

8 W auxiliary SMPS for air-conditioner using ICE5AR4770BZS

REF_5AR4770BZS_8W1

About this document

Scope and purpose

This document is a reference design for an 8 W auxiliary SMPS for air-conditioner with the latest Infineon fifthgeneration fixed-frequency CoolSET[™] ICE5AR4770BZS. The power supply is designed with a universal input compatible with most geographic regions and isolated output (+12 V/1.25 A and +5 V/0.50 A) as typically employed in most home appliances.

Highlights of the auxiliary power supply for an air-conditioner:

- High efficiency under light-load conditions to meet ENERGY STAR requirements
- Simplified circuitry with good integration of power and protection features
- Auto-restart protection scheme to minimize interruption to enhance end-user experience

Intended audience

This document is intended for power supply design or application engineers, etc. who want to design auxiliary power supplies for air-conditioners that are efficient under light-load conditions, reliable and easy to design.

Table of contents

About this document	1
Table of contents	1
 System introduction High efficiency under light-load conditions to meet ENERGY STAR requirements Simplified circuitry with good integration of power and protection features Auto-restart protection scheme to minimize interruption and enhance end-user experience. 	3 4
2 Reference design board	
3 Power supply specifications	
4 Circuit diagram	7
5 Circuit description	8
5.1 EMI filtering and line rectification	
5.2 Flyback converter power stage	8
5.3 Control of flyback converter through fifth-generation fixed-frequency CoolSET [™] ICE5AR4770	
5.3.1 Integrated HV power MOSFET	8
5.3.2 Current Sensing (CS)	8
5.3.3 Feedback (FB) and compensation network	
5.4 Unique features of the fifth generation fixed-frequency CoolSET [™] ICE5AR4770BZS	9
5.4.1 Fast self-start-up and sustaining of V _{cc}	9
5.4.2 CCM, DCM operation with frequency reduction	9
5.4.3 Frequency jittering with modulated gate drive	10
5.4.4 System robustness and reliability through protection features	10

System introduction

5.5 Clamper circuit	
5.6 PCB design tips	
5.7 EMI reduction tips	11
6 PCB layout	12
6.1 Top side	
6.2 Bottom side	12
7 BOM	13
8 Transformer specification	14
9 Measurement data and graphs	15
9.1 Efficiency	16
9.2 Standby power	17
9.3 Line regulation	17
9.4 Load regulation	
9.5 Maximum input power	
9.6 Frequency reduction	
9.7 ESD immunity (EN 61000-4-2)	
9.8 Surge immunity (EN 61000-4-5)	
9.9 Conducted emissions (EN 55022 class B)	
9.10 Thermal measurement	
10 Waveforms and oscilloscope plots	
10.1 Start-up at full load	
10.2 Soft-start at full load	
10.3 Drain and CS voltage at full load	
10.4 Frequency jittering at full load10.5 Load transient response (dynamic load from 10 percent to 100 percent)	
10.6 Output ripple voltage at full load	
10.7 Output ripple voltage at ABM (0.1 W load)	
10.8 Entering ABM	
10.9 During ABM	
10.10 Leaving ABM	
10.11 V _{cc} OVP/UVP	
10.12 Over-load protection	
10.13 V _{cc} short-to-GND	29
11 Appendix A: Transformer design and spreadsheet [3]	30
12 Appendix B: WE transformer specification	38
13 References	
Revision history	40

System introduction

1 System introduction

With the growing household trend for internet-connected devices, the new generation of home appliances such as air-conditioners are equipped with advanced features such as wireless control and monitoring capability, smart sensors and touch screen display. These will transform a static product into an interactive and intelligent home appliance, capable of adapting to the smart-home theme. To support this trend, Infineon has introduced the latest fifth-generation fixed-frequency CoolSET[™] to address this need in an efficient and cost-effective manner.

An auxiliary SMPS is needed to power the various modules and sensors, which typically operate from a stable DC voltage source. The Infineon fifth-generation fixed-frequency CoolSET[™] (as shown in Figure 1) forms the heart of the system, providing the necessary protection and AC-DC conversion from the mains to multiple regulated DC voltages to power the various blocks.

Table 1 lists the system requirements for an air-conditioner, and the corresponding Infineon solution is shown in the right-hand column.

	System requirement for air-conditioner	Infineon solution – ICE5AR4770BZS						
1	High efficiency under light-load conditions to meet ENERGY STAR requirements	New fixed-frequency control and Active Burst Mode (ABM)						
2	Simplified circuitry with good integration of power and protection features	Embedded 700 V MOSFET and controller in DIP-7 package						
3	Auto-restart protection scheme to minimize interruption to enhance end-user experience	All abnormal protections are in auto-restart mode						

Table 1System requirements and Infineon solutions

1.1 High efficiency under light-load conditions to meet ENERGY STAR requirements

During typical air-conditioner operation, the power requirement fluctuates according to various use cases. However, in most cases where room temperature is already stabilized, the air-conditioner will reside in an idle

System introduction

state in which the loading toward the auxiliary power supply is low. It is crucial that the auxiliary power supply operates as efficiently as possible, because it will be in this particular state for most of the period. Under light-load conditions, losses incurred with the power switch are usually dominated by the switching operation. The choice of switching scheme and frequency plays a crucial role in ensuring high conversion efficiency.

In this reference design, ICE5AR4770BZS was primarily chosen due to its frequency reduction switching scheme. Compared with a traditional fixed-frequency flyback, the CoolSET[™] reduces its switching frequency from medium to light load, thereby minimizing switching losses. Therefore, an efficiency of more than 80 percent is achievable under 25 percent loading conditions.

1.2 Simplified circuitry with good integration of power and protection features

To relieve the designer of the complexity of PCB layout and circuit design, CoolSET[™] is a highly integrated device with both a controller and HV MOSFET integrated in a single, space-saving DIP-7 package. These certainly help the designer to reduce component count as well as simplifying the layout into a single-layer PCB design for ease of manufacturing, using the traditional cost-effective wave-soldering process.

1.3 Auto-restart protection scheme to minimize interruption and enhance enduser experience

For an air-conditioner, it would be annoying to both the end user and the manufacturer if the system were to halt and latch after protection. To minimize interruption, the CoolSET[™] implements auto-restart mode for all abnormal protections.

Reference design board

2 Reference design board

This document provides complete design details including specifications, schematics, Bill of Materials (BOM), PCB layout, and transformer design and construction information. Performance results pertaining to line/load regulation, efficiency, transient load, thermal conditions, conducted EMI scans and so on are also included.

Power supply specifications

3 Power supply specifications

The table below represents the minimum acceptance performance of the design. Actual performance is listed in the measurements section.

Table 2 Specifications of REF_5AR4770BZS_8W1								
Description	Symbol	Min.	Тур.	Max.	Units	Comments		
Input								
Voltage	V _{IN}	85	-	265	V AC	Two wires (no P.E.)		
Frequency	f_{LINE}	47	50/60	64	Hz			
No-load input power	P_{stby_NL}	-	-	40	mW			
Output								
Output voltage 1	V _{OUT1}	-	12	-	V	± 15 percent		
Output current 1	I _{OUT1}	60	-	450	mA			
Output voltage ripple 1	V _{RIPPLE1}	-	-	100	mV	20 MHz BW		
Output voltage 2	V _{OUT2}	-	5	-	V	± 1 percent		
Output current 2	I _{OUT2}	10	-	500	mA			
Output voltage ripple 2	V _{RIPPLE2}	-	-	100	mV	20 MHz BW		
Max. power output	P _{OUT_Max}	-	-	7.9	W			
Efficiency								
Max. load	η	-	83	-	Percent	115 V AC/230 V AC		
Average efficiency at 25	η_{avg}	82	-	-	Percent	115 V AC/230 V AC		
percent, 50 percent, 75 percent								
and 100 percent of Pout_Max								
Environmental								
Conducted EMI		6	-	-	dB	Margin, CISPR 22 class B		
ESD		10	-	-	kV	EN 61000-4-2		
Surge immunity						EN 61000-4-5		
Differential mode		2	-	-	kV			
Common mode		4	-	_	kV			
Ambient temperature	T _{amb}	0	-	50	°C	Free convection, sea level		
Form factor		85	5 × 35 × 2	5	mm³	L × W × H		

4

Circuit description

5 Circuit description

In this section, the design circuit for the SMPS unit will be briefly described by the different functional blocks. For details of the design procedure and component selection for the flyback circuitry please refer to the IC design guide [2] and calculation tool [3].

