
Application Note 2227
Anssi Raisanen

August 27, 2012

LP5523 Evaluation Kit

Getting Started with LP5523
This document describes how to get the LP5523 evaluation board up and running, how to use evaluation and programming
software, and how to get started with programming. The application note is divided into four separate sections: The first section
provides general information for getting started with the LP5523 evaluation hardware and software. Section 2 shows LP5523
programming flow. Section 3 gives a detailed description of the device’s instruction set. Finally, the fourth section gives practical
programming examples.

1. General Description
The LP5523 provides flexibility and programmability for dimming and sequencing control. Each LED can be controlled directly
and independently through the serial bus (in other words, without programming the engines), or LED drivers can be controlled
by programming the execution engines. The LP5523 has three independent program execution engines, so it is possible to
form three independently programmable LED banks. LED drivers can be grouped based on their function so that, for example,
the first bank of drivers can be assigned to the keypad illumination, the second bank to the “funlights” and the third group to
the indicator LED(s). Each bank can contain 1 to 9 LED driver outputs. Instructions for program execution engines are stored
in the internal program memory. The total amount of the program memory is 96 instructons and the user can allocate the
memory as required by the engines. The LP5523 is programmed using I2C-compatible serial bus. Of course, it is possible to
write programs for the LP5523 in the form of binary data, but the programming tools described in this document offer a more
convenient way to write (and read) the registers and the SRAM memory and to program the device.

WHAT IS NEEDED

To get started you will need:

• A text editor

• LP5523 evaluation kit hardware

• LP5523 evaluation software (LP5523.exe)

• LP5523 compiler (LASM.EXE)

• FTDI virtual com port drivers (VCP)

A text editor is used to create source code for the assembler. Here, we use PSPAd as a text editor, but you should feel free to
use whatever editor you're most comfortable with. PSPad is a freeware editor, © 1991 - 2007 Jan Fiala. Please see the PSPad
copyright notice. PSPad text editor can be downloaded from http://www.pspad.com/

INSTALLING FTDI DRIVERS

The evaluation board has FTDI's FT232R USB to UART chip on it. FT232R allows the PC to see the evaluation board as a
virtual COM port. For this FTDI VCP drivers must be installed to the host computer. Usually Windows can install the drivers
automatically when the evaluation board is detected. If Windows fails to install the drivers, they can be downloaded from
www.ftdichip.com. Make sure that you download and install VCP drivers and not the D2XX drivers.

Once the FTDI drivers are installed and evaluation board is plugged into the USB port, Windows generates an USB serial port.
This port is given unique COM port number. Note that the evaluation program polls only the first 8 COM ports. If the evaluation
program does not find the evaluation board you may need to change the COM port number manually. In Windows go to the
Control Panel, select System, select Hardware tab, open Device Manager, select Ports and you should see the USB Serial
Port number. If the port number is above 8, you will need to change it. by right clicking the USB Serial Port, selecting Properties,
select Port Settings, click Advanced button and select COM port number between 1 to 8.

COPYING THE SOFTWARE

PSPad does not require installation it can be simply unpacked into any directory. The archive contains subdirectories and must
be unpacked with subdirectory preservation enabled. Also copy the Lysti.ini –file into the Syntax-folder of PSPad (for example
C:\Program Files\PSPad editor\Syntax). Lysti.ini –file contains customization information for the text editor and it must be saved
into the Syntax-folder.

The LP5523 assembler (LASM.exe) and the LP5523 evaluation software can be copied to the PC’s hard disk and run without
installation. You will need to copy the following files: LP5523.exe, regmap.ini, usblptio.dll, rtl60.bpl and LASM.exe. All the files
must lie in the same directory. Also the source code files which you will create (*.scr) should be saved/placed in the same
directory as the LASM.exe before calling the assembler. Please avoid filenames or directory names containing a space char-
acter, since the assembler may fail when applied to filenames containing a space character. The evaluation software runs under
Windows 2000/XP/Vista.

301870 SNVA664 Copyright © 1999-2012, Texas Instruments Incorporated

PSPAD CUSTOMIZATION

Once you run the PSPad editor, you should customize the editor for LP5523 as follows:

1. Select Settings menu > Highlighter settings.

2. Select Specification tab. See Figure 1.

3. On the left (highlighter) list, click on one of bolded highlighters (marked with <not assigned> -tab).

4. On the right side is list of user highlighters, select the Lysti highlighter and click on it (see Figure 1). Click on ‘Apply’ to confirm
this action.

Also set the compiler search path and parameters for the LASM.exe, as shown in Figure 2. You may need to replace the shown
filepath C:\data\LP5523\LASM\LASM.exe with your actual path. Tag the Capture Program Output Window as shown in Figure 2.
Accept highlighter settings by clicking ‘OK’. Finally, in the main window show the LOG window by pressing CTRL + L. All software
needed should be now ready for writing and assembling the first program. Note: The maximum length of a source code line is 140
characters. Lines that are longer than 140 are not assembled correctly.

30187013

FIGURE 1. PSPad Highlighter Specification Settings for LP5523

AN-2227 - LP5523 Evaluation Kit

2 Copyright © 1999-2012, Texas Instruments Incorporated

30187014

FIGURE 2. PSPad compiler settings for LP5523. Note: These variable names are all case-sensitive so, for example %File
% will work, but %file% and %FILE% will fail to produce the expected results.

