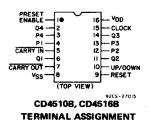


Data sheet acquired from Harris Semiconductor SCHS071B – Revised July 2003

CMOS Presettable Up/Down Counters

High-Voltage Types (20-Volt Rating) CD4510B - - - BCD Type

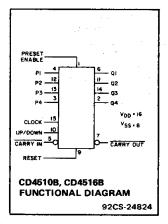
CD4516B --- Binary Type


■ CD4510B Presettable BCD Up/Down Counter and the CD4516 Presettable Binary Up/Down Counter consist of four synchronously clocked D-type flip-flops (with a gating structure to provide T-type flip-flop capability) connected as counters. These counters can be cleared by a high level on the RESET line, and can be preset to any binary number present on the jam inputs by a high level on the PRESET ENABLE line. The CD4510B will count out of non-BCD counter states in a maximum of two clock pulses in the up mode, and a maximum of four clock pulses in the down mode.

If the CARRY-IN input is held low, the counter advances up or down on each positive-going clock transition. Synchronous cascading is accomplished by connecting all clock inputs in parallel and connecting the CARRY-OUT of a less significant stage to the CARRY-IN of a more significant stage.

The CD4510B and CD4516B can be cascaded in the ripple mode by connecting the CARRY-OUT to the clock of the next stage. If the UP/DOWN input changes during a terminal count, the CARRY-OUT must be gated with the clock, and the UP/DOWN input must change while the clock is high. This method provides a clean clock signal to the subsequent counting stage. (See Fig. 15).

These devices are similar to types MC14510 and MC14516.


The CD4510B and CD4516B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4516B types also are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix).

CD4510B, CD4516B Types

Features:

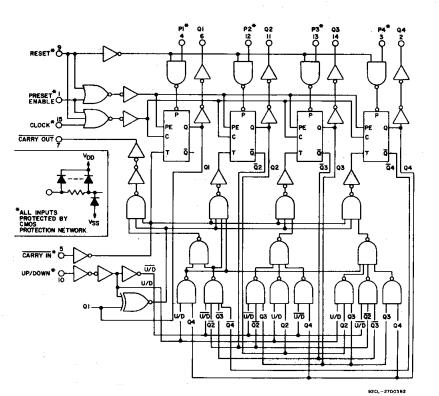
- Medium-speed operation -f_{CL} = 8 MHz typ. at 10 V
- Synchronous internal carry propagation
- Reset and Preset capability
- I00% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD} = 5 V
 2 V at V_{DD} = 10 V
 - 2.5 V at $V_{DD} = 15 V$
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

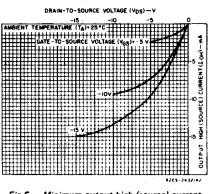
- Up/Down difference counting
- Multistage synchronous counting
- Multistage ripple counting
- Synchronous frequency dividers

OPERATING CONDITIONS AT T_A = 25°C, Unless Otherwise Specified

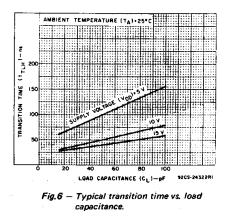
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.


Characteristic	V _{DD}	Min.	Max.	Units
Supply Voltage Range (At T _A = Full Package-Temperature Range)		3	18	v
	5	150		
Clock Pulse Width, t _W	10	75	-	ns
	15	60	-	
	5	-	2	
Clock Input Frequency, f _{CL}	10	-	4	MHz
	15	-	5.5	
	5	150	_	
Preset Enable or Reset Removal Time [®]	10	80	-	ns
	15	60	-	
	5	-	15	
Clock Rise and Fall Time, trCL, trCL*	10 15	-	5 5	μs
	5	130		
Carry-In Setup Time, t _S	10	60	_	ns
	15	45	_	
	5	360		
Up-Down Setup Time, t _S	10	160	_	ns
	15	110	-	
	5	220	_	
Preset Enable or Reset Pulse Width, tw	10	100		ns
	15	75		

•Time required after the falling edge of the reset or preset enable inputs before the rising edge of the clock will trigger the counter (similar to setup time).


*If more than one unit is cascaded in the parallel clocked application, trCL should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the carry output driving stage for the estimated capacitive load.