5.1 EMI filtering and line rectification

The input of power supply unit is taken from the AC power grid, which is in the range of 85 V AC ~ 265 V AC. The fuse F1 is directly connected to the input line to protect the system in case of excess current entering the system circuit due to any fault. Following is the varistor VAR1, which is connected across the input to absorb excessive energy during line surge transient. The bridge rectifier BR1 rectifies the AC input into DC voltage, filtered by the bulk capacitors C1 and C2. Resistor NTC1 not only reduces the inrush current during start-up but it also helps reduce the voltage increase on the bulk capacitors C1 and C2 during line surge transients. Inductor L1 and capacitors C1 and C2 form a π filter to attenuate EMI noise.

5.2 Flyback converter power stage

The flyback converter power stage consists of transformer T1, a primary HV MOSFET (integrated into ICE5AR4770BZS), secondary rectification diodes D3 and D4, secondary output capacitors C11, C12, C13 and C14 and output filter inductors L2 and L3.

When the primary HV MOSFET turns on, energy is stored in the transformer. When it turns off, the stored energy is discharged to the output capacitors and into the output load.

Primary winding has two layers placed back to back for higher winding capacitance. This can reduce EMI by slowing the MOSFET switching. However, this can reduce efficiency. Winding capacitance can be tuned by adding a number of isolation tapes between the layers, depending on the EMI or efficiency need. If efficiency is a priority, interlacing primary and secondary winding is recommended, as it has lower leakage inductance. As a result, the clamper circuit can be relaxed to reduce its power losses.

For the output rectification, lower forward voltage and ultra-fast recovery diodes can improve efficiency. Capacitors C11 and C13 store the energy needed during output load jumps. LC filters L2/C12 and L3/C14 reduce the HF ripple voltage.

5.3 Control of flyback converter through fifth-generation fixed-frequency CoolSET[™] ICE5AR4770BZS

5.3.1 Integrated HV power MOSFET

The ICE5AR4770BZS CoolSET[™] is a seven-pin device in a DIP-7 package. It has been integrated with the new fixed-frequency PWM controller and all necessary features and protections, and most importantly the 700 V power MOSFET, Infineon Superjunction (SJ) CoolMOS[™]. Hence, the schematic is much simplified and the circuit design is made much easier.

5.3.2 Current Sensing (CS)

The ICE5AR4770BZS is a current mode controller. The primary peak current is controlled cycle-by-cycle through the CS resistors R1A and R1B in the CS pin (pin 3). Transformer saturation can be avoided through Peak Current Limitation (PCL); therefore, the system is more protected and reliable.

Circuit description

5.3.3 Feedback (FB) and compensation network

 V_{OUT} is sensed by resistor dividers R10, R11, R12 and R13 connected to the input of error amplifier TL431 (IC3). A type 2 compensation network (C7, C8 and R9) is connected to the input and output of IC3. The output of IC3 is coupled to the FB pin via optocoupler IC2.

The FB pin of ICE5AR4770BZS is a multi-function pin, which is used to select the entry/exit burst power level through the resistor at the FB pin (R3) and also the burst-on/burst-off sense input during ABM.

5.4 Unique features of the fifth generation fixed-frequency CoolSET[™] ICE5AR4770BZS

5.4.1 Fast self-start-up and sustaining of V_{cc}

The IC uses a cascode structure to fast charge the V_{cc} capacitor. Pull-up resistors R2A, R2B and R2C connected to the GATE pin (pin 4) is used to initiate the start-up phase. At first, 0.2 mA is used to charge the V_{cc} capacitor from 0 V to 1.1 V. This is a protection which reduces the power dissipation of the IC during V_{cc} short-to-GND condition. Thereafter, a much higher charging current of 3.2 mA will charge the V_{cc} capacitor until the V_{cc_ON} is reached. Start-up time of less than 200 ms is achievable with V_{cc} capacitor of 22 μ F.

After start-up, the IC V_{cc} supply is sustained by the auxiliary winding of transformer TR1, which needs to support the V_{cc} to be above Under Voltage Lockout (UVLO) voltage (10 V typ.) through the rectifier circuit D12, R12, R12A and C16.

5.4.2 CCM, DCM operation with frequency reduction

ICE5AR4770BZS can be operated in either Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) with frequency-reduction feature. This reference board is designed to operate in DCM. When the system is operating at high output load, the controller will switch at 100 kHz fixed frequency. In order to achieve a better efficiency between light load and medium load, frequency reduction is implemented as a function of V_{FB} , as shown in Figure 4. Switching frequency will not reduce further once the minimum switching frequency $f_{OSC2_{MIN}}$ (43 kHz) is reached.

Circuit description

5.4.3 Frequency jittering with modulated gate drive

The ICE5AR4770BZS has a frequency jittering feature with modulated gate drive to reduce the EMI noise. The jitter frequency is internally set at 100 kHz (±4 kHz), and the jitter period is 4 ms.

5.4.4 System robustness and reliability through protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5AR4770BZS provides comprehensive protection to ensure the system is operating safely. This includes V_{cc} OV and UV, over-load, over-temperature (controller junction), CS short-to-GND and V_{cc} short-to-GND. When those faults are found, the system will enter into protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and the failure conditions is shown in the table below.

Protection function	Failure condition	Protection mode
V _{cc} OV	V_{vcc} greater than 25.5 V	Odd-skip auto restart
V _{cc} UV	V _{vcc} less than 10 V	Auto restart
Over-load	$V_{\mbox{\tiny FB}}$ greater than 2.75 V and lasts for 54 ms	Odd-skip auto restart
Over-temperature (junction temperature of controller chip only)	TJ greater than 140°C	Non-switch auto restart
CS short-to-GND	V_{cs} less than 0.1 V, lasts for 0.4 μs and three consecutive pulses	Odd-skip auto restart
V_{cc} short-to-GND (V_{vcc} = 0 V, start-up = 50 M Ω and V_{DRAIN} = 90 V)	V _{vcc} less than 1.1 V, I _{vcc_Charge1} ≈ -0.2 mA	Cannot start up

Table 3 Protection functions of ICE5AR4770BZS

5.5 Clamper circuit

A clamper network consisting of D2, C6 and R6 is used to reduce the switching voltage spikes on the DRAIN pin, which are generated by the leakage inductance of the transformer TR1. This is a dissipative circuit, therefore R6 and C6 need to be fine-tuned depending on the voltage derating factor and efficiency requirement.

5.6 PCB design tips

For a good PCB design layout, there are several points to note.

- The switching power loop needs to be as small as possible (see Figure 5). There are three power loops in the reference design; one on the primary side and two on the secondary side. The primary-side loop starts from the bulk capacitor (C2) positive terminal, goes through the primary transformer winding (pin 1 and pin 2 of T1), the DRAIN pin and CS pin of the CoolSET[™] IC1, CS resistors R1A and R1B and back to the C2 negative terminal. The secondary-side loop starts at the 12 V output secondary transformer winding (pin 9 of T1), goes through output diode D3, output capacitor C11 and back to pin 8 of T1. Another loop on the secondary starts from the 5 V output secondary transformer winding (pin 6 and 7 of T1), output diode D4, output capacitor C13 and back to pin 8 of T1.
- Star-ground connection should be used to reduce HF noise coupling that can affect the functional operation. The ground of the small-signal components, e.g. C3 and C4, and the emitter of the optocoupler (pin 3 of IC2) should connect directly to the IC ground (pin 8 of IC1).

Circuit description

Figure 5 PCB layout tips

- Adding thin PCB track (zigzag trace) on the AC input side can increase input series resistance, which may eliminate the use of NTC1 to pass lower line surge requirements.
- Separating the HV components and LV components, e.g. clamper circuit D12, R6 and C6, at the top part of the PCB (see Figure 5) and the other LV components at the lower part of the PCB can reduce the spark-over chance of the high energy surge during ESD or a lightning surge test.
- Make the PCB copper pour area on the DRAIN pin as wide as possible to act as a heatsink for the CoolSET[™].

