TOSHIBA PHOTOCOUPLER GaAlAs LED & PHOTO-IC

TLP116A

Plasma Display Panels (PDPs) High-Speed Interface Factory Automation (FA)

The Toshiba TLP116A mini-flat coupler is a small-outline coupler suitable for surface-mount assembly.

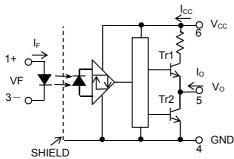
The TLP116A consists of a GaAlAs light-emitting diode and an integrated high-gain, high-speed photodetector.

This unit is housed in the 6-pin SO package and guarantees a creepage distance of ≥ 5.0 mm, a clearance of ≥ 5.0 mm and an insulation thickness of ≥ 0.4 mm. Therefore, the TLP116A meets the reinforced insulation class requirements of international safety standards.

- Inverter logic (totem-pole output)
- SO6 package
- Guaranteed performance over: -40 to 100°C
- Power supply voltage: 4.5 to 5.5V
- Input thresholds current: IFHL = 5 mA (max)
- Propagation delay time (tpHL / tpLH): 60 ns (max)
- Switching speed: 20 MBd (typ.)
- Common-mode transient immunity: ±10 kV/us
- Isolation voltage: 3750 Vrms
- UL approval: UL1577, File No.E67349 Under application

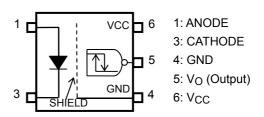
Unit: mm 6 5 4 1 3 3.7 ± 0.15 1 27 2.54 TOSHIBA 11–4L1

Weight: 0.08 g (typ.)


Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Н

Construction Mechanical Rating


Creepage Distance: 5.0mm (min)
Clearance: 5.0mm (min)
Insulation Thickness: 0.4mm (min)

Schematic

A bypass capacitor of 0.1µF must be connected between pins 6 and 4.

Pin Configuration (Top View)

Start of commercial production 2008/07

Absolute Maximum Ratings (Ta=25°C)

	Characteristic	Symbol	Rating	Unit
	Forward current	lF	20	mA
ED	Forward current derating (Ta ≥ 85°C)	ΔI _F / ΔTa	-0.5	mA/°C
۳	Peak transient forward current (Note 1)	IFPT	1	Α
	Reverse voltage	V_{R}	5	V
~	Output current	Ю	10	mA
DETECTOR	Output voltage	VO	6	V
ETE(Supply voltage	VCC	6	V
DE	Output power dissipation	РО	40	mW
Oper	ating temperature range	Topr	-40 to 100	°C
Stora	ge temperature range	Tstg	-55 to 125	°C
Lead	solder temperature(10 s)	Tsol	260	°C
Isolat	tion voltage (AC,1 minute, R.H. ≤ 60%, Ta=25°C) (Note 2)	BVs	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Recommended Operating Conditions

Characteristic		Symbol	Min	Тур.	Max	Unit
Input current , ON		I _F (ON)	8	_	18	mA
Input voltage , OFF		V _F (OFF)	0	_	0.8	V
Supply voltage	(Note 3)	V _{CC}	4.5	5.0	5.5	V
Operating temperature		Topr	-40	_	100	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Correlation between Input current, switching speed and drive circuit (reference information).

Input current (IF)	Test Circuit	Typical switching speed				
12mA	1 (Page 4)	21 to 23 MBd				
8mA	1 (Page 4)	18 to 20 MBd				
8mA	2 (Page 4, With Speed up capacitor)	23 to 27 MBd				

Note 1 : Pulse width PW $\leq 1\mu s$, 300 pps.

Note 2: This device is regarded as a two terminal device: pins 1 and 3 are shorted together, as are pins 4,5 and 6.

Note 3: The detector of this product requires a power supply voltage (V_{CC}) of 4.5 V or higher for stable operation. If the V_{CC} is lower than this value, an I_{CC} may increase, or an output may be unstable. Be sure to use the product after checking the supply current, and the operation of a power-on/-off.

2

Electrical Characteristics

(Unless otherwise specified, Ta=-40 to 100°C, V_{CC}=4.5 to 5.5 V)

Characteristic	Symbol	Test Circuit	Conditions	Min	Тур.	Max	Unit
Input forward voltage	VF	_	I _F = 10 mA ,Ta = 25°C	1.45	1.58	1.85	V
Temperature coefficient of forward voltage	ΔV _F /ΔTa	_	I _F = 10 mA		-2.0	_	mV/°C
Input reverse current	I _R	_	V _R =5 V, Ta = 25°C	_	_	10	μА
Input capacitance	CT	_	V = 0, f= 1 MHz, Ta = 25°C		60	_	pF
Logic low output voltage	V _{OL}	1	I _{OL} = 1.6 mA, I _F = 12 mA, V _{CC} = 5 V	_	_	0.4	V
Logic high output voltage	V _{OH}	2	$I_{OH} = -0.02 \text{ mA},$ V _F = 1.05 V, V _{CC} = 5 V	4.0		_	V
Logic low supply current	ICCL	3	I _F = 12 mA	_	_	5.0	mA
Logic high supply current	Іссн	4	V _F = 0 V	_		5.0	mA
Input current logic low output	l _{FHL}	_	I _O = 1.6 mA, V _O < 0.4 V	_	_	5	mA
Input voltage logic high output	V _{FLH}	_	I _O = -0.02 mA, V _O > 4.0 V	0.8	_	_	V