HARDWARE SET-UP

30187025

FIGURE 3. LP5523 Evaluation Board

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 3

The LP5523 evaluation board has USB communication and evaluation-related components assembled onto one board. (See Figure
3.) The evaluation board was designed specially for evaluation; therefore, it is not optimized for the smallest layout size. The
components are physically large to make changing of the value easy if needed. The LP5523 input voltage VDD is supplied from
the USB port or from an external voltage applied to the X4 connector.

There are 7 pin connectors (jumpers) on the evaluation board for demonstrating some of the possible application options (see
Figure 3). The voltage supplied to the VDD input of the device can be selected using J2 connector. Connecting right and center pin
with jumper selects that VDD is fed from USB, and connecting left and center pin with jumper selects that VDD is fed from connector
X4. Also whether VDDIO is powered from USB or from external voltage supply (X3 connector) can be selected with J1. Connecting
right and center pin with jumper selects that VDDIO is fed from USB, and connecting left and center pin with jumper selects that
VDDIO is fed from connector X3. Voltage on the USB port is 5.0V, and the maximum current is 500 mA. There is a voltage regulator
on the evaluation board which reduces the USB bus voltage to 3.3V. Connector X4 upper connection point is for VDD and lower
for Ground. Connector X3 upper connection point is for VDDIO and lower for Ground.

Pin connectors J10 J11, J12 are for selecting whether LP5523 LED outputs are connected to WLEDs or RGBs. If lower and center
pins are connected with jumper, J10 connects output 1 to D1 green, output 2 to D1 blue and output 7 to D1 red. If upper and center
pins are connected with jumper output 1 is connected to D4, output 2 to D5 and output 3 to D6. Pin connector J11 connects outputs
3 to D2 green, output 4 to D2 blue and output 8 to D2 red if lower and center pins connected with jumper. If upper and center pins
are connected with jumper output 4 is connected to D7, output 5 to D8 and output 6 to D9. Pin connector J12 connects output 5 to
D3 green, output 6 to D3 blue and output 9 D3 red if lower and center pins connected with jumper. If higher and center pins are
connected with jumper output 5 is connected to D10, output 8 to D11 and output 9 to D12. It is recommended that either RGB or
white LEDs are used and not mixed.

Pin connectors J13 and J14 are used to connect on board light sensor to LP5523. If J14 connectors left and center pins are
connected with jumper light sensors output is connected to INT pin. If J14 connectors right and center pins are connected with
jumper INT pin is connected to D14 LED. If J13 connectors left and center pins are connected with jumper light sensors GC1 pin
is connected to the LP5523 GPO pin. In this case pulling GPO sets the light sensor into standby mode. If this function is not desired
J13 can be left open. Light sensor's GC1 pin is pulled high with R10. Table 1 summarizes the available options.

TABLE 1. Jumper Options

Jumper # Left/Lower Pin Center Pin Right/Upper Pin

J1 VDDIO = external

 VDDIO = 3.3V

J2 VBATT = external

 VBATT = 3.3V

J10 RGB LED D1 in use (LED1 = G, LED2 = B, LED7 = R)

 WLEDs in use (LED1 = D4, LED2 = D5, LED7 = D6)

J11 RGB LED D2 in use (LED3 = G, LED4 = B, LED8 = R)

 WLEDs in use (LED3 = D7, LED4 = D8, LED8 = D9)

J12 RGB LED D3 in use (LED5 = G, LED6 = B, LED9 = R)

 WLEDs in use (LED5 = D10, LED6 = D11, LED9 = D12)

J13 Light sensor GC1 pin connected to LP5523 GPO pin. GPO can be used to

disable light sensor.

 Not needed. GC1 pulled up with R10 resistor.

J14 INT pin connected to light sensor output.

 INT pin connected to D14 LED.

AN-2227 - LP5523 Evaluation Kit

4 Copyright © 1999-2012, Texas Instruments Incorporated

CONNECTING EVALUATION BOARD TO COMPUTER

30187001

FIGURE 4. LP5523 Evaluation Software Control Panel

1. Check that the jumpers on the evaluation board are on wanted positions.

2. Connect the evaluation board to your computer using a USB cable.

3. If this is first time you use the evaluation board install FTDI's VCP drivers.

4. Start the evaluation software LP5523.exe.

5. Click Init USB button.

6. Reset the LP5523 circuit by clicking the Reset button on upper right corner of the window. In the message box that appears,
click OK to confirm the register reading.

7. The evaluation kit is now fully up and running and the device can be controlled through the PC software. Figure 4 shows the
evaluation software user interface (Control Panel).

You should see USB OK message on the status bar (shown in the lower part of the window). If the USB communication is not
working correctly, shut down the evaluation software and unplug the USB cable. Plug in the USB cable again and reset the eval-
uation board by pressing the on board reset button (S1). Wait about 5 seconds and repeat steps 4 to 6 above. If the evaluation
software is still unable to find evaluation board, you'll need to change com port settings as described in chapter INSTALLING FTDI
DRIVERS.

CONTROLLING EVALUATION BOARD FROM PC

The evaluation software provides read-write control over the registers within the LP5523. Bits can be set from a logical ‘1’ to a
logical ‘0’ or vice versa by a mouse click and for some settings there is also a slider control provided. The evaluation software
window is divided into two panels: control panel and indicator panel (see Figure 4). The leftmost panel is the indicator panel, and
it shows the status of the LP5523 registers (excluding the program memory).

The rightmost panel is the control panel — it is used to change the status of the registers, to program the device, or to debug the
program depending on the selected view. The view is selected by the tabs on the top of the window. The Manual view appears
when the evaluation software starts. The Manual view is used to run the device "manually," i.e,. the program execution engines
are not used. It contains also some LP5523 basic settings, like serial bus address selection. In the next chapter the user is guided

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 5

through the Manual view and basic operations of the LP5523. The other views are Program, Code memory and History; these
views are presented in 2. LP5523 Programming.

