

General Description

Features

The MAX4969 active 2:1 and 1:2 multiplexer equalizes and redrives PCIe[®] signals up to 5.0GT/s (Gigatransfers per second) and operates from a single +3.3V supply.

The MAX4969 features PCIe-required electrical idle and receiver detection on each channel, and improves signal integrity at the receiver through independent programmable input equalization and output deemphasis.

The MAX4969 is available in a small, 42-pin (3.5mm x 9.0mm) TQFN package optimal for simplified layout and space-saving requirements. The MAX4969 is specified over the 0°C to +70°C commercial operating temperature range.

Applications

Blade Servers Workstations Communications Switches Test Equipment Storage Area Network

Single +3.3V Supply Operation

- ◆ PCle Gen 1 (2.5GT/s) and Gen 2 (5.0GT/s) Return Loss ≥ 8dB (1.25GHz \leq f \leq 2.5GHz)
- Independent Input Equalization
- Independent Output Deemphasis
- Independent Output Level Selection Reduced Power and EMI
- On-Chip 50Ω Input/Output Terminations
- Inline Signal Traces for Simplified Layout
- Space-Saving, 3.5mm x 9.0mm TQFN Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4969CTO+	0°C to +70°C	42 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad.

Pin Configuration

PCIe is a registered trademark of PCI-SIG Corp.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

VCC.....-0.3V to +4.0V All Other Pins (Note 1)-0.3V to (VCC + 0.3V) Continuous Current, IN_P, IN_M, OUT_P, OUT_M ±30mA Peak Current, IN_P, IN_M, OUT_P, OUT_M (for 10kHz, 1% duty cycle)±100mA Continuous Power Dissipation (TA = +70°C) 42-Pin TQFN (derate 34.5mW/°C above +70°C)2758mW

Junction-to-Case Thermal Resistance	
θJC (Note 2)	+2°C/W
Junction-to-Ambient Thermal Resistance	
θJA (Note 2)	+29°C/W
Operating Temperature Range	0°C to +70°C
Junction Temperature Range	40°C to +150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: All I/O pins are clamped by internal diodes.

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, C_{CL} = 75nF \text{ coupling capacitor on each output, } R_L = 50\Omega \text{ on each output, } T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ wise noted. Typical values are at $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C.$) (Note 3)

PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE							
Power-Supply Range	Vcc			3.0		3.6	V
			INEQ_ = ODE_ = GND		120	150	
Supply Current	Icc	$EN = V_{CC}$	INEQ_ = ODE_ = VCC		160	200	mA
		EN = GND			50		
Input Impedance, Differential	ZRX-DIFF-DC	DC		80	100	120	Ω
Output Impedance, Differential	ZTX-DIFF-DC	DC		80	100	120	Ω
Common-Mode Resistance to	Z _{RX-HIGH-IMP-} DC-POS	VIN_P = VIN_M	= 0 to 200mV	50			kΩ
GND, Input Terminations Not Powered	Z _{RX-HIGH-IMP-} DC-NEG	VIN_P = VIN_M	= -150mV to 0V	1			kΩ
Common-Mode Resistance to GND, Input Terminations Powered	Z _{RX-DC}	DC		40	50	60	Ω
Output Short-Circuit Current	ITX-SHORT	Single-ended (Note 4)				90	mA
Common-Mode Delta, Between Active and Idle States	VTX-CM-DC- ACTIVE-IDLE- DELTA			-100		+100	mV
DC Output Offset, During Active State	VTX-CM-DC- LINE-DELTA	Difference between DC average of VOUT_P and VOUT_M		-25		+25	mV
DC Output Offset, During Electrical Idle	VTX-IDLE-DIFF- DC	ABS(Vout_p - Vout_m)		-10		+10	mV
AC PERFORMANCE							
Input Baturn Loop Differential		0.05GHz < f ≤	1.25GHz (Note 4)	10			dB
Input Return Loss, Differential	RLRX-DIFF	1.25GHz < f ≤	2.5GHz (Note 4)	8			dB

