T-1 (3mm) BI-COLOR INDICATOR LAMP Part Number: W115WSURKMGKW Hyper Red Mega Green #### **Features** - Uniform light output. - Low power consumption. - 3 leads with one common lead. - Long life solid state reliability. - RoHS compliant. ### **Descriptions** - The Hyper Red source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode. - The Mega Green source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode. ### **Package Dimensions** - 1. All dimensions are in millimeters (inches). - 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted. - 3. Lead spacing is measured where the leads emerge from the package. 4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice. SPEC NO: DSAE4650 **REV NO: V.3A DATE: JUN/18/2016** PAGE: 1 OF 7 **APPROVED: Wynec CHECKED: Allen Liu** DRAWN: W.Q.Zhong ERP: 1101013153 ### **Selection Guide** | Part No. | Emitting Color (Material) | Lens Type | lv (mcd) [2]
@ 20mA | | Viewing
Angle [1] | |---------------|---------------------------|----------------|------------------------|------|----------------------| | | | | Min. | Тур. | 201/2 | | W115WSURKMGKW | Hyper Red (AlGaInP) | White Diffused | 400 | 800 | 60° | | | | | *200 | *400 | | | | Mega Green (AlGaInP) | | 80 | 200 | | | | | | *80 | *200 | | #### Notes: - 1. 01/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value. 2. Luminous intensity / luminous Flux: +/-15%. * Luminous intensity value is traceable to CIE127-2007 standards. ### Electrical / Optical Characteristics at TA=25°C | Symbol | Parameter | Emitting Color | Тур. | Max. | Units | Test Conditions | |--------|--------------------------|-------------------------|-------------|------------|-------|---------------------| | λpeak | Peak Wavelength | Hyper Red
Mega Green | 645
574 | | nm | I==20mA | | λD [1] | Dominant Wavelength | Hyper Red
Mega Green | 630
570 | | nm | I==20mA | | Δλ1/2 | Spectral Line Half-width | Hyper Red
Mega Green | 28
20 | | nm | I==20mA | | С | Capacitance | Hyper Red
Mega Green | 35
15 | | pF | VF=0V;f=1MHz | | VF [2] | Forward Voltage | Hyper Red
Mega Green | 1.95
2.1 | 2.5
2.5 | V | IF=20mA | | lR | Reverse Current | Hyper Red
Mega Green | | 10
10 | uA | V _R = 5V | - 1. Wavelength: +/-1nm. - 2. Forward Voltage: +/-0.1V. - 3. Wavelength value is traceable to CIE127-2007 standards. 4. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure. ### Absolute Maximum Ratings at TA=25°C | Parameter | Hyper Red | Mega Green | Units | | | |---|---------------------|------------|-------|--|--| | Power dissipation | 75 | 75 | mW | | | | DC Forward Current | 30 | 30 | mA | | | | Peak Forward Current [1] | 185 | 150 | mA | | | | Electrostatic Discharge Threshold (HBM) | 3000 | 3000 | V | | | | Reverse Voltage | 5 | | V | | | | Operating / Storage Temperature | -40°C To +85°C | | | | | | Lead Solder Temperature [2] | 260°C For 3 Seconds | | | | | | Lead Solder Temperature [3] | 260°C For 5 Seconds | | | | | - 1. 1/10 Duty Cycle, 0.1ms Pulse Width. 2. 2mm below package base. - 3. 5mm below package base. - Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity Ref JEDEC/JESD625-A and JEDEC/J-STD-033. SPEC NO: DSAE4650 **REV NO: V.3A DATE: JUN/18/2016** PAGE: 2 OF 7 APPROVED: Wynec **CHECKED: Allen Liu** DRAWN: W.Q.Zhong ERP: 1101013153 ## W115WSURKMGKW Hyper Red SPEC NO: DSAE4650 REV NO: V.3A DATE: JUN/18/2016 PAGE: 3 OF 7 APPROVED: Wynec CHECKED: Allen Liu DRAWN: W.Q.Zhong ERP: 1101013153 ## Mega Green PAGE: 4 OF 7 ERP: 1101013153 SPATIAL DISTRIBUTION SPEC NO: DSAE4650 REV NO: V.3A DATE: JUN/18/2016 APPROVED: Wynec CHECKED: Allen Liu DRAWN: W.Q.Zhong ### Terms and conditions for the usage of this document - 1. The information included in this document reflects representative usage scenarios and is intended for technical reference only. - 2. The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications. - 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues. - 4. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance. - 5. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright. - 6. All design applications should refer to Kingbright application notes available at http://www.KingbrightUSA.com/ApplicationNotes SPEC NO: DSAE4650 REV NO: V.3A DATE: JUN/18/2016 PAGE: 5 OF 7 APPROVED: Wynec CHECKED: Allen Liu DRAWN: W.Q.Zhong ERP: 1101013153 ### **PRECAUTIONS** - 1. Storage conditions: - a. Avoid continued exposure to the condensing moisture environment and keep the product away from rapid transitions in ambient temperature. - b.LEDs should be stored with temperature ≦30°C and relative humidity < 60%. - c.Product in the original sealed package is recommended to be assembled within 72 hours of opening. Product in opened package for more than a week should be baked for 30 (\pm 10/-0) hours at 85 ~ 100°C. - 2. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1) "Correct mounting method "X" Incorrect mounting method Note 1-3: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits. 3. When soldering wires to the LED, each wire joint should be separately insulated with heat-shrink tube to prevent short-circuit contact. Do not bundle both wires in one heat shrink tube to avoid pinching the LED leads. Pinching stress on the LED leads may damage the internal structures and cause failure. (Fig. 2) 4. Use stand-offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB. - 5. Maintain a minimum of 3mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6) - During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7) SPEC NO: DSAE4650 REV NO: V.3A DATE: JUN/18/2016 PAGE: 6 OF 7 APPROVED: Wynec CHECKED: Allen Liu DRAWN: W.Q.Zhong ERP: 1101013153 7. Do not bend the leads more than twice. (Fig. 8) 8. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering. - 9. The tip of the soldering iron should never touch the lens epoxy. - 10. Through-hole LEDs are incompatible with reflow soldering. - 11. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility. - 12. Recommended Wave Soldering Profiles: #### Notes - 1.Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C - 2.Peak wave soldering temperature between 245° C ~ 255° C for 3 sec (5 sec max). - 3.Do not apply stress to the epoxy resin while the temperature is above 85°C. - 4. Fixtures should not incur stress on the component when mounting and during soldering process. - 5.SAC 305 solder alloy is recommended. - 6.No more than one wave soldering pass. SPEC NO: DSAE4650 REV NO: V.3A DATE: JUN/18/2016 PAGE: 7 OF 7 APPROVED: Wynec CHECKED: Allen Liu DRAWN: W.Q.Zhong ERP: 1101013153 Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию . Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России. С нами вы становитесь еще успешнее! ### Наши контакты: **Телефон:** +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331