5.7 EMI reduction tips

EMI compliance is always a challenge for the power supply designer. There are several critical points to consider in order to achieve a satisfactory EMI performance.

- A proper transformer design can significantly reduce EMI. Low leakage inductance can incur a low switching spike and HF noise. Interlaced winding technique is the most common practice to reduce leakage inductance. Winding shield, core shield and whole transformer shield are also some of the techniques used to reduce EMI.
- An input CMC and X-capacitor greatly reduce EMI but are costly and impractical, especially for low-power applications.
- Short-switching power-loop design in the PCB (as described in section 5.6) can reduce radiated EMI due to the antenna effect.
- The Y-capacitor CY1 dampens the HF noise generated between the primary and secondary, reducing the EMI noise.
- A secondary diode snubber circuit (R14/C9 and R15/C10) can reduce HF noise.
- Ferrite beads can reduce HF noise especially on criticical nodes such as the DRAIN pin, clamper diode and secondary diode terminals.
- The addition of output CMC is also effective where long cable wires are used to connect the output of the power supply to the load.

PCB layout 6

Top-side component legend Figure 6

6.2 Bottom side

Figure 7

Bottom-side copper and component legend

7

Table 4

BOM

BOM

No.	Designator	Description	Part number	Manufacturer	Quantity
1	BR1	600 V/1 A	S1VBA60		1
2	C1, C2	10 μF/400 V	EEUEE2G100	Panasonic	2
3	C3	10 nF/50 V/0603			1
4	C4	100 nF/50 V/0603			1
5	C5	22 μF/50 V	50YXJ22MTA5X11	Rubycon	1
6	C6	470 pF/630 V/1206			1
7	C7	1 nF/50 V/0603			1
8	C8	220 nF/50 V/0603			1
9	C9, C10	Not loaded			
10	C11	470 μF/16 V	16ZLH470MEFC8X11.5	Rubycon	1
11	C12	220 μF/16 V	16ZLH220MEFC6.3X11	Rubycon	1
12	C13, C14	330 μF/10 V	10ZLJ330M6.3X11	Rubycon	2
13	CY1	1 nF/500 V	VY1102M35Y5UG63V0		1
14	D1	0.2 A/200 V	BAV20		1
15	D2	1 A/1 kV	US1K-13-F		1
16	D3	3 A/150 V	STPS3150RL		1
17	D4	3 A/60 V	MBR360G		1
18	F1	2 A/300 V	SS-5H-2A-APH	Eaton Bussmann	1
19	IC1	700 V/4.7 Ω	ICE5AR4770BZS	Infineon	1
20	IC2	Optocoupler	SFH617A-3		1
21	IC3	2.5 V ref.	TL431AQDBZRQ1		1
22	L1	1 mH/0.3 A	744 772 102	Wurth Electronics	1
23	L2, L3	2.2 μH/4.3 A	744 746 202 2	Wurth Electronics	2
24	NTC1	5 Ω/9.5 mm	B57235S0509M000	трк	1
25	R1A, R1B	3 Ω/0.25 W/1 percent/1206	ERJ8RQF3R0V	Panasonic	2
26	R2A, R2B, R2C	15 MΩ/0.33 W/1 percent/1206			3
27	R4, R5	4.7 Ω /0.1 W/5 percent/0603			2
28	R6	240 kΩ/0.25 W/5 percent/1206	ERA8AEB244V	Panasonic	1
29	R7	330 Ω/0.25 W/5 percent/1206			1
30	R8	2.7 kΩ/0.1 W/5 percent/0603			1
31	R9	18 kΩ/0.1 W/1 percent/0603			1
32	R10, R12	12 kΩ/0.1 W/1 percent/0603			2
33	R16	27 kΩ/0.25 W/5 percent/1206			1
34	R3, R11, R13, R14, R15, R17	Not loaded			
35	T1	710 μH/EE16	750343739	Wurth Electronics	1
36	VAR1	Varistor, 0.3 W/320 V	ERZE07A511	Panasonic	1
37	ZD1	22 V/500mW	MMSZ5251BT1G		1
38	X1	Connector	691102710002	Wurth Electronics	1
39	X2, X3	Connector	691412120002B	Wurth Electronics	2
40	JP1, JP3	Jumper			2
40	JP2	Insulated jumper			1
		85 mm × 35 mm (L × W), single			
42	PCB	layer, 2 oz, FR-4			1

Transformer specification

8 Transformer specification

(Refer to Appendix A for transformer design and Appendix B for WE transformer specification.)

Wurth Electronics core part number: 150-2182 (EE16/8/5)

Wurth Electronics bobbin: 070-5280 (9-pin EXT, THT, horizontal version)

Primary inductance: Lp = 710 μ H (±10 percent), measured between pin 1 and pin 2

Manufacturer and part number: Wurth Electronics Midcom (750343739)

Transformer structure

Measurement data and graphs

9 Measurement data and graphs

Table 5Electrical measurements

Input (V AC/Hz)	Pin (W)	12 V (V)	l _{out_12} v (mA)	5 V (V)	l _{out_5v} (mA)	12 V _{RPP} (mV)	5 V _{RPP} (mV)	Ро ит (W)	Efficiency (percent)	Average efficiency (percent)	OLP pin (W)	OLP l _{out_12V} (fixed 5 V at 0.5 A) (A)	
	0.023	12.56	0	4.99	0	17	23						
	1.022	12.40	44.8	4.99	50	15	13	0.81	78.81				
85 V AC/	2.470	12.43	112.3	4.99	125.1	17	17	2.02	81.79				
60 Hz	4.898	12.45	224.8	4.99	250.1	18	18	4.05	82.61		13.73	0.694	
	7.367	12.46	337.2	4.99	375.2	22	18	6.07	82.46	82.20			
	9.902	12.49	449.6	4.99	500.1	25	22	8.11	81.93				
	0.024	12.56	0	4.99	0	18	25						
	1.025	12.40	44.8	4.99	50	15	15	0.81	78.54				
115 V AC/	2.463	12.43	112.3	4.99	125.1	17	17	2.02	82.05			10 57	0 70 0
60 Hz [′]	4.864	12.45	224.8	4.99	250.1	18	17	4.05	83.19		13.57	0.706	
	7.298	12.46	337.2	4.99	375.2	20	18	6.07	83.23	82.90			
	9.757	12.49	449.6	4.99	500.1	23	20	8.11	83.13				
	0.027	12.58	0	4.99	0	18	27						
	1.038	12.41	44.8	4.99	50	15	15	0.81	77.61				
230 V AC/	2.524	12.43	112.3	4.99	125.1	17	18	2.02	80.06				
50 Hz	4.941	12.44	224.8	4.99	250.1	17	18	4.05	81.87		13.78	0.734	
	7.313	12.45	337.2	4.99	375.2	22	20	6.07	83.03	82.10			
	9.715	12.48	449.6	4.99	500.1	27	22	8.11	83.45				
	0.029	12.58	0	4.99	0	17	27						
	1.076	12.40	44.8	4.99	50	15	15	0.81	74.83				
265 V AC/	2.550	12.43	112.3	4.99	125.1	17	18	2.02	79.23				
50 Hz	4.980	12.44	224.8	4.99	250.1	20	18	4.04	81.21		14.12	0.756	
	7.381	12.45	337.2	4.99	375.2	23	18	6.07	82.26	81.40			
	9.779	12.48	449.6	4.99	500.1	23	20	8.11	82.90				

100 percent load condition: +5 V/500 mA and +12 V/450 mA

75 percent load condition: +5 V/375 mA and +12 V/337 mA

50 percent load condition: +5 V/250 mA and +12 V/225 mA

25 percent load condition: +5 V/125 mA and +12 V/112 mA

Measurement data and graphs

9.1 Efficiency

Efficiency vs AC-line input voltage

Figure 10 Efficiency vs load

Measurement data and graphs

9.2 Standby power

Figure 11 Standby power at no load vs AC-line input voltage (measured by Yokogawa WT210 power meter – integration mode)

Measurement data and graphs

9.4 Load regulation

9.5 Maximum input power

Measurement data and graphs

9.6 Frequency reduction

Figure 15 Frequency reduction curve vs output load

9.7 ESD immunity (EN 61000-4-2)

This system was subjected to a ±10 kV ESD test according to EN 61000-4-2 special for both contact and air discharge. A test failure was defined as non-recoverable.

