

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
H11L1M, H11L2M, H11L3M 6-Pin DIP Schmitt Trigger Output Optocoupler

Features

- High Data Rate, 1 MHz Typical (NRZ)

■ Free from Latch-up and Oscilliation Throughout Voltage and Temperature Ranges
\square Microprocessor Compatible Drive
■ Logic Compatible Output Sinks 16 mA at 0.4 V Maximum
■ Guaranteed On/Off Threshold Hysteresis

- Wide Supply Voltage Capability, Compatible with All

Popular Logic Systems
■ Safety and Regulatory Approvals:

- UL1577, 4,170 VAC RMs for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

■ Logic-to-Logic Isolator

- Programmable Current Level Sensor
- Line Receiver-Eliminate Noise and Transient Problems
- AC to TTL Conversion-Square Wave Shaping

Digital Programming of Power Supplies

- Interfaces Computers with Peripherals

Description

The H11LXM series has a high-speed integrated circuit detector optically coupled to a gallium-arsenide infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

Schematic

Figure 1. Schematic

Package Outlines

Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	$<150 \mathrm{~V}_{\text {RMS }}$	I-IV
$0110 / 1.89$ Table 1, For Rated Mains Voltage	$<300 \mathrm{~V}_{\text {RMS }}$	I-IV
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
V_{PR}	Input-to-Output Test Voltage, Method $\mathrm{A}, \mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	$\mathrm{~V}_{\text {peak }}$
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	$\mathrm{~V}_{\text {peak }}$
	Maximum Working Insulation Voltage	850	$\mathrm{~V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6000	$\mathrm{~V}_{\text {peak }}$
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
$\mathrm{~T}_{\mathrm{S}}$	Case Temperature ${ }^{(1)}$	175	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{S}, \text { INPUT }}$	Input Current ${ }^{(1)}$	350	mA
$\mathrm{P}_{\mathrm{S}, \mathrm{OUTPUT}}$	Output Power ${ }^{(1)}$	800	mW
$\mathrm{R}_{\text {IO }}$	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\text {IO }}=500 \mathrm{~V}^{(1)}$	$>10^{9}$	Ω

Note:

1. Safety limit values - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameters	Value	Units
Total Device			
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
T OPR	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
P_{D}	Total Device Power Dissipation at $25^{\circ} \mathrm{C}$ Derate Above $25^{\circ} \mathrm{C}$	250	mW
		2.94	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Emitter			
I_{F}	Continuous Forward Current	30	mA
V_{R}	Reverse Voltage	6	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak ($1 \mu \mathrm{~s}$ pulse, 300 pps)	100	mA
P_{D}	LED Power Dissipation	60	mW
Detector			
P_{D}	Detector Power Dissipation	150	mW
V_{O}	V_{45} Allowed Range	0 to 16	V
V_{CC}	V_{65} Allowed Range	3 to 16	V
I_{0}	I_{4} Output Current	50	mA

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Typ.	Max.	Units
Emitter							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	All		1.2	1.5	V
		$\mathrm{I}_{\mathrm{F}}=0.3 \mathrm{~mA}$		0.75	1.0		
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	All			10	$\mu \mathrm{A}$
C_{J}	Capacitance	$\mathrm{V}=0, \mathrm{f}=1.0 \mathrm{MHz}$	All			100	pF
Detector							
V_{CC}	Operating Voltage Range		All	3		15	V
$\mathrm{I}_{\mathrm{CC} \text { (off) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All		1.6	5.0	mA
$\mathrm{IOH}^{\text {I }}$	Output Current, High	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$	All			100	$\mu \mathrm{A}$

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Units
DC Characteristics							
$\mathrm{I}_{\mathrm{CC} \text { (on) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All		1.6	5.0	mA
$\mathrm{V}_{\text {OL }}$	Output Voltage, Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F} \text { (on) }} \text { max. } \\ & \hline \end{aligned}$	All		0.2	0.4	V
$\mathrm{I}_{\text {(on) }}$	Turn-On Threshold Current ${ }^{(2)}$	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	H11L1M			1.6	mA
			H11L2M			10.0	
			H11L3M			5.0	
$\mathrm{I}_{\text {(off) }}$	Turn-Off Threshold Current	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All	0.3	1.0		mA
$\mathrm{I}_{\text {(off) }} / I_{\text {F(on) }}$	Hysteresis Ratio	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All	0.50	0.75	0.90	
AC Characteristics, Switching Speed							
$\mathrm{t}_{\text {on }}$	Turn-On Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F} \text { (on) })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	All		1.0	4.0	$\mu \mathrm{s}$
t_{f}	Fall Time	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F} \text { (on) })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	All		0.1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on}),}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	All		1.2	4.0	$\mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F} \text { (on) })}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	All		0.1		$\mu \mathrm{s}$
	Data Rate		All		1.0		MHz

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{t}=1$ Minute	4170			$\mathrm{VAC}_{\mathrm{RMS}}$
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.4	0.6	pF
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{11}			Ω

Note:

2. Maximum $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$ is the maximum current required to trigger the output. For example, a 1.6 mA maximum trigger current would require the LED to be driven at a current greater than 1.6 mA to guarantee the device turns on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 30 mA .

Typical Performance Curves

Figure 3. Transfer Characteristics

Figure 5. Threshold Current vs. Supply Temperature

Figure 7. Supply Current vs. Supply Voltage

Figure 4. Threshold Current vs. Supply Voltage

Figure 6. Output Voltage, Low vs. Load Current

Figure 8. LED Forward Voltage vs. Forward Current

Typical Performance Curves (Continued)

Figure 9. Switching Test Circuit and Waveforms

Reflow Profile

Figure 10. Reflow Profile

Ordering Information

Part Number	Package	Packing Method
H11L1M	DIP 6-Pin	Tube (50 Units)
H11L1SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
H11L1SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
H11L1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11L1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11L1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
H11L1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

3. The product orderable part number system listed in this table also applies to the H11L2M and H11L3M product families.

Marking Information

Figure 11. Top Mark
Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "4"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.

LAND PATTERN RECOMMENDATION
5.08 (MAX)
$3.28-3.53$

notes:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION : MKT-N06CREV4.

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
H11L1SR2VM H11L1SM H11L1SVM H11L1SR2M H11L1VM H11L1M H11L1TVM

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