Tip: The context-sensitive buttons in the lower part of the window can be used for direct Write/Read operations of the registers.
The target register is indicated by red cross, and the target can be changed by clicking on the desired register on the indicator
panel.

DIRECT CONTROL

Enabling the Device and Starting the Charge Pump

The first step to start with the LP5523 is to enable the chip; tag the Chip enabled check box. At first it is best to use the following
settings: Clock internal and Charge pump gain 1.5x (see Figure 4). At this point it is good to ensure the charge pump output voltage
with the LP5523 built-in LED error detection. To do this, select VOUT from the LED test drop down menu and tag Start conversion.
Use the adjacent RD button to read the result: it should be around 4.5 volts. Also click on the RD button on the Status/Interrupt
section to verify that the internal clock is used (Ext clk indicator light should be OFF) and that the LED test is done (LED test done
indicator should be ON).

Setting the Led Current and PWM

The next step is to set the desired LED currents. This is done by Current slider. Set 5 mA current for LED1 and set PWM to 50%
= 7Fhex. You should have a green LED switched on now. Note: When the Update immediately tag is set, the evaluation software
will write the new settings immediately to the LP5523 registers. Otherwise you need to click on the Update button.

The basic idea behind LP5523 operation is to first set the LED currents to the required level and after that the current settings are
not touched any more – all the fade-in and fade-out sections (ramps) and the temperature compensation is done by PWM . Each
LED has its own constant current output and all the outputs can be controlled independently. Therefore LED pre-selection (matched
LEDs) is not required and this kind of architecture supports also color control. The PWM, current and temperature compensation
controls are organised under tabs labelled by LED1 to LED 9. Now, let’s set 5 mA current and 50% PWM for LED2 and 3.5 mA
current and 50% PWM for LED7. As a result, D1 on evaluation board should emit white light.

Master Fader

The PWM of LED driver outputs can be controlled individually as as described above, or alternatively the drivers can be grouped
by function to provide a quick control. The LP5523 has three master fader registers, so it is possible to form three master fader
groups. To assign an LED to a group, use the Master Fader drop down menu. Select Group 1 for LEDs 1, 2, and 7. Now you can
control all the three outputs with a single master fader register. There is a Master fader slider provided on the right side of the control
panel and dragging the slider under tab labelled by 1 controls now LEDs 1, 2, and 7. Note that the initial PWM and current for LEDs
in a group needs to be set before using the master fader control, since master fader is simply a multiplier, which acts on the PWM
registers.

Logarithmic vs Linear PWM Response

Logarithmic response is used to give the impression of a linear light intensity increase/decrease as the PWM duty cycle is raised/
reduced. Logarithmic response is visually more pleasing especially when the overall brightness is low. To activate the logarithmic
response, tag logarithmic adjustment. Activate logarithmic adjustment for LEDs 1, 2 and 7. Set also 5 mA current for LEDs 3 and
4, set 3.5mA for LED8. Set 50% PWM for LEDs 3, 4 and 8. Assign LEDs 3, 4 and 8 to the master fader group 1 so that you can
control all the six LEDs with one slider. Now you should have logarithmic control over the LEDs 1, 2, 7 and linear control over the
LEDs 3, 4, 8. To see the difference between the lin and log response, move the slider backwards and forwards to alter the intensity
of all the six LEDs at once.

Temperature Compensation

The LP5523 has a temperature compensation function to correct for variations in light intensity and color caused by changes in
ambient temperature.

Reset the LP5523 and start the charge pump as shown in Figure 4. Set 5 mA current, 50% PWM for LEDs 1 and 2; Set 3.5 mA
current, 50% PWM for LED 7.

In order to activate the compensation function tag the check box next to Correction factor slider. The slope for the temperature
compensation line can be set by the slider. A simple approximation for the RGB LED temperature compensation would be +1.3%/
°C for red LED and +0,2%/°C for green and blue so that the intensity of all the colors remain approximately the same over the
temperature from 25°C to 60°C .

To observe the effect of the compensation on color, try the following: Under Temperature label, tag Start conversion (this enables
the LP5523 internal temperature sensor) and continuous measurement (continuous temperature measurement). Enter 25°C to the
External sensor box and click on WR button to write the reading to the LP5523 memory. Now toggle between internal sensor and
external sensor as you warm up the LEDs and LP5523 with a hair dryer. When the “external sensor” is active, the temperature
information is read from register TEMPERATURE WRITE (addr. 40H). When the temperature is 25°C all the compensation settings
have no effect, so when you have the external sensor activated, you will see the “uncompensated” situation. When you activate
the internal sensor, you will see the effect of the compensation as the ambient temperature is raised. Without compensation emitted
light will be drifted somewhat towards a more bluish white, because the red LED element of the RGB LED shows the strongest
temperature dependence.

AN-2227 - LP5523 Evaluation Kit

6 Copyright © 1999-2012, Texas Instruments Incorporated

LED Error Detection

To measure VF of an LED set PWM = 100% for the LED and set the desired LED current with the current slider. Disable temperature
compensation. On LED test portion tag Start conversion and Continuous measurement. Click on RD button to read the test result
from LP5523’s internal register. Try with different current settings and compare the result with the value specified by the manu-
facturer. If there is a short to ground in the LED circuit the result is ~0V and if there is an open the result is ~4,5V. This feature can
also be addressed to measure the voltage on VDD, VOUT and INT pins. Typical example usage includes monitoring battery voltage
or using INT pin as a light sensor interface (A/D converter value can be used as a variable in program control).