• Air discharge: pass ±10 kV; contact discharge: pass ± 10 kV.

Table 6System ESD test result

.	500.	I	Number	Testussilt	
Description	ESD test	Level	+V _{out}	-V _{OUT}	Test result
	Contact	+10 kV	10	10	PASS
115 V AC, 8 W	Contact	-10 kV	10	10	PASS
(12 V/26.7 Ω, 5 V/10 Ω)	Air	+10 kV	10	10	PASS
		-10 kV	10	10	PASS
	Contact	+10 kV	10	10	PASS
230 V AC, 8 W (12 V/26.7 Ω, 5 V/10 Ω)		-10 kV	10	10	PASS
	Air	+10 kV	10	10	PASS
		-10 kV	10	10	PASS

9.8 Surge immunity (EN 61000-4-5)

This system was subjected to a surge immunity test (±2 kV DM and ±4 kV CM) according to EN 61000-4-5. A test failure was defined as a non-recoverable.

• DM: pass ±2 kV; CM: pass ±4 kV.

Measurement data and graphs

Table 7System surge immunity test result

Description	Test		Level		umbe	Tost result		
Description	Test	L¢			90°	180°	270°	Test result
	DM	+2 kV	$L \rightarrow N$	3	3	3	3	PASS
	DM	-2 kV	$L \rightarrow N$	3	3	3	3	PASS
115 V AC, 8 W		+4 kV	$L \rightarrow G$	3	3	3	3	PASS
(12 V/26.7 Ω, 5 V/10 Ω)	СМ	+4 kV	$N \to G$	3	3	3	3	PASS
	СМ	-4 kV	$L \rightarrow G$	3	3	3	3	PASS
		-4 kV	$N \to G$	3	3	3	3	PASS
	DM	+2 kV	$L \rightarrow N$	3	3	3	3	PASS
		-2 kV	$L \rightarrow N$	3	3	3	3	PASS
230 V AC, 8 W		+4 kV	$L \rightarrow G$	3	3	3	3	PASS
(12 V/26.7 Ω, 5 V/10 Ω)	CM	+4 kV	$N \to G$	3	3	3	3	PASS
	СМ	-4 kV	L→G	3	3	3	3	PASS
		-4 kV	$N \to G$	3	3	3	3	PASS

9.9 Conducted emissions (EN 55022 class B)

The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN 55022 (CISPR 22) class B. The reference board is tested at full load (7.9 W) using resistive load at input voltage of 115 V AC and 230 V AC.

Pass conducted emissions EN 55022 (CISPR 22) class B with 13.6 dB margin at low-line (115 V AC) and 10.4 dB margin at high-line (230 V AC).

Measurement data and graphs

Figure 17 Conducted emissions (neutral) at 115 V AC and full load

Conducted emissions (line) at 230 V AC and full load

Measurement data and graphs

Figure 19 Conducted emissions (neutral) at 230 V AC and full load

9.10 Thermal measurement

The thermal test of the open-frame reference board was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C. The measurements were taken after one hour running at full load.

Table 8	Hottest components on the reference board

No.	Components	Temperature at 85 V AC (°C)	Temperature at 265 V AC (°C)
1	D3 (+12 V diode)	55.6	54.3
2	T1 (transformer)	56.8	62.5
3	IC1 (ICE5AR4770BZS)	54.3	52.6

Figure 20

) Top-side infrared thermal image of REF_5AR4770BZS at 85 V AC (left) and 265 V AC (right) full load

Waveforms and oscilloscope plots

10 Waveforms and oscilloscope plots

All waveforms and scope plots were recorded with a Teledyne LeCroy 606Zi oscilloscope.

10.1 Start-up at full load

10.2 Soft-start at full load

Figure 22 Soft-start

Waveforms and oscilloscope plots

10.3 Drain and CS voltage at full load

Figure 23 Drain and CS voltage

10.4 Frequency jittering at full load

Waveforms and oscilloscope plots

- 10.5
- Load transient response (dynamic load from 10 percent to 100 percent)

Figure 25 Load transient response with +12 V output load change from 10 percent to 100 percent at 0.4
 A/μs slew rate, 100 Hz. +5 V output is fixed at 500 mA load. Probe terminals are decoupled with a 1 μF electrolytic capacitor and a 0.1 μF ceramic capacitor. Oscilloscope is BW filter limited to 20 MHz.

10.6 Output ripple voltage at full load

Figure 26Output ripple voltage at full load. Probe terminals are decoupled with a 1 μF electrolytic
capacitor and a 0.1 μF ceramic capacitor. Oscilloscope is BW filter limited to 20 MHz.

Waveforms and oscilloscope plots

10.7 Output ripple voltage at ABM (0.1 W load)

Figure 27 Output ripple voltage at 0.1 W load (+12 V/6 mA, +5 V/6 mA). Probe terminals are decoupled with a 1 μF electrolytic capacitor and a 0.1 μF ceramic capacitor. Oscilloscope is BW filter limited to 20 MHz.

10.8 Entering ABM

Figure 28 Entering ABM. Output at full load to 0.1 W load (+12 V/6 mA, +5 V/6 mA).

Waveforms and oscilloscope plots

Figure 29 During ABM. Output at 0.1 W load (+12 V/6 mA, +5V/6 mA).

10.10 Leaving ABM

Figure 30 Leaving ABM. Output at 0.1 W load (+12 V/6 mA, +5 V/6 mA) to full load.

Waveforms and oscilloscope plots

10.11

Vcc OVP/UVP

Figure 31 V_{cc} OVP/UVP

10.12 Over-load protection

Figure 32 Over-load protection. Load increased at +12 V to 2 A to trigger protection.

1								
	rial star atom friss friss Shite factor	a a der	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
<u>0</u>								
0 			8 N.N. 1973 8 1993 8 1997 9					
500 Video 100 Vi	tous 40	Unit 100000 00106 Mich Stop 681V 500 Wiek 500 Wiek 500 Wiek 100 Viek		These 40.0 rml (Engger B330				
C1 (yellow)	: V _{cc} pin voltage	C1 (yellow)	: V _{cc} pin voltage	16 MS 88 MS/s Edge Positive				
C4 (green)	: Bus voltage	C4 (green)	: Bus voltage					
85 V AC. V _{cc} cł	harging current at ~ 280 μ A (I _{VCC_Charge}	₂₁). 265 V AC. V _{cc} o	265 V AC. V _{cc} charging current at ~ 526 μ A (I _{VCC_Charge1}).					
IC power cons	sumption is ~ 34 mW.	IC power cons	IC power consumption is ~ 197 mW.					
Figure 22	V shout to CND V shouging ou	weat the accurred with						

Vcc short-to-GND

10.13

Figure 33 V_{cc} short-to-GND. V_{cc} charging current measured with a digital multimeter.

Appendix A: Transformer design and spreadsheet [3]

11 Appendix A: Transformer design and spreadsheet [3]

Calculation tool for flyback converter using fifth-generation fixed-frequency CoolSET™ (version 1.0)

Project	85 ~ 265 V AC dual-output 8 W isolated flyback power supply
Application	Auxiliary power supply for air-conditioner
CoolSET™	ICE5AR4770BZS
Date	6 Feb 18
Revision	V 1.0

Notes:

Enter design variables in orangecolored cells Read design results in green coloured cells