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, C_{CL} = 75nF \text{ coupling capacitor on each output, } R_L = 50\Omega \text{ on each output, } T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ wise noted. Typical values are at $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C.$) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Return Loss, Common Mode	RL _{RX-CM}	0.05GHz < f ≤ 2.5GHz (Note 4)	6			dB
Outout Datura Laga Differential		0.05GHz < f ≤ 1.25GHz (Note 4)	10			dB
Output Return Loss, Differential	RLTX-DIFF	1.25GHz < f ≤ 2.5GHz (Note 4)	8			dB
Output Return Loss, Common Mode	RL _{TX-CM}	$0.05GHz < f \le 2.5GHz$ (Note 4)	6			dB
Differential Input Signal Range, Redriver Operation	VRX-DIFF-PP	0.05GHz < f ≤ 2.5GHz	150		1200	mV _{P-P}
Differential Output Voltage, Full Swing, No Deemphasis	VTX-DIFF-PP	$2 \times ABS(V_{OUT_P} - V_{OUT_M}),$ $ODE_1 = GND, ODE_0 = V_{CC}$ (see Table 1), f = 500MHz	800	1000	1200	mVp-p
Differential Output Voltage, Low Swing, No Deemphasis	VTX-DIFF-PP- LOW	$2 \times ABS(V_{OUT_P} - V_{OUT_M}),$ $ODE_1 = ODE_0 = GND$ (see Table 1), f = 500MHz	600	750	900	mVp-p
Output Deemphasis Ratio, 0dB	VTX-DE-RATIO- 0dB	f = 2.5GHz, ODE_1 = GND, ODE_0 = V _{CC} or GND, Figure 1 (see Table 1)		0		dB
Output Deemphasis Ratio, 3.5dB	VTX-DE-RATIO- 3.5dB	f = 2.5GHz, ODE_1 = V _{CC} , ODE_0 = GND, Figure 1 (see Table 1)		3.5		dB
Output Deemphasis Ratio, 6dB	VTX-DE-RATIO- 6dB	$f = 2.5GHz$, ODE_1 = V _{CC} , ODE_0 = V _{CC} , Figure 1 (see Table 1)		6		dB
Input Equalization, 0dB	VRX-EQ-0dB	f = 2.5GHz, INEQ_1 = GND, INEQ_0 = GND or V _{CC} (see Table 2)		0		dB
Input Equalization, 3.5dB	VRX-EQ-3.5dB	f = 2.5GHz, INEQ_1 = V _{CC} , INEQ_0 = GND (see Table 2)		3.5		dB
Input Equalization, 6dB	VRX-EQ-6dB	f = 2.5GHz, INEQ_1 = V_{CC} , INEQ_0 = V_{CC} (see Table 2)		6		dB
Output Common-Mode Voltage	VTX-CM-AC-PP	MAX(V _{OUT_P} + V _{OUT_M})/2 - MIN(V _{OUT_P} + V _{OUT_M})/2 (Note 4)			100	mVp-p
Propagation Delay	TPD	(Note 4)	160	280	400	ps
Rise/Fall Time	TTX-RISE-FALL	(Notes 4, 5)	30			ps
Rise/Fall Time Mismatch	T _{TX-RF-} MISMATCH	(Notes 4, 5)			20	ps
Output Skew Same Pair	TSK	(Note 4)		10	15	ps
Deterministic Jitter	Ttx-dj-dd	K28.5 \leq pattern, AC-coupled, R _L = 50 Ω , effects of deemphasis deembedded (Note 4), 5GT/s		20		psp-p
Random Jitter	T _{TX-RJ-DD}	D10.2 pattern, f > 1.5MHz		0.5	1.4	psrms
Electrical Idle Entry Delay	TTX-IDLE-SET- TO-IDLE	From input to output		15		ns
Electrical Idle Exit Delay	T _{TX} -IDLE-TO- DIFF-DATA	From input to output		8		ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, C_{CL} = 75nF \text{ coupling capacitor on each output, } R_L = 50\Omega \text{ on each output, } T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C.$ (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Electrical Idle Detect Threshold	VTX-IDLE- THRESH		65	100	120	mVp-p
Output Voltage During Electrical Idle (AC)	VTX-IDLE-DIFF- AC-P	ABS(Vout_p - Vout_m)			35	mVp-p
Receiver Detect Pulse Amplitude	VTX-RCV- DETECT	Voltage change in positive direction (Note 4)			600	mV
Receiver Detect Pulse Width				100		ns
Receiver Detect Retry Period				200		ns
CONTROL LOGIC	·	·	· ·			
Input Logic-Level Low	VIL				0.6	V
Input Logic-Level High	VIH		1.4			V
Input Logic Hysteresis	VHYST			130		mV
Input Pulldown Resistor	RDOWN		37.5	60	150	kΩ

Note 3: All devices are 100% production tested at $T_A = +70^{\circ}$ C. Specifications for all temperature limits are guaranteed by design.

Note 4: Guaranteed by design.

MAX4969

Note 5: Rise and fall times are measured using 20% and 80% levels.