Charge Pump Gain Control

Charge pump gain can be forced to 1x, 1.5x, or you can let the LP5523 decide the best charge pump gain based on LED forward
voltage requirements by selecting AUTO mode (this is the most useful setting in real applications). Note that outputs D7, D8, and
D9 are powered directly from VDD and they have no effect on gain change decision-making. LP5523 charge pump has a gain
change hysteresis which prevents the mode from toggling back and forth (1x -> 1.5x -> 1x...), which would cause ripple on VIN and
LED flicker.

The hysteresis region width depends on the choice of threshold voltage. Threshold voltage is defined as follows VTHRESHOLD =
VDD - MAX(voltage on D1 to D6). If VTHRESHOLD is larger than the set value (100mV to 400mV), the charge pump is in 1x mode.
A good compromise solution between efficiency and performance is 200 mV. In addition to take the charge pump total load current
into account enable the adaptive hysteresis.

Timer enable activates forced mode change. In forced mode charge pump mode change from 1.5x to 1x is attempted at the constant
interval specified by the Timer control. With infinite setting the charge pump switches gain from 1x mode to 1.5x mode only. The
gain reset back to 1x is enabled under certain conditions, for example in the power-save mode. Forced mode and treshold pa-
rameters are used to optimize efficiency in a real design - it is desired that 1.5x gain is used only when needed.

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 7

2. LP5523 Programming

PROGRAMMING FLOW CHART

Figure 5 shows the typical programming flow of the LP5523. The program is first typed in with PSPad (or equivalent) text editor.
Then the program is compiled into a hex and binary file. Finally the hex file is loaded into the LP5523's memory and tested.

30187002

FIGURE 5. Programming Flow Chart

RESERVED KEYWORDS

The names of registers and instructions are assembler-reserved keywords. For the LP5523, the following words are reserved and
may not be used as statement labels:

Register names

• ra

• rb

• rc

• rd

Instructions

• ramp

• set_pwm

• wait

• mux_ld_start

• mux_ld_end

• mux_map_start

• mux_sel

• mux_clr

• mux_map_next

• mux_map_prev

• mux_ld_next

• mux_ld_prev

• mux_ld_addr

• mux_map_addr

• rst

AN-2227 - LP5523 Evaluation Kit

8 Copyright © 1999-2012, Texas Instruments Incorporated

• branch

• int

• end

• trigger

• jne

• jl

• jge

• je

• ld

• add

• sub

Directives

• .segment

• ds

• dw

THE STRUCTURE OF A LP5523 PROGRAM

Figure 6 shows an example of a LP5523 program. When this program is run, the program will flash a red LED once per second.

Although this program is short and simple it shows all the main parts of a typical LP5523 program.

Commenting

Commenting starts with a semicolon (;). The compiler will ignore all characters after a semicolon. If you are using PSPad editor
and have customized the editor according to the instructions on first pages of this document, the editor recognizes comments,
directives, labels and instructions automatically and uses different highlighter colors for different datatypes.

Directives

The directives are not translated directly into the LP5523. Instead, directives are instructions for the LASM.exe compiler. Directives
are used to adjust the location of the engine 1, 2 and 3 programs in memory and reserve memory resources in the LP5523 SRAM.
For example .segment program1 is a directive which tells to the compiler that whatever follows is the program for the program
execution engine 1. An overview of the directives is given in the following table.

Directive Description Example source code

.segment Adjust the location of the programs in SRAM. Note the leading dot .segment program1

.segment flashing_light

ds Define Storage; The directive reserves memory resources in the SRAM. The ds directive

takes one parameter, which is the number of words to reserve. The number of bits in a word

(word length) is 16. The allocated words are initialized with zeros

ds 3

ds 17

dw Define constant Word. Inserts a binary word to the SRAM. dw 0000000011111111b

dw FFABh

dw 3

Labels

A label is a symbolic address. Labels are used to mark program line(s), like in branch instruction and labeling mapping table rows.
Labels must have the colon (:) suffix. In the Figure 6 code loop1: is a label which indicates the starting address of the loop.

Instructions

Instructions are executable statements. LASM-compiler translates text-based language source instructions into hex- and binary-
based executable codes. In the example code presented in Figure 6 for example set_pwm is an instruction. Almost all the
instructions take operands, which may be constants (like FFh), or variables stored in the LP5523 registers (like ra) - ra stands for
variable a (register a), rb, for variable b, etc.

30187015

FIGURE 6. Example Code of LP5523 Program

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 9

PRODUCING AN EXECUTABLE FILE

Once the text-based source file is typed in and saved using the text editor (PSPad), the source code window should look like the
one in Figure 7. To call the compiler routine, select File >> Compile. The PSPad LOG window shows the progress of compiling. If
the compiler generates error messages, LOG window is necessary for locating these errors.

A listing file, a hex file and a binary file is produced by the LASM.exe compiler. The name of the files are the same name that you
have given to the source code file, with the *.lst, *.hex or *.bin extension. *.hex and *.bin files contain the machine code.

30187010

FIGURE 7. Example of Compiling Source Code

LOADING A PROGRAM TO THE LP5523'S SRAM

To upload code into the LP5523 SRAM start the LP5523.exe evaluation software. Select the Program tab Figure 10. The Program
tab is divided into two parts: the right contains the program's source code and the compiled version of the code; the left part contains
program execution engine controls. Load the generated *.hex file into the evaluation software view: Click Open Source File button
(Figure 8), browse the file and click Open.