	Description	Eq. #	Parameter	Unit	Value
	out, CoolSET™ specs				
Line input	Minimum AC in anti-self-		L V AC	D.O.	05
Input	Minimum AC input voltage		V AC _{Min}	[V]	85
Input	Maximum AC input voltage		V AC _{Max}	[V]	265
Input	Line frequency		f _{AC}	[Hz]	60
Input	Bus capacitor DC ripple voltage		V DC _{Ripple}	[V]	37
Output 1 s			N	D/J	10
Input	Output voltage 1		V _{Out1}	[V]	12
Input	Output current 1		l _{Out1}	[A]	0.45
Input	Forward voltage of output diode 1		V _{FOut1}	[V]	0.6
Input	Output ripple voltage 1		V _{OutRipple1}	[V]	100
Result	Output power 1	Eq. 001	Pout1	[W]	5.4
Result	Output load weight 1	Eq. 004	K _{L1}		0.68
Output 2 s				D.C.	-
Input	Output voltage 2		V _{Out2}	[V]	5
Input	Output current 2		I _{Out2}	[A]	0.5
Input	Forward voltage of output diode 2		V _{FOut2}	[V]	0.2
Input	Output ripple voltage 2		V _{OutRipple2}	[V]	100
Result	Output power 2	Eq. 002	P _{Out2}	[W]	2.5
Result	Output load weight 2	Eq. 005	K _{L2}		0.32
Auxiliary			.		
Input	V _{cc} voltage		V _{Vcc}	[V]	14
Input	Forward voltage of V _{CC} diode (D1)		V _{FVcc}	[V]	0.6
Power	Efficiency				0.05
Input	Efficency	Fr 002	η	[\A/]	0.85
Result	Nominal output power	Eq. 003	PoutNom	[W]	7.90
Input Result	Maximum output power for over-load protection	Fa 000	PoutMax	[W]	12.24
	Maximum input power for over-load protection	Eq. 006	P _{InMax}	[W]	
Input Controller/	Minimum output power		PoutMin	[W]	2
controller	Controller/CoolSET [™]				ICE5AR4770BZ
Input	Switching frequency		fs	[Hz]	100000
Input	Targeted max. drain source voltage		V _{DSMax}	[V]	700
Input	Max. ambient temperature		V DSMax T _{amax}	[v] [°C]	50
	ge and input capacitor		I amax		
Diode brid					
Input	Power factor		cosφ		0.6
Result	Maximum AC input current	Eq. 007		[A]	0.240

Peak voltage at V AC_{Max}

Result

Eq. 008

V DC_{MaxPk}

[V]

374.77

Appendix A: Transformer design and spreadsheet [3]

Input	capacitor

Result	Peak voltage at V AC _{Min}	Eq. 009	V DC _{MinPk}	[V]	120.21
Result	Selected minimum DC input voltage	Eq. 010	V DC _{MinSet}	[V]	83.21
Result	Discharging time at each half-line cycle	Eq. 011	TD	[ms]	6.19
Result	Required energy at discharging time of input capacitor	Eq. 012	Win	[Ws]	0.08
Result	Calculated input capacitor	Eq. 013	C _{INCal}	[µF]	20.14
Input	Select input capacitor (C1 + C2)		C _{in}	[µF]	20
Result	Calculated minimum DC input voltage	Eq. 015	V DC _{Min}	[V]	82.89

Transformer design

Drain voltage and current waveform

Primary inductance and winding currents						
Input	Reflection voltage		V _{RSET}	[V]	84	
Result	Maximum duty cycle	Eq. 016	D _{Max}		0.50	
Input	Select current ripple factor		K _{RF}		1	
Result	Primary inductance	Eq. 017	Lp	[H]	7.11E-04	
Result	Primary turn-on average current	Eq. 018	I _{AV}	[A]	0.29	
Result	Primary peak-to-peak current	Eq. 019	ΔI	[A]	0.59	
Result	Primary peak current	Eq. 020	I _{PMax}	[A]	0.59	
Result	Primary valley current	Eq. 021	Ivalley	[A]	0.00	
Result	Primary RMS current	Eq. 022	IPRMS	[A]	0.240	

Select core type

Select core L	ype				
Input	Select core type				10
Result	Core type				EE16/8/5
Result	Core material				TP4A (TDG)
Result	Maximum flux density		B _{Max}	[T]	0.3
Result	Cross-sectional area		Ae	[mm ²]	20.1
Result	Bobbin width		BW	[mm]	9.5
Result	Winding cross-section		A _N	[mm ²]	22.3
Result	Average length of turn		lN	[mm]	34
Winding calc	ulation	•			
Result	Calculated minimum number of primary turns	Eq. 023	N _{PCal}	Turns	69.19
Input	Select number of primary turns		Np	Turns	80

Calculated number of secondary 1 turns

Select number of secondary 1 turns

Result

Input

Eq. 024

 $\mathsf{N}_{\mathsf{S1Cal}}$

 N_{S1}

Turns

Turns

12.00

12

Appendix A: Transformer design and spreadsheet [3]