CD4510B Types


MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For T _A = +100 ^o C to +125 ^o C	. Derate Linearity at 12mW/ ⁰ C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR FOR $T_A =$ FULL PACKAGE-TEMPERATURE RANGE (All Packag	ge Types) 100mW
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Packag OPERATING-TEMPERATURE RANGE (T _A)	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Packag	

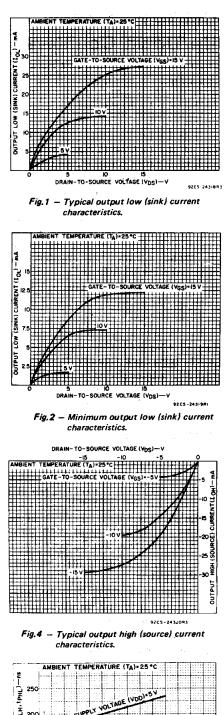
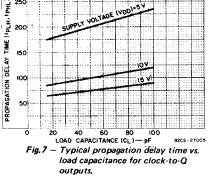


Fig.3 - Logic Diagram for CD4510B.



1

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	COND	DITIO	IS	LIMI	TS AT I	NDICAT	EDTEN	IPERA	TURES	(°C)	UNITS
ISTIC	Vo	VIN	VDD						+25		
	(V)	(V)	(v)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device	-	0,5	5	5	5	150	150	-	0.04	5	
Current,	-	0,10	10	10	10	300	300	-	.0.04	10	
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μA
	-	0,20	20	-100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0,5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	1
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source) Current, IOH Min.	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
	9,5	0,10	10	-1.6	~1.5	-1.1	-0.9	-1.3	-2.6	-	
IOH MIN	13.5	0,15	15	4,2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5		0	.05	_	_	0	0.05	
Low-Level, VOL Max.	-	0,10	10		0	.05		-	0	0.05	
	_	0,15	15		Ō	.05		-	0	0.05	v
Output Voltage:		0,5	5		4	.95		4.95	5	-	
High-Level,	-	0,10	10		9	.95		9,95	10	-	
VOH Min.	-	0,15	15		14	.95		14.95	15	-	
Input Low	0.5, 4.5	-	5		1	.5		-	-	1.5	
Voltage,	1, 9	-	10			3		-	-	3	
VIL Max.	1.5,13.5	-	15			4		-		4	v
Input High	0.5, 4.5	-	5		3	3.5		3.5		_	v
Voltage,	1, 9	-	10			7		7	-	-	
VIH Min.	1.5,13.5	-	15			11		11	-	-	
Input Current IIN Max.	_	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μA

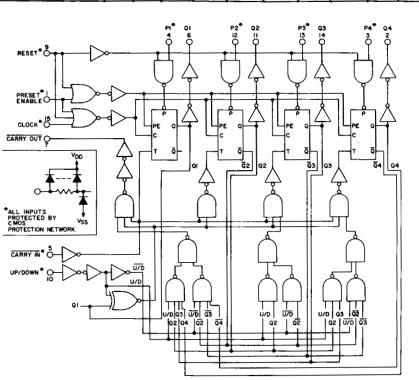
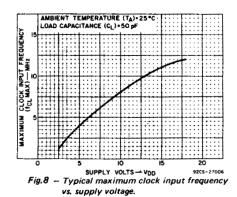
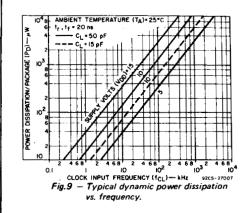




Fig. 16 - Logic Diagram for CD4516B.

3

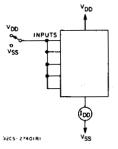
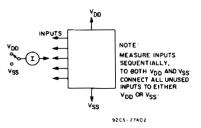
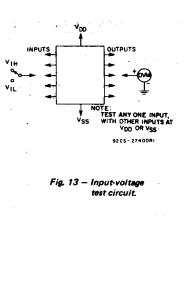
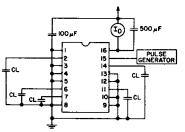


Fig. 11 - Quiescent-device-current test circuit.



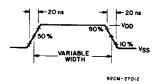

Fig. 12 – Input-current test circuit.