30187012

FIGURE 8. Open Source File Button In Program Tab

To download the machine code into the LP5523, click on download button Figure 9. Pressing this button sets all the engine modes
to Load.

30187016

FIGURE 9. Download Opened Source File Into LP5523

Program can be loaded also from the Code memory tab Figure 11. In this case one must set the operation mode to Load. In Code
memory tab one must first select the address where data is written. Once the address is active Data can be written in hexadecimal

AN-2227 - LP5523 Evaluation Kit

10 Copyright © 1999-2012, Texas Instruments Incorporated

to the Data entry field and push the Update button. Once all the data is updated to the wanted addresses, it can be written to the
SRAM memory by pushing the Write Page, which writes two lines in code memory table (first two lines refer to page 0, next two
lines to page 1, etc. Pages can be changed with the page selector) or by pushing Write All, which updates the whole memory. Once
the data is written to SRAM, operation mode can be set to Run and Execution mode for example to Free Run. Note that Program
Counter(s) must be set accordingly. This is not done automatically like loading program by clicking the Download-button. Note also
that the program code does not show up in the program view (in Program tab).

RUNNING THE PROGRAM

The program is run by checking the Run from the Master control and clicking on Free run-button. This way all the engines will start
at the same time. If you have less than three engines in use, extra engines must be disabled by checking off the box in each engine
section. As seen in Figure 10, the program has only two engines in use, and the engine three is checked off. If this is not done the
programs may not work correctly. Engines can also be run from individual engine control. One convenient way of debugging the
programs is by running the individual engines step by step. Individual engine control can be used also with multiple engines, but
then they wont start at the same time.

30187017

FIGURE 10. Master Control of the Program Tab

For operating, the program's following four modes exist (see Figure 10). Operation mode is selected by clicking the desired check
box.

Operation modes

• Disable — Engine operation is disabled and they can not be run

• Load — In this mode writing to program memory is allowed. All the three engines are in hold while one or more engines are in
load program mode. PWM values are also frozen. Program execution continues when all the engines are out of load program
mode. Load program mode resets the program counter of the respective engine. Load program mode can be entered from the
disabled mode only. Entering load program mode from the run program mode is not allowed. Note that load mode does not
automatically load the program opened with Open Source File button Figure 8. When using this operation mode, one must write
the program through the Code memory tab .

• Run — This mode executes the instructions stored in the program memory. Execution register (ENG1_EXEC etc.) bits define
how the program is executed (hold, step, free run or execute once). Program start address can be programmed to Program
Counter (PC) register. The Program Counter is reset to zero when the PC’s upper limit value is reached.

• Halt — In this mode instruction execution aborts immediately and engine operation halts. Execution can be continued if operation
mode is set to Run again.

For executing the programs following four modes exist. Execution mode is selected with the four push buttons. Functions of the
buttons from left to right are:

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 11

Executions modes

• Stop — Engine execution is stopped. The current instruction is executed and then execution stopped.

• Step — Execute the instruction at the location pointed by the Program Counter, increment the Program Counter by one and
then reset ENG1_EXEC bits to 00 (enter Stop-mode).

• Execute Command — Execute the instruction pointed by the current Program Counter value and reset ENG1_EXEC to 00
(i.e. enter Stop-mode). The difference between Step and Execute Command is that Execute Command does not increment the
Program Counter.

• Free Run — Start program execution from the instruction pointed by the Program Counter.

30187021

FIGURE 11. Code Memory Tab

DEBUGGING CONSIDERATIONS

There are a few ways to see how the compiler translates the instructions to machine code. Listing file (*.lst) may be used for locating
assembling errors. The listing file contains the source code along with the compiled machine code. You can examine the files in
any text editor. This is helpful for debugging and seeing how source code is translated into machine code. Figure 12 shows an
example of listing file. The first column is the row number, second column indicates the SRAM memory address, third shows the
machine code data and fourth column includes the source code. Note that the .segment directives show the start address of the
program, i.e., where to the Program Counters should point.

From the produced two hex-files user can see the pure machine code represented in hexadecimal in two different ways. In *.he2
—file representation of data is 0xYY (YY being the changing data information). In *.hex file the data is represented YY, where YY
is the changing data information. In *.he2 file the 8-bit long data elements are separated with comma whereas in *.hex file they are
separated with tab. In both files data is represented like in Code memory tab memory table. First two columns correspond to first
column in Code memory tab memory table, third and fourth columns correspond to second column etc. For example, if the user
would have mux_inc instruction (9D80), in he2 it would be 0x9D, 0x80, and in hex file it would be 9D [tab] 80. In hex-file the start
addresses of the programs are at the bottom whereas in *.he2 file they are on the first row engine 1 start address being first, engine
2 second, and engine 3 start address third. Also in the bin-file user can see the pure machine code represented in binary. First
three rows represent the start addresses of the programs. After the start addresses the program code follows.

Programs can be debugged in the evaluation software Program tab by running the program in steps using Step or Execute com-
mand execution modes. Also one way to see what is written to the LP5523 is to look at the evaluation program History tab Figure
13.

AN-2227 - LP5523 Evaluation Kit

12 Copyright © 1999-2012, Texas Instruments Incorporated

30187011

FIGURE 12. Listing File of the Example Program First

30187022

FIGURE 13. History Tab

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 13

3. Instruction Set Details
This section provides the syntax with detailed examples for all the LP5523 instructions supported by the LASM assembler.

