | | |-----------|-----------------|--------|--------|--------| | | 50 | 1000 | 4000 | 8000 | | L1 | 270 nH | 56 nH | 8.2 nH | 2.2 nH | | C1, C2 | 0.01 μF | 100 pF | 100 pF | 100 pF | # InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 8 GHz ### **Assembly Diagram** ### **Handling Precautions** Follow these precautions to avoid permanent damage. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. Static Sensitivity: Follow ESD precautions to protect against ESD strikes. **Transients:** Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up. **General Handling:** Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. ### Mounting The chip is back-metallized and can be die mounted with electrically conductive epoxy. The mounting surface should be clean and flat **Epoxy Die Attach:** Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule. ### Wire Bonding Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils). Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! ### Наши контакты: **Телефон:** +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331