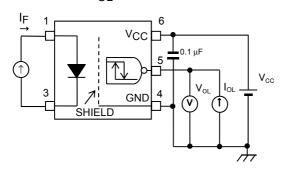
^{*}All typical values are at Ta=25°C, V_{CC} =5 V, $I_F(ON)$ =12 mA unless otherwise specified

Isolation Characteristics (Ta = 25°C)

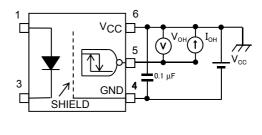
Characteristic	Symbol	Test Conditions	Min	Тур.	Max	Unit
Capacitance input to output	CS	Vs = 0,f = 1 MHz (Note 2)		0.8	1	pF
Isolation resistance	R _S	R.H. ≤ 60%, V _S = 500 V (Note 2)	1×10 ¹²	10 ¹⁴	_	Ω
		AC, 1 minute	3750	_	1	\/
Isolation voltage	BV_S	AC, 1 second, in oil	_	10000	1	V _{rms}
		DC, 1 minute, in oil	_	10000		Vdc

Note 4:A ceramic capacitor(0.1 μ F) should be connected from pin 6 to pin 4 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypass may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

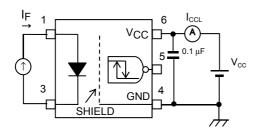
Switching Characteristics

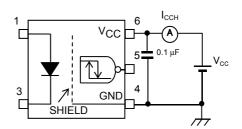

(Unless otherwise specified, Ta=-40 to 100°C, VCC=4.5 to 5.5 V)

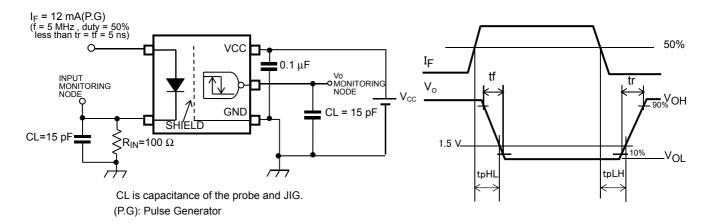
Characteristic	Symbol	Test Circuit	Cond	litions	Min	Тур.	Max	Unit
Propagation delay time to logic high output	tpHL	_	I _F = 0→12 mA	R _{IN} = 100 Ω	_		60	ns
Propagation delay time to logic low output	tpLH	5	I _F = 12→0 mA	C _L = 15 pF (Note 5)	_		60	ns
Propagation delay time to logic high output	tpHL		$V_{IN} = 0 \rightarrow 5 \text{ V}$ $(I_F = 0 \rightarrow 8 \text{ mA})$	R_{IN} = 470 Ω C_{IN} = 27 pF	_		60	ns
Propagation delay time to logic low output	tpLH	6	$V_{IN} = 5 \rightarrow 0 \text{ V}$ (IF = 8 \rightarrow 0 mA)	C _L = 15 pF (Note 5)	_	ı	60	ns
Switching time dispersion between ON and OFF	tpHL- tpLH		I _F = 12 mA , R _{IN} CL =v15 pF (Not		_	_	30	ns
Output fall time(90-10%)	tf	5	I _F = 0→12 mA	R _{IN} = 100 Ω	_	15	_	ns
Output rise time(10-90%)	tr		I _F = 12→0 mA	C _L = 15 pF (Note 5)	_	15	_	ns
Common mode transient immunity at high Level output	СМН	7	V _{CM} = 1000 Vp- Vo(Min) = 4 V, Ta	•	10000		_	V/µs
Common mode transient immunity at low level output	CML	7	V _{CM} = 1000 Vp- Vo(Max) = 0.4 V		-10000	_	_	V/µs

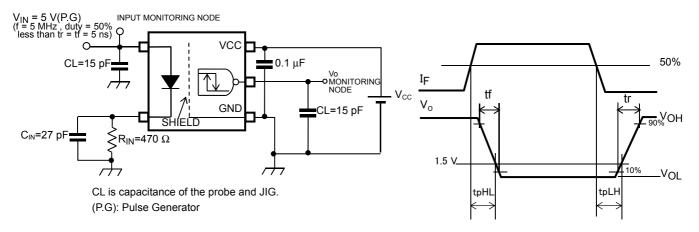

^{*}All typical values are at Ta=25°C

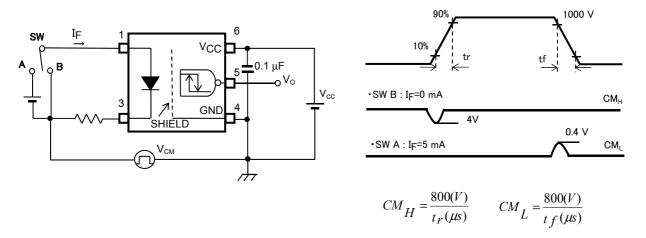
Note 5: C_L is approximately 15 pF which includes probe and Jig/stray wiring capacitance.