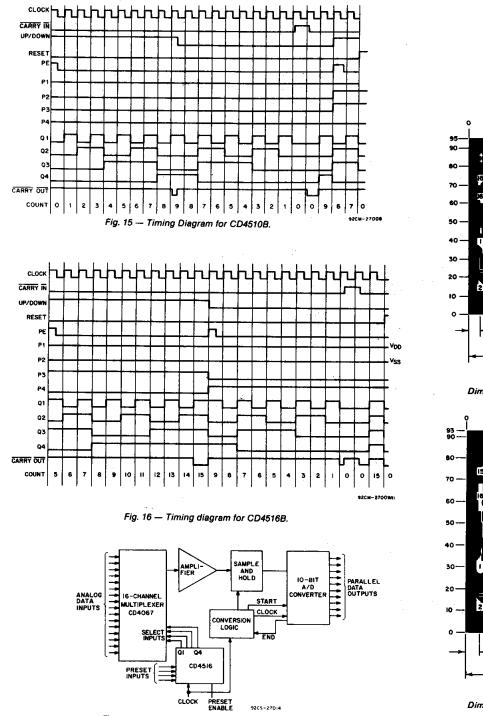

92CL - 2700482

CD4510B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, C_L = 50 pF, Input t_r, t_f = 20 ns, R_L = 200 k Ω

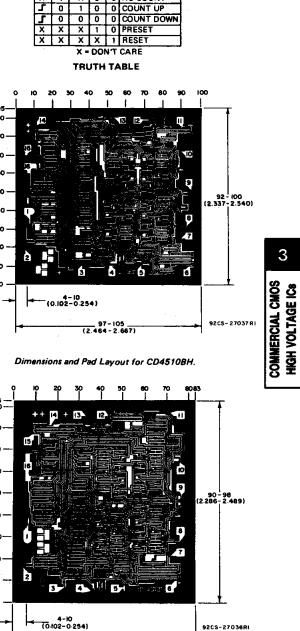
Characteristic	Condit- ions VDD	A	Units		
·	(V)	Min.	Тур.	Max.	
Propagation Delay Time (tpHL, tpLH):					1
	5	- ·	200	400	
Clock-to-Q Output (See Fig. 10)	10	 '	100	200	ns
	15	—	75	150	
	5		210	420	
Preset or Reset-to-Q Output	10	-	105	210	ns
	15	—	80	160	
	5	_	240	480	
Clock-to-Carry Out	10	-	120	240	ns
	15	-	90	180	
	5	-	125	250	
Carry-In-to-Carry Out	10	_	60	120	ns
· · · ·	15	-	50	100	1
	5	_	320	640	1
Preset or Reset-to-Carry Out	10	_	160	320	ns
	15	-	125	250	
	5	_	100	200	
Transition Time (t _{THL} , t _{TLH}) (See Fig. 9)	10		50	100	ns
	15	-	40	80	· .
	5	2	4	-	
Max. Clock Input Frequency (fCL)	10	-4	8	- 1	MHz
· · · · · · · · · · · · · · · · · · ·	15	5.5	11	- 1	· -
Input Capacitance (CIN)	•	-	5	7.5	pF
Set-up Time, ts	5	25	12		†
Preset Enable to Jn	10	10	6	_	
	15	10	5	-	
Hold times, t _H	5	60	30	-	1
Clock to Carry-In	10	30	4		
	15	30	1	—	ns
	5	30	10	_	I .
Clock to Up/Down	10	30	4	—	
	15	30	5	—	
	5	70	35		1
Preset Enable to J _n	10	40	20	-	l
	15	40	20		ł




Fig. 14 - Power-dissipation test circuit and input waveform,

CL CI U/D

'X


1

0 1

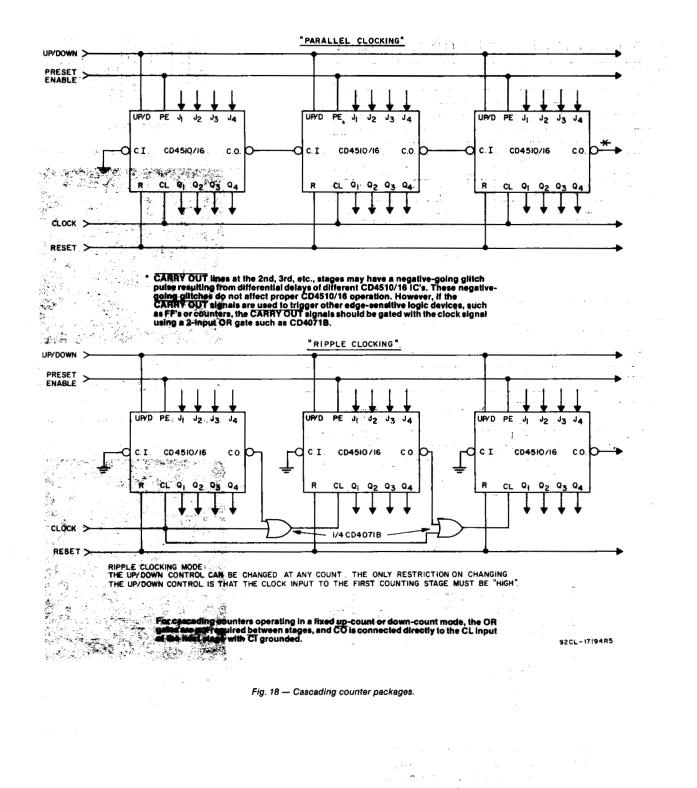
This acquisition system can be operated in the random access mode by jamming in the channel number at the present inputs, or in the sequential mode by clocking the CD4516B.