LED DRIVER INSTRUCTIONS

INSTRUCTION SYNTAX
FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

ramp time, PWM Output PWM with

increasing / decreasing

duty cycle.

ramp 0.6, 255 0000 1010 1111 1111 0A FF

Time is a positive constant

(0.000484*PWM to

0.484*PWM);

;Ramp up to full scale over 0.6s

PWM is a positive or negative

constant (-255 to 255).

ramp 1.2,-255 0001 0101 1111 1111 15 FF

Note: time is rounded by

assembler if needed.

;Ramp down to zero over 1.2s

ramp var1, prescale, var2 Output PWM with

increasing / decreasing

duty cycle.

ld ra, 31 1000 0100 0000 0001 84 01

Var1 is a variable (ra, rb, rc, rd); ld rb, 255

Prescale is a boolean constant

(pre=0 or pre=1);

ramp ra, pre=0,+rb

Var2 is a variable (ra, rb, rc, rd). ;Ramp up to full scale over 3.9s

 ld ra, 1 1000 0100 0001 0001 84 11

 ld rb, 255

 ramp ra, pre=0,-rb

 ;Ramp down to zero over 0.12s

set_pwm PWM Generate a continuous

PWM output.

set_pwm 128 0100 0000 1000 0000 4080

PWM is a constant (0-255 or 0

- FFh).

;Set PWM Duty-Cycle to 50%

set_pwm var1 Generate a continuous

PWM output.

ld rc, 128 1000 0100 0110 0010 8462

Var1 is a variable (ra, rb, rc, rd). set_pwm rc

 ;Set PWM Duty-Cycle to 50%

wait time Pause for some time. wait 0.25 0110 0000 0000 0000 6000

Time is a positive constant (0

to 0.484).

;Wait 0.25 seconds

Note: time is rounded by

assembler if needed.

AN-2227 - LP5523 Evaluation Kit

14 Copyright © 1999-2012, Texas Instruments Incorporated

LED MAPPING INSTRUCTIONS

INSTRUCTION SYNTAX FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

mux_ld_start address Defines the start

address of the

mapping data table.

mux_ld_start row1 1001 1110 0000 0000 9E00

Address is a label which

specifies where to find the first

row.

; The first row can be found at

the address marked with row1

Assumed that row1

points to addr 00h.

mux_map_start address Defines the start

address of the

mapping data table

and sets the row

active.

mux_map_start row1 1001 1100 0000 0000 9C00

Address is a label which

specifies where to find the first

row.

; The first row can be found at

the address marked with row1

Assumed that row1

points to addr 00h.

mux_ld_end address Defines the end

address of the

mapping data table.

mux_ld_end row9 1001 1100 1000 1000 9C88

Address is a label which

specifies where to find the last

row.

; The last row can be found at

the address marked with row9

Assumed that row9

points to addr 08h.

mux_sel output Connects one and only

one LED output to an

engine.

mux_sel 1 1001 1101 0000 0001 9D01

Output is a constant (0 to 9 or

16).

; D1 output will be connected to

the engine.

mux_clr Clears engine-to-driver

mapping.

mux_clr 1001 1101 0000 0000 9D00

mux_map_next Sets the next row

active in the mapping

table.

mux_map_next 1001 1101 1000 0000 9D80

mux_map_prev Sets the previous row

active in the mapping

table.

mux_map_prev 1001 1101 1100 0000 9DC0

mux_ld_next The index pointer will

be set to point to the

next row in the

mapping table.

mux_ld_next 1001 1101 1000 0000 9D81

mux_ld_prev The index pointer will

be set to point to the

previous row in the

mapping table.

mux_ld_prev 1001 1101 1100 0000 9DC1

mux_ld_addr address Sets the index pointer

to point the mapping

table row defined by

address.

mux_ld_addr row2 1001 1111 0000 0001 9F01

Address is a label which

specifies the row to which the

pointer is to be moved.

; The index pointer will be set to

point to the row labelled with

row2.

Assumed that row2

points to addr 01h.

mux_map_addr address Sets the index pointer

to point the mapping

table row defined by

address and sets the

row active.

mux_map_addr row2 1001 1111 1000 0001 9F81

Address is a label which

specifies the row of the table

that will be set active.

; The index pointer will be set to

point to the row labelled with

row2 and the row will be set

active.

Assumed that row2

points to addr 01h.

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 15

BRANCH INSTRUCTIONS

INSTRUCTION SYNTAX FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

rst Resets program

counter and start the

program again.

rst 0000 0000 0000 0000 0000

branch loopcount, address Repeat a section of

code.

branch 20, loop1 1010 1010 0000 0000 AA00

Loopcount is a constant (0 to

63);

; define loop for 20 times Assumed that loop1

points to addr 00h.

Address is a label which

specifies the offset.

branch var1, address Repeat a section of

code.

ld ra, 20 1000 0110 0000 0000 8600

Var1 is a variable (ra, rb, rc, rd); branch ra, loop1 Assumed that loop1

points to addr 00h.

Address is a label which

specifies the offset.

; define loop for 20 times

int Causes an interrupt. int 1100 0100 0000 0000 C400

end interrupt, reset End program

execution.

end i 1101 0000 0000 0000 D000

Interrupt (i) is an optional flag.

Reset (r) is an optional flag.

; End program execution and

send an interrupt.

trigger w{source1|

source2...}

Wait a trigger. trigger w{1} 1110 0000 1000 0000 E080

Source is the source of the

trigger (1, 2, 3, e).

;Wait a

 trigger from the engine 1.

trigger s{target1|target2...} Send a trigger. trigger s{1} 1110 0000 0000 0010 E002

Target is the target of the

trigger (1, 2, 3, e).