	A: Transformer design and spreadsheet [3]			_	
Result	Calculated number of secondary 2 turns	Eq. 025	N _{S2Cal}	Turns	4.95
Input	Select number of secondary 2 turns		N _{S2}	Turns	5
Result	Calculated number of auxiliary turns	Eq. 026	NvccCal	Turns	13.90
Input	Select number of auxiliary turns		N _{Vcc}	Turns	14
Result	Calculated V _{CC} voltage	Eq. 027	VvccCal	[V]	14.10
Post calcula		F~ 020	N		C C7
Result	Primary to secondary 1 turns ratio	Eq. 028	N _{PS1}		6.67
Result	Primary to secondary 2 turns ratio	Eq. 029	N _{PS2}	D.C.	16.00
Result	Post calculated reflected voltage	Eq. 030	V _{RPost}	[V]	84.00
Result	Post calculated maximum duty cycle	Eq. 031	D _{MaxPost}		0.50
Result	Duty cycle prime	Eq. 032	D _{Max} '	[77]	0.50
Result	Actual flux density	Eq. 033	B _{MaxAct}	[T]	0.259
Result	Maximum DC input voltage for CCM operation	Eq. 034	V DC _{maxCCM}	[V]	82.89
I ransforme	er winding design Margin according to safety standard		М	[mm]	0
<u> </u>	Copper space factor		fcu	[mm]	0.4
Input Result	Effective bobbin window	Eq. 035	BWE	[mm]	9.5
Result	Effective winding cross-section	Eq. 035		[mm ²]	22.3
Input	Primary winding area factor	Lq. 030	A _{Ne}	fuur 1	0.50
Input	Secondary 1 winding area factor				0.30
Input	Secondary 2 winding area factor		AF _{NS1}		0.30
· ·	Auxiliary winding area factor				0.15
Input Primary wir			AFNVcc		0.05
Result	Calculated wire copper cross-sectional area	Eq. 037	A _{PCal}	[mm ²]	0.0558
Result	Calculated maximum wire size	Eq. 038	AWG _{PCal}		30
Input	Select wire size	Eq. 000	AWGP		33
Input	Select number of parallel wire		nw _P		1
Result	Wire copper diameter	Eq. 039	d _P	[mm]	0.18
Result	Wire copper cross-sectional area	Eq. 040	AP	[mm ²]	0.0259
Result	Wire current density	Eq. 041	SP	[A/mm ²]	9.29
Input	Insulation thickness	Eq. 041	INS _P	[mm]	0.04
Result	Turns per layer	Eq. 042	NLP	Turns/layer	36
Result	Number of layers	Eq. 043	Lnp	Layers	3
Secondary		Eq. 043	LUP	Layers	5
Result	Calculated wire copper cross-sectional area	Eq. 044	Δ.	[mam2]	
Result				Imm-I	0.2230
	Calculated maximum wire size		A _{NS1Cal}	[mm ²]	0.2230
	Calculated maximum wire size	Eq. 045	AWG _{S1Cal}	[mm-]	24
Input	Select wire size		AWG _{S1Cal} AWG _{S1}		24 27
Input Input	Select wire size Select number of parallel wire	Eq. 045	AWG _{S1Cal} AWG _{S1} nw _{S1}		24 27 1
Input Input Result	Select wire size Select number of parallel wire Wire copper diameter	Eq. 045	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1	[mm]	24 27 1 0.3629
Input Input Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area	Eq. 045 Eq. 045 Eq. 046 Eq. 047	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1 As1	[mm] [mm ²]	24 27 1 0.3629 0.1034
Input Input Result Result Result	Select wire size Select number of parallel wire Wire copper diameter	Eq. 045 Eq. 045 Eq. 046 Eq. 046 Eq. 048	AWGs1Cal AWGs1 nWs1 ds1 As1 Is1Max	[mm] [mm2] [A]	24 27 1 0.3629 0.1034 2.6728
Input Input Result Result Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current	Eq. 045 Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049	AWG _{S1Cal} AWG _{S1} nWs1 ds1 As1 Is1Max Is1rMs	[mm] [mm2] [A] [A]	24 27 1 0.3629 0.1034 2.6728 1.0875
Input Input Result Result Result Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density	Eq. 045 Eq. 045 Eq. 046 Eq. 046 Eq. 048	AWGs1Cal AWGs1 nws1 ds1 As1 Is1Max Is1RMS Ss1	[mm] [mm ²] [A] [A] [A] [A/mm ²]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51
Input Input Result Result Result Result Result Input	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness	Eq. 045 Eq. 046 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1 As1 Is1Max Is1RMS Ss1 INNS _{S1}	[mm] [mm ²] [A] [A] [A/mm ²] [Amm ²]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04
Input Input Result Result Result Result Result Input Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer	Eq. 045 Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051	AWG _{S1Cal} AWG _{S1} nWs1 ds1 JS1 As1 Is1Max Is1RMS Ss1 INSS1 NLS1	Imm] Imm] Imm2] Imm2] Imm3] Imm3]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12
Input Input Result Result Result Result Input Result Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers	Eq. 045 Eq. 046 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1 As1 Is1Max Is1RMS Ss1 INNS _{S1}	[mm] [mm ²] [A] [A] [A/mm ²] [Amm ²]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04
Input Input Result Result Result Result Input Result Result Secondary	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers	Eq. 045 Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 052	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1 As1 Is1Max Is1sms Ss1 INSs1 NLs1 Lns1	Imm] [mm] [mm²] [A] [A] [A] [A] [A] [Amm²] [Amm²] Layers	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12 1
Input Input Result Result Result Result Result Result Secondary Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers 2 winding Calculated wire copper cross-sectional area	Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 053	AWG _{S1Cal} AWG _{S1} nw _{S1} ds1 As1 Is1Max Is1Max Is1RMS Ss1 INS _{S1} NL _{S1} Ln _{S1}	Imm] Imm] Imm2] Imm2] Imm3] Imm3]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12
Input Input Result Result Result Result Result Result Secondary Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers 2winding Calculated wire copper cross-sectional area Calculated maximum wire size	Eq. 045 Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 052	AWG _{S1Cal} AWG _{S1} dS1 dS1 S1 S1 SS1 IS1MAX SS1 INSS1 INSS1 LNS1 LNS1 ANS2Cal AWGS2Cal	Imm] [mm] [mm²] [A] [A] [A] [A] [A] [Amm²] [Amm²] Layers	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12 1 1 0.2676 23
Input Input Result Result Result Result Result Result Secondary Result Result Input	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers 2winding Calculated wire copper cross-sectional area Calculated maximum wire size Select wire size	Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 053	AWG _{S1Cal} AWG _{S1} n W _{S1} d _{S1} A _{S1} I _{S1MAX} I _{S1MAX} I _{S1MAX} S _{S1} INS _{S1} NL _{S1} L _{NS1} ANS _{2Cal} AWG _{S2Cal} AWG _{S2}	Imm] [mm] [mm²] [A] [A] [A] [A] [A] [Amm²] [Amm²] Layers	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12 1 1 0.2676 23 23
Input Input Result Result Result Result Result Result Result Result Result Input Input	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers 2winding Calculated wire copper cross-sectional area Calculated maximum wire size Select wire size Select number of parallel wire	Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 052 Eq. 054	AWGs1Cal AWGs1 nws1 ds1 As1 Is1Max Is1Max Is1Max LS1 LS1 AWS1 Aws1 Ss1 UNS1 ANS2Cal AWGs2Cal AWGs2 nWs2	[mm] [mm2] [A] [A] [A] [A/mm2] [A/mm2] [mm] Turns/layer Layers [mm2]	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12 1 1 0.2676 23 23 27 2
Input Input Result Result Result Result Result Result Result Result Result Input Input Result Result Result Result Result	Select wire size Select number of parallel wire Wire copper diameter Wire copper cross-sectional area Peak current RMS current Wire current density Insulation thickness Turns per layer Number of layers 2winding Calculated wire copper cross-sectional area Calculated maximum wire size Select wire size	Eq. 045 Eq. 046 Eq. 047 Eq. 048 Eq. 049 Eq. 050 Eq. 051 Eq. 053	AWG _{S1Cal} AWG _{S1} n W _{S1} d _{S1} A _{S1} I _{S1MAX} I _{S1MAX} I _{S1MAX} S _{S1} INS _{S1} NL _{S1} L _{NS1} ANS _{2Cal} AWG _{S2Cal} AWG _{S2}	Imm] [mm] [mm²] [A] [A] [A] [A] [Amm²] [Amm²] Layers	24 27 1 0.3629 0.1034 2.6728 1.0875 10.51 0.04 12 1 1 0.2676 23 23

Appendix A: Transformer design and spreadsheet [3]

Result	RMS current	Eq. 058	I _{S2RMS}	[A]	1.2084
Result	Wire current density	Eq. 059	S _{S2}	[A/mm ²]	5.84
Input	Insulation thickness	Eq. 055	INS ₅₂	[///////]	0.04
Result	Turns per layer	Eq. 060	NL _{S2}	Turns/layer	10
Result	Number of layers	Eq. 061	Ln _{s2}	Layers	10
	er and CS resistor	Lq. 001	L1152	Layers	_
RCD clamp					
Input	Leakage inductance percentage		L _{LK%}	[Percent]	2.5
Result	Leakage inductance	Eq. 062	L _{LK}	[H]	1.78E-05
Result	Clamping voltage	Eq. 063	V _{Clamp}	[V]	241.23
Result	Calculated clamping capacitor	Eq. 064	CClampCal	[nF]	0.08
Input	Select clamping capacitor value (C6)		C _{clamp}	[nF]	0.47
Result	Calculated clamping resistor	Eq. 065	R _{clampCal}	[kΩ]	322.7
Input	Select clamping resistor value (R6)		R _{clamp}	[kΩ]	240
CS resistor					
Input	CS threshold value from datasheet		V _{CS_N}	[V]	0.8
Result	Calculated CS resistor (R1A/R1B)	Eq. 066	R _{sense}	[Ω]	1.36
Ouput recti					
-	1 output rectifier			I I	
Result	Diode reverse voltage	Eq. 067	V _{RDiode1}	[V]	68.21
Result	Diode RMS current		I _{S 1RMS}	[A]	1.09
Input	Max. voltage undershoot at output capacitor		ΔV _{Out1}	[V]	0.3
Input	Number of clock periods		n _{cp1}		20
Result	Output capacitor ripple current	Eq. 068	I _{Ripple1}	[A]	0.99
Result	Calculated minimum output capacitor	Eq. 069	C _{Out1Cal}	[μF]	300
Input	Select output capacitor value (C11)		C _{Out1}	[μF]	470
Input	$ESR\left(Z_{max}\right)$ value from datasheet at 100 kHz		R _{esr1}	[Ω]	0.032
Input	Number of parallel capacitors		nc _{COut1}		1
Result	Zero frequency of output capacitor	Eq. 070	f _{ZCOut1}	[Khz]	10.58
Result	First-stage ripple voltage	Eq. 071	V _{Ripple1}	[V]	0.085530
Input	Select LC filter inductor value (L2)		L _{out1}	[μH]	2.2
Result	Calculated LC filter capacitor	Eq. 072	CLCCal1	[μF]	102.8
Input	Select LC filter capacitor value (C12)		C _{LC1}	[μF]	220
Result	LC filter frequency	Eq. 073	f _{LC1}	[Khz]	7.23
Result	Second-stage ripple voltage	Eq. 074	V2ndRipple1	[mV]	0.45
Secondary	2 output rectifier		1		
Result	Diode reverse voltage	Eq. 075	V _{RDiode2}	[V]	28.42
Result	Diode RMS current		I _{S2RMS}	[A]	1.21
Input	Max. voltage undershoot at output capacitor		ΔV _{Out1}	[V]	0.3
Input	Number of clock periods		n _{cp2}		20
Result	Output capacitor ripple current	Eq. 076	I _{Ripple2}	[A]	1.10
Result	Calculated minimum output capacitor	Eq. 077	C _{Out2Cal}	[μF]	333
Input	Select output capacitor value (C13)		C _{Out2}	[μF]	330
Input	ESR (Z _{max}) value from datasheet at 100 kHz		R _{ESR2}	[Ω]	0.032
Input	Number of parallel capacitors		nc _{cout2}		1
Result	Zero frequency of output capacitor	Eq. 078	f _{ZCOut2}	[Khz]	15.07
Result	First-stage ripple voltage	Eq. 079	V _{Ripple2}	[V]	0.10
Input	Select LC filter inductor value (L3)		Lout	[µH]	2.2
Result	Calculated LC filter capacitor	Eq. 080	C _{LCCal2}	[μF]	50.7
Input	Select LC filter capacitor value (C14)		C _{LC2}	[μF]	330
Result	LC filter frequency	Eq. 081	f _{LC2}	[Khz]	5.91
Result	Second-stage ripple voltage	Eq. 082	V2ndRipple2	[mV]	0.33

