Surface Mount Schottky Power Rectifier

Plastic SOD-123FL Package

This device uses the Schottky Barrier principle with a large area metal—to—silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC–DC and DC–DC converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

Features

- Guardring for Stress Protection
- Low Forward Voltage
- Epoxy Meets UL 94 V-0
- Package Designed for Optimal Automated Board Assembly
- These are Pb-Free Devices

Mechanical Characteristics

• Reel Options: MBR2H200SFT3G = 10,000 per 13 in reel/8 mm tape

• Device Marking: L2J

Polarity Designator: Cathode BandWeight: 11.7 mg (approximately)

• Case: Epoxy, Molded

• Lead Finish: 100% Matte Sn (Tin)

• Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

• Device Meets MSL 1 Requirements

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 200 VOLTS

SOD-123FL CASE 498

MARKING DIAGRAM

L2J = Specific Device Code

Date CodePb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]	
MBR2H200SFT3G	SOD-123 (Pb-Free)	10000 / Tape & Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

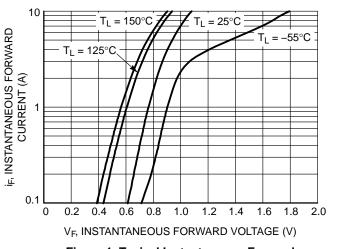
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	٧
Average Rectified Forward Current (T _L = 108°C)	lo	2.0	Α
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, T_C = 105°C)	I _{FRM}	4.0	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	30	Α
Storage and Operating Junction Temperature Range (Note 1)	T _{stg} , T _J	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Lead (Note 2)	Ψ_{JCL}	23	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	85	°C/W
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ heta JA}$	330	°C/W

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 4) $ \begin{array}{l} (I_F = 1.0 \text{ A, } T_J = 25^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A, } T_J = 25^{\circ}\text{C}) \\ (I_F = 1.0 \text{ A, } T_J = 125^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A, } T_J = 125^{\circ}\text{C}) \end{array} $	V _F	0.86 0.94 0.71 0.78	V
Maximum Instantaneous Reverse Current (Note 4) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$)	I _R	200 2	μA mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board.
 Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board.
 Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2.0%.

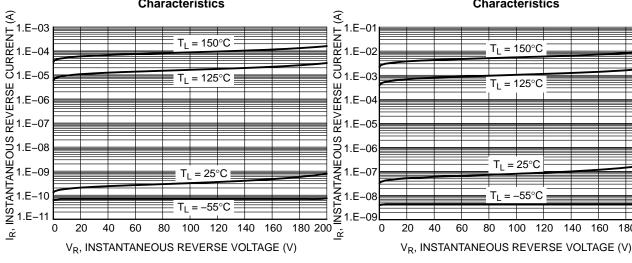
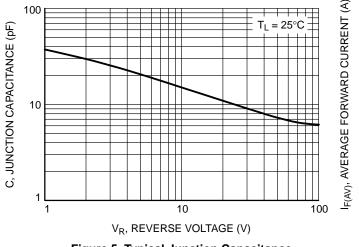
^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

TYPICAL CHARACTERISTICS

 $T_L = 150^{\circ}C$ i_F, INSTANTANEOUS FORWARD $T_L = -55^{\circ}C$ $T_L = 125^{\circ}C$ CURRENT (A) 0.1 0.2 0.4 0.6 8.0 1.0 1.2 1.4 1.6 V_F, INSTANTANEOUS FORWARD VOLTAGE (V)

Figure 1. Typical Instantaneous Forward Characteristics

Figure 2. Maximum Instantaneous Forward Characteristics

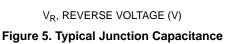

Figure 3. Typical Reverse Characteristics

Figure 4. Maximum Reverse Characteristics

140 160

180 200

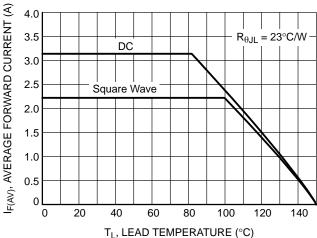
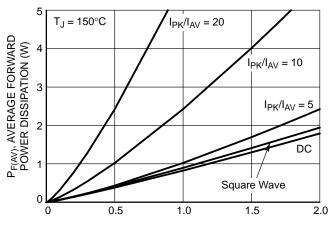



Figure 6. Current Derating per Diode

TYPICAL CHARACTERISTICS

I_{F(AV)}, AVERAGE FORWARD CURRENT (A)

Figure 7. Forward Power Dissipation

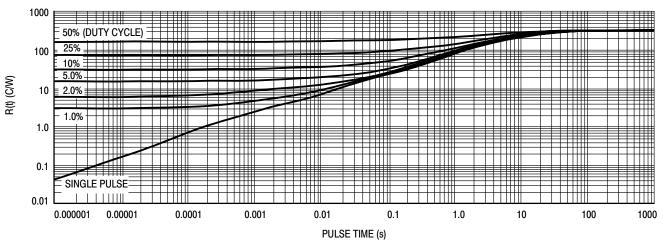


Figure 8. Thermal Response, Junction-to-Ambient (20 mm² pad)

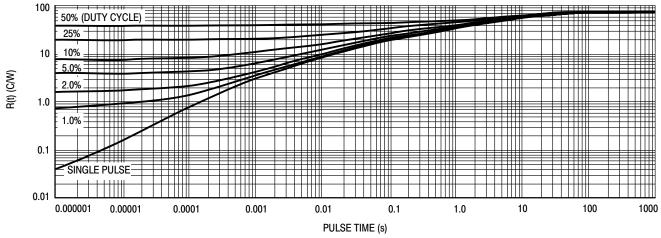
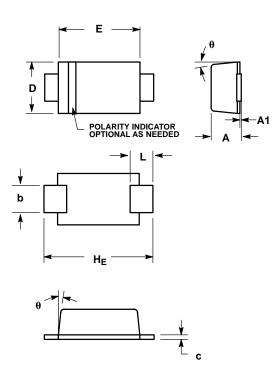
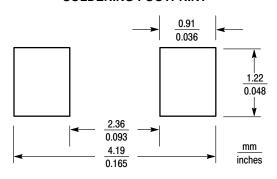



Figure 9. Thermal Response, Junction-to-Ambient (1 in² pad)

PACKAGE DIMENSIONS

SOD-123FL **CASE 498 ISSUE B**



NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH.
 DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT
 SECTION OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	0.95	1.00	0.035	0.037	0.039
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.70	0.90	1.10	0.028	0.035	0.043
С	0.10	0.15	0.20	0.004	0.006	0.008
D	1.50	1.65	1.80	0.059	0.065	0.071
E	2.50	2.70	2.90	0.098	0.106	0.114
L	0.55	0.75	0.95	0.022	0.030	0.037
HE	3.40	3.60	3.80	0.134	0.142	0.150
θ	0°	_	8°	0°	_	8°

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partner rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

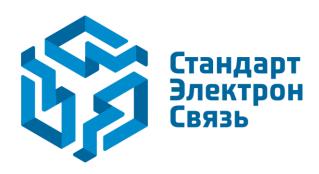
LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Phone: 81-3-5817-1050

N. American Technical Support: 800-282-9855 Toll Free USA/Canada


Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331