;Send a

 trigger to the engine 1.

jne var1, var2, address Jump if not equal. jne ra, rb, flash 1000 1000 0010 0001 8821

Var1 is a variable (ra, rb, rc, rd); ;Jump to flash if A != B. Assumed that offset =

2.

Var2 is a variable (ra, rb, rc, rd);

Address is a label which

specifies the offset.

jl var1, var2, address Jump if less. jl ra, rb, flash 1000 1010 0001 0001 8A11

Var1 is a variable (ra, rb, rc, rd); ;Jump to flash if A < B. Assumed that offset =

1

Var2 is a variable (ra, rb, rc, rd);

Address is a label which

specifies the offset.

jge var1, var2, address Jump if greater or

equal.

jge ra, rb, flash 1000 1100 0001 0001 8C11

Var1 is a variable (ra, rb, rc, rd); ;Jump to flash if A >= B. Assumed that offset =

1.

Var2 is a variable (ra, rb, rc, rd);

Address is a label which

specifies the offset.

je var1, var2, address Jump if equal. je ra, rb, flash 1000 1110 0001 0001 8E11

Var1 is a variable (ra, rb, rc, rd); ;Jump to flash if A = B. Assumed that offset =

1.

Var2 is a variable (ra, rb, rc, rd);

Address is a label which

specifies the offset.

DATA TRANSFER AND ARITHMETIC INSTRUCTIONS

AN-2227 - LP5523 Evaluation Kit

16 Copyright © 1999-2012, Texas Instruments Incorporated

INSTRUCTION SYNTAX FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

ld var, value Assigns a value to a

variable.

ld ra, 10 1001 0000 0000 1010 900A

Var is a variable (ra, rb, rc); ;Variable A = 10.

Value is a constant (0 to 255 or

0 to FFh).

add var, value Add the 8-bit value to

the variable value.

add ra, 30 1001 0001 0001 1110 911E

Var is a variable (ra, rb, rc); ;A = A + 30.

Value is a constant (0 to 255 or

0 to FFh).

add var1, var2, var3 Add the value of var3 to

the value of var2 and

store the result in var1.

add ra, rc, rd 1001 0011 0000 1010 930B

Var1 is a variable (ra, rb, rc); ;A = C + D.

Var2 is a variable (ra, rb, rc, rd);

Var3 is a variable (ra, rb, rc, rd);

sub var, value Subtract the 8-bit value

from the variable value.

sub ra, 30 1001 0010 0001 1110 921E

Var is a variable (ra, rb, rc); ;A = A - 30.

Value is a constant (0 to 255 or

0 to FFh).

sub var1, var2, var3 Subtract the value of

var3 from the value of

var2 and store the

result in var1.

sub ra, rc, rd 1001 0011 0001 1011 931B

Var1 is a variable (ra, rb, rc); ;A = C - D

Var2 is a variable (ra, rb, rc, rd);

Var3 is a variable (ra, rb, rc, rd);

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 17

4. Programming Examples
This section gives practical programming examples. A series of programs introduce the main features of the LP5523 chip and the
example programs are easy to tailor to the specific needs of end application.

EXAMPLE 1: CONTROLLING MULTIPLE LEDS WITH ONE ENGINE

The example below is basically the program shown in the Figure 6 above (simple LP5523 program);, the LED mapping table below
is used to establish engine1-to-LEDs connection. In the mapping table '0' means that the LED isn't connected to the engine; '1'
means that the LED is connected to the engine. In the example program below bits 6 to 8 are set to ‘1’ so that outputs 7, 8 and 9
are mapped to the engine 1.

LED Mapping Chart

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Output GPO N/A N/A N/A N/A N/A N/A D9 D8 D7 D6 D5 D4 D3 D2 D1

mapping_table: dw 0000000111000000b ;Red LEDs on the evaluation board.

 ;'1' = LED is mapped; '0'= LED isn't mapped.

.segment program1 ;Begin of a segment.

 mux_map_start mapping_table ;Mapping table start address in the memory.

 ;The first row of the table will be activated

loop1: set_pwm FFh ;Beginning of a loop, set PWM to full scale.

 wait 0.48 ;Wait for 0.48 seconds.

 set_pwm 00h ;Set PWM to 0%.

 wait 0.48 ;Wait for 0.48 seconds.

 branch 0,loop1 ;Endless loop.

AN-2227 - LP5523 Evaluation Kit

18 Copyright © 1999-2012, Texas Instruments Incorporated

EXAMPLE 2: FADE-IN/FADEOUT EFFECTS AND CHANGING MAPPING OF LEDS

In this example ramp instruction is used to produce fade-in/fade-out effects. Note: The use of a logarithmic PWM profile with ramp
instruction ensures the light and color changes appear smooth to the human eye. The same effect is repeated for all the LEDs by
changing the engine1-to-LED mapping. After that, the intensity of the LEDs is increased gradually and finally all the LEDs are set
OFF.

row1: dw 0000000000000001b ;Map green LED = D1 on the eval. board.

 dw 0000000000000010b ;Map blue LED = D2 on the eval. board.

 dw 0000000001000000b ;Map red LED = D7 on the eval. board.

 dw 0000000000000100b ;Map green LED = D3 on the eval. board.

 dw 0000000000001000b ;Map blue LED = D4 on the eval. board.

 dw 0000000010000000b ;Map red LED = D8 on the eval. board.

 dw 0000000000010000b ;Map green LED = D5 on the eval. board.

 dw 0000000000100000b ;Map blue LED = D6 on the eval. board.

row9: dw 0000000100000000b ;Map red LED = D9 on the eval. board.

row10: dw 0000000111111111b ;Map all LEDs on the eval. board.