Appendix A: Transformer design and spreadsheet [3]

Result Aux	iliary diode reverse voltage (D1)	Eq. 083	VRDiodeVCC	[V]	79.68
	t-start time from datasheet	-4	t _{ss}	[ms]	12
P.1.	_{Charge3} from datasheet		IVCC_Charge3	[mA]	3
•	on-threshold		Vvcc_on	[V]	16
	off-threshold		Vvcc_or	[V]	10
,	culated V _{cc} capacitor	Eq. 084	Cvcccal	[µF]	6.00
	ect V _{cc} capacitor (C3)	24.001	Cvcc	[μF]	22
· ·	short threshold from datasheet		V _{VCC_SCP}	[µ]	1.1
•				[mA]	0.2
	rt-up time	Eq. 085	VCC_Charge1	[ms]	230.267
Calculation of losse	•	Eq. 065	tStartUp	[IIIS]	230.201
Input diode bridge	53				
	de bridge forward voltage		V _{FBR}	[V]	1
	de bridge power loss	Eq. 086	P _{DIN}	[W]	0.48
Transformer coppe		-4		1.11	
	nary winding copper resistance	Eq. 087	R _{PCu}	[mΩ]	1808.16
	condary 1 winding copper resistance	Eq. 088	Rs1Cu	[mΩ]	67.85
	condary 2 winding copper resistance	Eq. 089	Rs2Cu	[mΩ]	14.13
	nary winding copper loss	Eq. 090	PPCu	[mW]	104.37
	condary 1 winding copper loss	Eq. 091	Psicu	[mW]	80.24
	condary 2 winding copper loss	Eq. 092	P _{S2Cu}	[mW]	20.64
	al transformer copper loss	Eq. 093	Pcu	[W]	0.2052
Output rectifier dia	••	Lq. 055	i cu	۲۷۷	0.2032
	condary 1 diode loss	Eq. 094	P _{Diode1}	[W]	0.65
	condary 2 diode loss	Eq. 095	P _{Diode2}	[W]	0.24
RCD clamper circui		-4	- Diode2	1.11	
_	O clamper loss	Eq. 096	P _{Clamper}	[W]	0.41
CS resistor					
Result CS	resistor loss	Eq. 097	P _{cs}	[W]	0.08
MOSFET					
Input R _{DS0}	n from datasheet		R_{DSON} at $T_A =$	[Ω]	8.73
Input C _{o(e}	n from datasheet		125°C C _{o(er)}	[pF]	3.4
	ernal drain-to-source capacitance		Coleri	[pF]	0
	itch-on loss at minimum AC input voltage	Fa 009			
		Eq. 098	PSONMinAC	[W]	0.0047
	Iduction loss at minimum AC input voltage	Eq. 099	PcondMinAC	[W]	0.5039
	al MOSFET loss at minimum AC input voltage	Eq. 100		[W]	0.5086
	itch-on loss at maximum AC input voltage	Eq. 101	Рзолмахас	[W]	0.0358
	nduction loss at maximum AC input voltage	Eq. 102	PcondMaxAC	[W]	0.1114
	al MOSFET loss at maximum AC input voltage	Eq. 103	P _{MOSMaxAC}	[W]	0.1472
	al MOSFET loss (from minimum or maximum AC)		P _{MOS}	[W]	0.5086
Controller				[ms A]	0.0
	ntroller current consumption	F (0)	I _{VCC_Normal}	[mA]	0.9
	ntroller loss	Eq. 104	Pctrl	[W]	0.0127
Efficiency after loss		Fc 105	D	[14/]	2.50
	al power loss	Eq. 105	P _{Losses}	[W]	2.59
	t calculated efficiency	Eq. 106	η _{Post}	[Percent]	80.05 percen
CoolSET™/MOSFET CoolSET™/MOSFET	-				
	ermal resistance junction-ambient (include copper pour)		Rth Id	[°K/W]	65.0
	nperature rise	Eq. 107	R _{thJA_As} ΔT	[°K]	33.1
	nperature noe	Lq. 107		L L L	55.1

Junction temperature at T_{amax}

Result

Eq. 108

T_{jmax}

83.1

°C

Appendix A: Transformer design and spreadsheet [3]

Output regulation (isolated using TL431 and optocoupler)