TEST CIRCUIT 1: VOL


TEST CIRCUIT 2: VOH


TEST CIRCUIT 3: ICCL

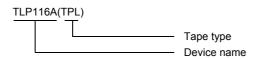

TEST CIRCUIT 4: ICCH


TEST CIRCUIT 5: tpHL, tpLH

TEST CIRCUIT 6: tpHL, tpLH

TEST CIRCUIT 7: Common-Mode Transient Immunity Test Circuit

Specification for Embossed-Tape Packing (TPL)(TPR) for SO6 Coupler


1. Applicable Package

Package	Product Type
SO6	Mini-flat coupler

2. Product Naming System

Type of package used for shipment is denoted by a symbol suffix after a product number. The method of classification is as below.

(Example)

3. Tape Dimensions

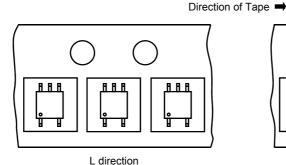

3.1 Specification Classification Are as Shown in Table 1

Table 1 Tape Type Classification

Tape type	Classification	Quantity (pcs/reel)
TPL	L direction	3000
TPR	R direction	3000

3.2 Orientation of Device in Relation to Direction of Tape Movement

Device orientation in the recesses is as shown in Figure 1.

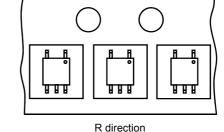


Figure 1 Device Orientation

6

2014-09-01

3.3 Empty Device Recesses Are as Shown in Table 2.

Table 2 Empty Device Recesses

	Standard	Remarks
Occurrences of 2 or more successive empty device recesses	0	Within any given 40-mm section of tape, not including leader and trailer
Single empty device recesses	6 devices (max.) per reel	Not including leader and trailer

3.4 Start and End of Tape

The start of the tape has 50 or more empty holes. The end of tape has 50 or more empty holes and two empty turns only for a cover tape.

3.5 Tape Specification

- (1) Tape material: Plastic (protection against electrostatics)
- (2) Dimensions: The tape dimensions are as shown in Figure 2 and Table 3.

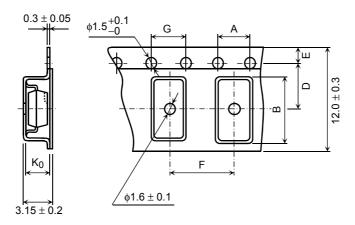


Figure 2 Tape Forms

Table 3 Tape Dimensions

Unit: mm Unless otherwise specified: ±0.1

		Critece carlet Mice opecinica. 20.1
Symbol	Dimension	Remark
Α	4.2	_
В	7.6	_
D	5.5	Center line of indented square hole and sprocket hole
E	1.75	Distance between tape edge and hole center
F	8.0	Cumulative error $^{+0.1}_{-0.3}$ (max) per 10 feed holes
G	4.0	Cumulative error $^{+0.1}_{-0.3}$ (max) per 10 feed holes
κ ₀	2.8	Internal space

2014-09-01

3.6 Reel

- (1) Material: Plastic
- (2) Dimensions: The reel dimensions are as shown in Figure 3 and Table 4.

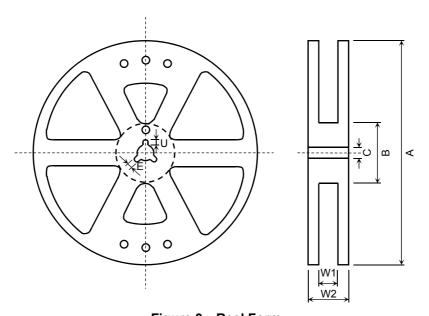


Figure 3 Reel Form

Table 4 Reel Dimensions

	Unit: mm
Symbol	Dimension
Α	Ф380 ±2
В	Ф80 ±1
С	Ф13 ±0.5
Е	2.0 ±0.5
U	4.0 ±0.5
W1	13.5 ±0.5
W2	17.5 ±1.0

4. Packing

Either one reel or five reels of photocoupler are packed in a shipping carton.

5. Label Indication

The carton bears a label indicating the product number, the symbol representing classification of standard, the quantity, the lot number and the Toshiba company name.

6. Ordering Method

When placing an order, please specify the product number, the tape type and the quantity as shown in the following example.

(Example)

8 2014-09-01

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor.
 Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

9

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331