Timing Diagram $V_{LOW_P,P} \quad V_{HGH_P,P}$ $U_{LOW_P,P} \quad V_{HGH_P,P}$ $DE(dB) = 20 \left[log \left(\frac{V_{HGH_P,P}}{V_{LOW_P,P}} \right) \right]$

Figure 1. Illustration of Output Deemphasis

200mV/div

200mV/div

-200

-400

-600

-150 -100

-50 0 50 100 150

50ps/div

Typical Operating Characteristics MAX4969

(V_{CC} = +3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

M/IXI/M

Typical Operating Characteristics (continued)

50ps/div

150

50ps/div

_Pin Description

PIN	NAME	FUNCTION
1, 17, 22, 38	Vcc	Power-Supply Input. Bypass V _{CC} to GND with 1μ F and 0.01μ F capacitors in parallel as close to the device as possible, recommended on each V _{CC} pin.
2	INEQ1	Channel 1 Input Equalization Control MSB. See Table 2. INEQ1 is internally pulled down by a $60k\Omega$ (typ) resistor.
3	INEQ0	Channel 1 Input Equalization Control LSB. See Table 2. INEQ0 is internally pulled down by a $60k\Omega$ (typ) resistor.
4, 7, 11, 14, 23, 26, 29, 31, 34, 37	GND	Ground
5	INP	Channel 1 Noninverting Input
6	INM	Channel 1 Inverting Input
8	SEL1	Channel 1 Active Output Selection Input. Drive SEL1 low to activate A outputs. Drive SEL high to activate B outputs. SEL1 is internally pulled down by a $60k\Omega$ (typ) resistor.
9	SEL2	Channel 2 Active Input Selection Input. Drive SEL2 low to activate A inputs. Drive SEL high to activate B inputs. SEL2 is internally pulled down by a $60k\Omega$ (typ) resistor.
10	EN	Enable Input. Drive EN low for reduced power standby mode. Drive EN high for normal operation. EN is internally pulled down by a $60k\Omega$ (typ) resistor.
12	OUTP	Channel 2 Noninverting Output
13	OUTM	Channel 2 Inverting Output
15	ODE1	Channel 2 Output Deemphasis Control MSB. See Table 1. ODE1 is internally pulled down by a $60k\Omega$ (typ) resistor.
16	ODE0	Channel 2 Output Deemphasis Control LSB. See Table 1. ODE0 is internally pulled down by a $60k\Omega$ (typ) resistor.
18	INEQA1	Channel 2 Input A Equalization Control MSB. See Table 2. INEQA1 is internally pulled down by a $60k\Omega$ (typ) resistor.
19	INEQA0	Channel 2 Input A Equalization Control LSB. See Table 2. INEQA0 is internally pulled down by a $60k\Omega$ (typ) resistor.
20	INEQB1	Channel 2 Input B Equalization Control MSB. See Table 2. INEQB1 is internally pulled down by a $60k\Omega$ (typ) resistor.
21	INEQB0	Channel 2 Input B Equalization Control LSB. See Table 2. INEQB0 is internally pulled down by a $60k\Omega$ (typ) resistor.
24	INBM	Channel 2 Inverting Input B
25	INBP	Channel 2 Noninverting Input B
27	INAM	Channel 2 Inverting Input A
28	INAP	Channel 2 Noninverting Input A
30	RX_DET	Receiver Detection Control Bit. Toggle RX_DET to initiate receiver detection. RX_DET is internally pulled down by a $60k\Omega$ (typ) resistor.
32	OUTBM	Channel 1 Inverting Output B
33	OUTBP	Channel 1 Noninverting Output B
35	OUTAM	Channel 1 Inverting Output A
36	OUTAP	Channel 1 Noninverting Output A
39	ODEB0	Channel 1 Output B Deemphasis Control LSB. See Table 1. ODEB0 is internally pulled down by a $60k\Omega$ (typ) resistor.

MAX4969

Pin Description

PIN	NAME	FUNCTION
40	ODEB1	Channel 1 Output B Deemphasis Control MSB. See Table 1. ODEB1 is internally pulled down by a $60k\Omega$ (typ) resistor.
41	ODEA0	Channel 1 Output A Deemphasis Control LSB. See Table 1. ODEA0 is internally pulled down by a $60k\Omega$ (typ) resistor.
42	ODEA1	Channel 1 Output A Deemphasis Control MSB. See Table 1. ODEA1 is internally pulled down by a $60k\Omega$ (typ) resistor.
_	EP	Exposed Pad. Internally connected to GND. Connect EP to a large ground plane to maximize ther- mal performance. EP is not intended as an electrical connection point.

Functional Diagram

MAX4969

Detailed Description

The MAX4969 is an active 2:1/1:2 multiplexer designed to equalize and redrive PCIe signals up to 5.0GT/s. The MAX4969 features PCIe-required electrical idle and receiver detection on each channel, and improves signal integrity at the receiver through independent programmable input equalization and output deemphasis.