Isolated FB circuit

	ulation				
Input	TL431 reference voltage		V _{REF_TL}	[V]	2.5
Input	Weighted regulation factor of Vouti		W ₁		0
Input	Current for voltage divider resistor R26		I _{R26}	[mA]	0.208
Result	Calculated voltage divider resistor	Eq. 111	R26 _{Cal}	[kΩ]	12
Input	Select voltage divider resistor value		R26	[kΩ]	12
Result	Calculated voltage divider resistor	Eq. 112	R25 _{Cal}	[kΩ]	#DIV/0!
Input	Select voltage divider resistor value		R25	[kΩ]	1.00E+30
Result	Calculated voltage divider resistor	Eq. 113	R25A _{Cal}	[kΩ]	12.00
Input	Select voltage divider resistor value		R25A	[kΩ]	12
Optocoupl	er and TL431 bias				
Input	Current Transfer Ratio (CTR)		Gc	[Percent]	200 percent
Input	Optocoupler diode forward voltage		V _{FOpto}	[V]	1.25
Input	Maximum current for optocoupler diode		I _{Fmax}	[mA]	50
Input	Minimum current for TL431		I _{KAmin}	[mA]	1
Result	Calculated minimum optocoupler bias resistance (R7)	Eq. 114	R22 _{Cal}	[kΩ]	0.0250
Input	Select optocoupler bias resistor (R7)		R22	[kΩ]	0.33
Input	FB pull-up reference voltage V _{REF} from datasheet		V _{REF}	[V]	3.3
Input	V _{FB_OLP} from datasheet		V _{FB_OLP}	[V]	2.75
Input	R _{FB} from datasheet		R _{FB}	[kΩ]	15
Result	Calculated maximum TL431 bias resistance (R8)	Eq. 115	R23 _{Cal}	[kΩ]	1.26
Input	Selected TL431 bias resistor (R8)		R23	[kΩ]	1.2
Regulation	loop				
Result	FB transfer characteristic	Eq. 116	K _{FB}		90.91
Result Result		Eq. 116 Eq. 117	K _{FB} G _{FB}	[dB]	90.91 39.17
	FB transfer characteristic		+	[dB]	
Result	FB transfer characteristic Gain of FB transfer characteristic	Eq. 117	G _{FB}	[dB] [dB]	39.17
Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic	Eq. 117 Eq. 118	G _{FB} K _{VD}		39.17 0.208333
Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic	Eq. 117 Eq. 118 Eq. 119	G _{FB} K _{VD} G _{VD}	[dB]	39.17 0.208333 -13.62
Result Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole	Eq. 117 Eq. 118 Eq. 119 Eq. 120	G _{FB} Kvd Gvd R _{LH}	[dB] [Ω]	39.17 0.208333 -13.62 13.85
Result Result Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole Resistance at minimum load pole Poles of power stage at maximum load pole	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122	GFB Kvd Gvd RLH RLL foh	[dB] [Ω] [Ω] [Hz]	39.17 0.208333 -13.62 13.85 72.00
Result Result Result Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole Resistance at minimum load pole Poles of power stage at maximum load pole Poles of power stage at minimum load pole	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 122 Eq. 123	GFB Kvd Gvd RLH RLL foH foL	[dB] [Ω] [Ω] [Hz] [Hz]	39.17 0.208333 -13.62 13.85 72.00 48.91
Result Result Result Result Result Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole Resistance at minimum load pole Poles of power stage at maximum load pole Poles of power stage at minimum load pole Zero frequency of the compensation network	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122	GFB Kvd Gvd RLH RLL foH foL foM	[dB] [Ω] [Ω] [Hz]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41
Result Result Result Result Result Result Result	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole Resistance at minimum load pole Poles of power stage at maximum load pole Poles of power stage at minimum load pole Zero frequency of the compensation network Zero dB crossover frequency	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 122 Eq. 123	GFB Kvo Gvd RLH RLL foH foL foM fg	[dB] [Ω] [Ω] [Hz] [Hz] [Hz]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45
Result Result Result Result Result Result Result Input	FB transfer characteristic Gain of FB transfer characteristic Voltage divider transfer characteristic Gain of voltage divider transfer characteristic Resistance at maximum load pole Resistance at minimum load pole Poles of power stage at maximum load pole Poles of power stage at minimum load pole Zero frequency of the compensation network	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 122 Eq. 123	GFB KvD GvD RLH RLL foH foL foM fg Av	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [KHz]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8
Result Result Result Result Result Result Result Input Input	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load poleResistance at minimum load polePoles of power stage at maximum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedance	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 124 Eq. 117	GFB KvD GvD RLH RLL foH foL foM fg Av ZPWM	[dB] [Ω] [Ω] [Hz] [Hz] [Hz]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03
Result Result Result Result Result Result Input Result Result Result	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load poleResistance at minimum load polePoles of power stage at maximum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedancePower stage at crossover frequency	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 117 Eq. 118	GFB Kvd Gvd RLH RLL foH foL foM fg Av ZPWM FPWR(fg)	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [kHz] [V/A]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03 3.5 0.036
Result Result Result Result Result Result Result Input Result Result Result	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load poleResistance at minimum load polePoles of power stage at maximum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedancePower stage at crossover frequencyGain of power stage at crossover frequency	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 124 Eq. 117 Eq. 118 Eq. 119	GFB KVD GVD RLH RLL foH foL foM ZPWM [FPWR(fg)] GPWR(fg)	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [KHz] [V/A] [V/A]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03 3.5 0.036 -28.84
Result Result Result Result Result Result Result Input Result Result Result	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load poleResistance at minimum load polePoles of power stage at maximum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedancePower stage at crossover frequency	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 124 Eq. 117 Eq. 118 Eq. 119 Eq. 120	G _{FB} K _{VD} G _{VD} R _{LH} R _{LL} f _{OH} f _{OL} f _{OM} fg A _V Z _{PWM} F _{PwR} (fg) G _{PWR} (fg) G _S (ω)	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [kHz] [V/A] [V/A] [dB] [dB]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03 3.5 0.036
Result Result Result Result Result Result Result Input Result Result Result Result Result	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load polePoles of power stage at maximum load polePoles of power stage at minimum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedancePower stage at crossover frequencyGain of power stage at crossover frequencyGain of the regulation loop at fg	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121	GFB KVD GVD RLH RLL foH foL foM ZPWM [FPWR(fg)] GPWR(fg)	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [KHz] [V/A] [V/A]	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03 3.5 0.036 -28.84 -3.292
Result Result Result Result Result Result Result Input Result Result Result Result Result Result	FB transfer characteristicGain of FB transfer characteristicVoltage divider transfer characteristicGain of voltage divider transfer characteristicResistance at maximum load poleResistance at minimum load polePoles of power stage at maximum load polePoles of power stage at minimum load poleZero frequency of the compensation networkZero dB crossover frequencyPWM-OP gain from datasheetTransient impedancePower stage at crossover frequencyGain of power stage at crossover frequencyGain of the regulation loop at fgSeparated components of the regulator	Eq. 117 Eq. 118 Eq. 119 Eq. 120 Eq. 121 Eq. 122 Eq. 123 Eq. 123 Eq. 124 Eq. 124 Eq. 117 Eq. 118 Eq. 119 Eq. 120	GFB KVD GVD RLH RLL foH foL GW PWM FPWR(fg) GS(ω) Gr(ω)	[dB] [Ω] [Ω] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz	39.17 0.208333 -13.62 13.85 72.00 48.91 9.41 21.45 8 2.03 3.5 0.036 -28.84 -3.292 3.292

Appendix A: Transformer design and spreadsheet [3]

Input	Select capacitor value of compensation network (C7)		C26	[nF]	1
Result	Calculated capacitance value of compensation network (C8)	Eq. 124	C25 _{Cal}	[nF]	411.22
Input	Select capacitor value of compensation network (C8)		C25	[nF]	220
inal design		I			
Electrical					
	Minimum AC voltage			[V]	85
	Maximum AC voltage			[V]	265
	Maximum input current			[A]	0.14
	Minimum DC voltage			[V]	83
	Maximum DC voltage			[V]	375
	Maximum output power			[W]	10.4
	Output voltage 1			[V]	12.0
	Output ripple voltage 1			[mV]	0.4
	Output voltage 2			[V]	5.0
	Output ripple voltage 2			[mV]	0.3
	Transformer peak current			[A]	0.59
	Maximum duty cycle				0.50
	Reflected voltage			[V]	84
	Copper losses			[W]	0.21
	MOSFET losses			[W]	0.51
	Sum losses			[W]	2.59
	Efficiency			[Percent]	80.05 percent
ransforme	· · · · ·			[i creene]	ourse percent
ransionne	Core type				EE16/8/5
	Core material				TP4A (TDG)
	Effective core area			[mm ²]	20.1
	Maximum flux density			[mT]	259
	Inductance			[μΗ]	711
					0
	Margin Drimon turne			[mm]	
	Primary turns			Turns	80
	Primary copper wire size			AWG	33
	Number of primary copper wires in parallel			Lavar	
	Primary layers			Layer	3
	Secondary 1 turns (N _{S1})			Turns	12
	Secondary 1 copper wire size			AWG	27
	Number of secondary 1 copper wires in parallel				1
	Secondary 1 layers			Layer	1
	Secondary 2 turns (N _{S2})			Turns	5
	Secondary 2 copper wire size			AWG	27
	Number of secondary 2 copper wires in parallel				2
	Secondary 2 layers			Layer	1
	Auxiliary turns			Turns	14
	Leakage inductance			[μH]	17.8
omponent	s				
	Input capacitor (C1)			[µF]	20.0
	Secondary 1 output capacitor (C152)			[μF]	470.0
	Secondary 1 output capacitor in parallel				1.0
	Secondary 1 LC filter inductor (L151)			[μH]	2.2
	Secondary 1 LC filter capacitor (C153)			[μF]	220.0
	Secondary 2 output capacitor (C102)			[µF]	330.0
	Secondary 2 output capacitor in parallel				1.0
	Secondary 2 LC filter inductor (L101)			[μH]	2.2
	Secondary 2 LC filter capacitor (C103)			[µF]	330.0
	V _{cc} capacitor (C3)			[μF]	22.0
	Sense resistor (R8A, R8B)			[Ω]	1.36
			1		
	Clamping resistor (R4)			[kΩ]	240.0

Appendix A: Transformer design and spreadsheet [3]

Regulation components (isolated using TL431 and optocoupler)

Voltage divider	R26	[kΩ]	12.0
Voltage divider (V _{out1} sense)	R25	[kΩ]	
Voltage divider (V _{out2} sense)	R25A	[kΩ]	12.0
Optocoupler bias resistor	R22	[kΩ]	0.33
TL431 bias resistor	R23	[kΩ]	1.2
Compensation network resistor	R24	[kΩ]	18.0
Compensation network capacitor	C26	[nF]	1.00
Compensation network capacitor	C25	[nF]	220.0

Appendix B: WE transformer specification

12 Appendix B: WE transformer specification

Figure 34 Transformer structure

References

13 References

- [1] ICE5AR4770BZS datasheet, Infineon Technologies AG
- [2] 5th-Generation Fixed-Frequency Design Guide
- [3] Calculation Tool Fixed-Frequency CoolSET[™] Generation 5

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	6 Feb 2018	First release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-02-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference AN_1802_PL83_1802_034431

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331