Fig. 17 — Typical 16-channel, 10-bit data acquisition system.

3

ACTION

0 COUNT UP


X 0 0 NO COUNT

PE R

Dimensions and Pad Layout for CD4516BH.

80-88_____

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

and a second second

ŧ.

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Top-Side Markings	Samples
CD4510BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4510BE	Samples
CD4510BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4510BE	Samples
CD4510BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4510B	Samples
CD4510BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4510B	Samples
CD4510BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4510B	Samples
CD4510BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM510B	Samples
CD4510BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM510B	Samples
CD4510BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM510B	Samples
CD4516BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4516BE	Samples
CD4516BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD4516BE	Samples
CD4516BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4516BF	Samples
CD4516BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD4516BF3A	Samples
CD4516BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4516B	Samples
CD4516BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4516B	Samples
CD4516BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4516B	Samples
CD4516BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples
CD4516BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples

24-Jan-2013

Orderable Device	Status	Package Type	•	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
CD4516BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples
CD4516BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples
CD4516BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples
CD4516BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM516B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4516B, CD4516B-MIL :

www.ti.com

PACKAGE OPTION ADDENDUM

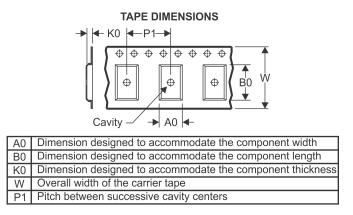
24-Jan-2013

Catalog: CD4516B

• Military: CD4516B-MIL

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

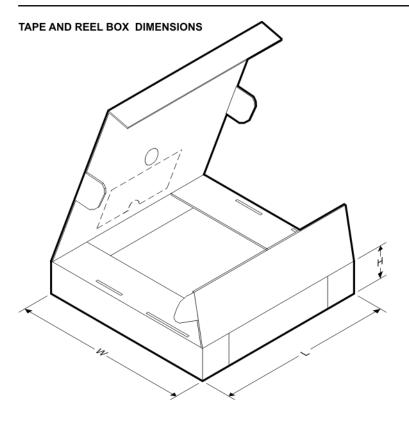

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

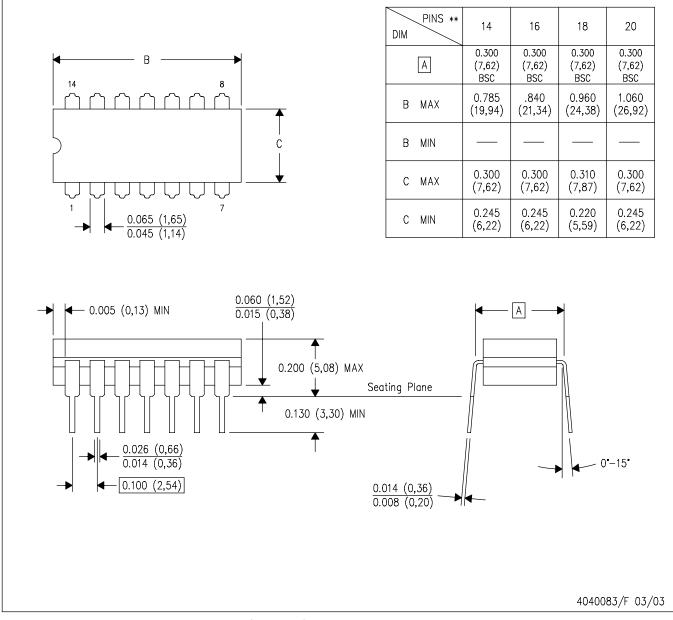

*All dimensions are nominal Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4510BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4510BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD4516BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4516BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013