Enable Input (EN)

The MAX4969 features an active-high enable input (EN). EN has an internal pulldown resistor of $60k\Omega$ (typ). When EN is driven low or left unconnected, the MAX4969 enters reduced power standby mode and the redrivers are disabled. Drive EN high for normal operation.

Active Input/Output Select (SEL1, SEL2) SEL1 selects the active output for channel 1 and SEL2 selects the active input for channel 2. Drive SEL1 or SEL2 low or leave unconnected to activate A inputs or outputs. Drive SEL1 or SEL2 high to activate B inputs or outputs. SEL1 and SEL2 have internal pulldown resistors of $60k\Omega$ (typ).

Table 1. Output Deemphasis

ODE_1	ODE_0	OUTPUT DEEMPHASIS (dB)
0	0	0, low swing
0	1	0, full swing
1	0	3.5, full swing
1	1	6, full swing

Table 2. Input Equalization

INEQ_1	INEQ_0	INPUT EQUALIZATION (dB)
0	Х	0
1	0	3.5
1	1	6

X = Don't Care

Table 3. Receiver Detection

Programmable Output Deemphasis (ODE_0, ODE_1)

MAX4969

The MAX4969 features independent programmable output deemphasis capable of providing 0dB, 3.5dB, or 6dB deemphasis on any channel. When both ODE_0 and ODE_1 are driven low or left unconnected, the output is in low-swing mode (750mV typ) (see Table 1). ODE0, ODE1, ODEA0, ODEA1, ODEB0, and ODEB1 have internal pulldown resistors of $60k\Omega$ (typ).

Programmable Input Equalization (INEQ_0, INEQ_1)

The MAX4969 features independent programmable input equalization capable of providing 0dB, 3.5dB, or 6dB of high-frequency equalization on any channel (see Table 2.) INEQ0, INEQ1, INEQA0, INEQA1, INEQB0, and INEQB1 have internal pulldown resistors of $60k\Omega$ (typ).

Receiver Detection (RX_DET)

The MAX4969 features receiver detection on each channel. Receiver detection initializes on the rising edge of EN, or upon initial power-up if EN is high. Receiver detection can also be initiated on a rising or falling edge of the RX_DET, SEL1, or SEL2 inputs when EN is high. During this time, the part remains in reduced power standby mode and the outputs are squelched, despite the logic-high state of EN. Once started, receiver detection repeats indefinitely on each channel. Once a receiver is detected on one of the channels, up to 2^{16} more attempts are made on the other channel. Upon receiver detection, channel output and electrical idle detection are enabled (see Table 3). RX_DET has an internal pulldown resistor of $60k\Omega$ (typ).

Electrical Idle Detection

The MAX4969 features electrical idle detection to prevent unwanted noise from being redriven at the output. If the MAX4969 detects that the differential input has fallen below VTX-IDLE-THRESH, the MAX4969 squelches the output. For differential input signals that are above VTX-IDLE-THRESH, the MAX4969 turns on the output and redrives the signal.

RX_DET/ SEL1/SEL2	EN	DESCRIPTION
Х	0	Receiver detection inactive
0	1	Following a rising or falling edge; indefinite retry until receiver detected
Rising or falling edge	1	Initiate receiver detection
1	1	Following a rising or falling edge; indefinite retry until receiver detected

X = Don't Care

MAX4969 Typical Application Circuit Тх PCIe DEVICE A OUTA Rx OUTF MIXI/M MAX4969 PCle HOST INA OUT INB Тχ PCle DEVICE B Rx

Applications Information

Layout

Circuit board layout and design can significantly affect the performance of the MAX4969. Use good high-frequency design techniques, including minimizing ground inductance and using controlled-impedance transmission lines on data signals. It is recommended to run receive and transmit on different layers to minimize crosstalk and to place 1 μ F and 0.01 μ F power-supply bypass capacitors in parallel as close to V_{CC} as possible on each V_{CC} pin. Always connect V_{CC} to a power plane.

Exposed Pad Package

The exposed-pad, 42-pin TQFN package incorporates features that provide a very low thermal resistance path for heat removal from the IC. The exposed pad on the MAX4969 must be soldered to the circuit board ground plane for proper thermal performance. For more information on exposed-pad packages, refer to Application Note 862: *HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages*.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all devices. Always apply GND then V_{CC} before applying signals, especially if the signal is not current limited.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
42 TQFN-EP	T423590+1	<u>21-0181</u>

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10

____ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2009 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331