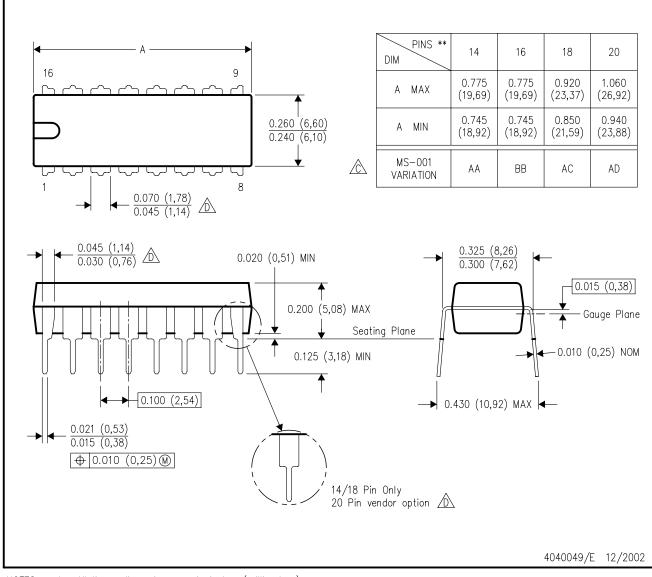


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4510BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD4510BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD4516BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD4516BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

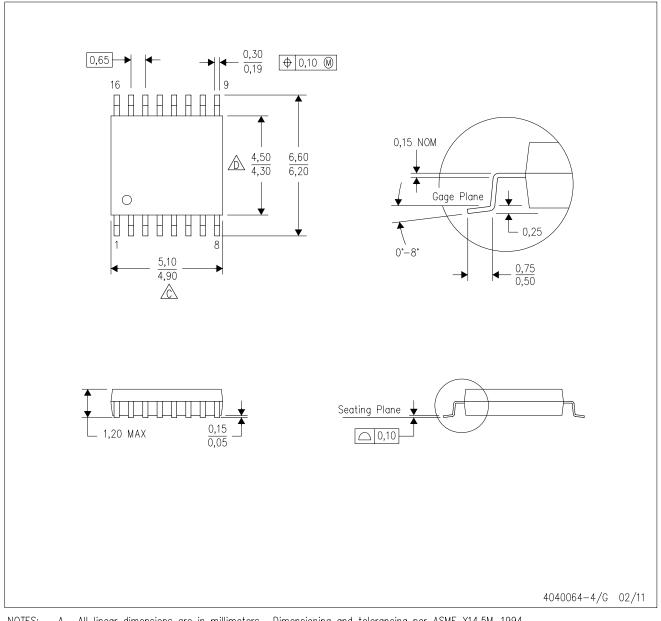

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

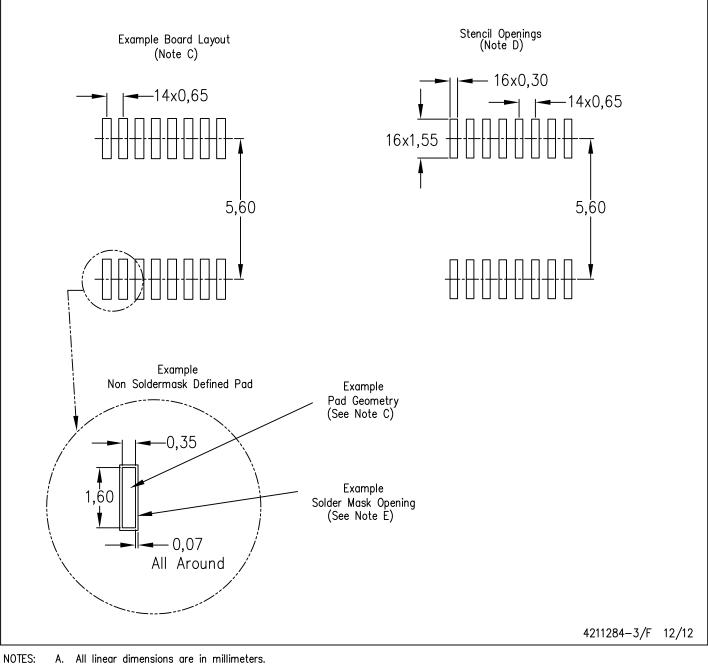
PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331