.segment program1 ;Program for engine 1.

 mux_map_start row1 ;Map the first LED.

 mux_ld_end row9 ;End address of the mapping data table.

loop1: ramp 1.0, 255 ;Increase PWM 0->100% in 1 second.

 ramp 1.5, -255 ;Decrease PWM 100->0% in 1.5 seconds.

 wait 0.4; ;Wait for 0.4 seconds.

 mux_map_next ;Set the next row active in the mapping table.

 branch 8,loop1 ;Loop 8 times

loop2: ramp 0.5, 128 ;Increase PWM by 128 steps in 0.5 second.

 mux_map_next ;Set the next row active in the mapping table.

 ;Note roll over of the mapping.

 branch 17, loop2 ;Loop 17 times.

 mux_map_addr row10 ;Set row10 active (all LEDs mapped).

 set_pwm 0; ;Set all the LEDs OFF.

rst ;Reset program counter and start the program again.

.segment program2

 ;Program for engine 2 (empty).

rst

.segment program3

 ;Program for engine 3(empty).

rst

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 19

EXAMPLE 3: USING MORE THAN ONE ENGINE AND NESTED LOOPS (LOOP INSIDE A LOOP)

This program below shows how to use all the three engines simultaneously. The engines are used to create a police beacon-type
light effect. Hint: To see the effect of separate engines, start/stop engines separately using Engine 1, Engine 2 and Engine 3 controls
instead of the Master control.

blue1: dw 0000000000000010b ;Map blue LED on D2.

blue2: dw 0000000000100000b ;Map blue LED on D6.

blue3: dw 0000000000001000b ;Map blue LED on D4.

red_led: dw 0000000010000000b ;Map red LED on D8.

.segment program1 ;Program for blue LEDs on D2 and D6.

 mux_map_start blue1 ;Mapping table start address.

 mux_ld_end blue2 ;Mapping table end address.

loop2:

loop1: set_pwm 255

 wait 0.1

 set_pwm 0

 wait 0.05

 branch 1, loop1

 wait 0.2

 mux_map_next

 branch 3, loop2 ;Note nested loop (loop1 is within loop2).

loop4:

loop3: set_pwm 255

 wait 0.05

 set_pwm 0

 wait 0.05

 branch 5, loop3

 mux_map_next

 branch 3, loop4

 rst

.segment program2 ;Program for red LED on D8.

 mux_map_addr red_led ;Red LED mapping.

 wait 0.45

 ramp 0.5, 255 ;PWM 0%->100% in 0.5 second.

 ramp 1, -255 ;PWM 100%->0% in 1 second.

 rst

.segment program3 ;Program for blue LED on D4.

 mux_map_start blue3 ;Mapping table start address.

 set_pwm 255

 wait 0.05

 set_pwm 0

 wait 0.2

 set_pwm 255

 wait 0.05

 set_pwm 0

 wait 0.45

 rst

AN-2227 - LP5523 Evaluation Kit

20 Copyright © 1999-2012, Texas Instruments Incorporated

EXAMPLE 4: TRIGGERS AND INTERRUPT

This program shows how to use triggers: the interrupt. Engine 1 sends a trigger to Engine 2 when it has set an LED to 100% PWM
– Engine 2 fades the LED out to 0% PWM. Engine 1 sends an interrupt when it has finished loop1 and waits trigger from Engine
2 AND an external trigger. Pushing the button on the evaluation board causes an external trigger and the sequence starts over.
Use RD button on the Status/Interrupt section (see Figure 5) to clear the interrupt.

row1: dw 0000000000000001b ;Map green LED = D1 on the eval. board.

 dw 0000000000000010b ;Map blue LED = D2 on the eval. board.

 dw 0000000001000000b ;Map red LED = D7 on the eval. board.

 dw 0000000000000100b ;Map green LED = D3 on the eval. board.

 dw 0000000000001000b ;Map blue LED = D4 on the eval. board.

 dw 0000000010000000b ;Map red LED = D8 on the eval. board.

 dw 0000000000010000b ;Map green LED = D5 on the eval. board.

 dw 0000000000100000b ;Map blue LED = D6 on the eval. board.

row9: dw 0000000100000000b ;Map red LED = D9 on the eval. board.

.segment program1 ;Program for engine 1.

 mux_map_start row1 ;Map the first LED.

 mux_ld_end row9 ;End address of the mapping data table.

loop1: ramp 1.0, 255 ;Increase PWM 0->100% in 1 second.

 trigger s{2} ;Send trigger to engine2

 mux_map_next ;Set the next row active in the mapping table.

 branch 8,loop1 ;Loop 8 times.

 int ;Send an interrupt.

 trigger w{2|e} ;Wait trigger from engine 2 and external trigger.

 rst ;Reset program counter and start the program again.

.segment program2 ;Program for engine 2.

 mux_map_start row1 ;Map the first LED.

 mux_ld_end row9 ;End address of the mapping data table.

loop2: trigger w{1} ;Wait for trigger from engine1.

 ramp 1.0,-255 ;Decrease PWM 100->0% in 1 second.

 mux_map_next ;Set the next row active in the mapping table.

 branch 8,loop2 ;Loop 8 times.

 trigger s{1} ;Send trigger to engine1.

 rst

.segment program3

 ;Program for engine 3(empty).

rst

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 21

Schematic and Layout

30187023

FIGURE 14. Schematics of the Evaluation Board Application Side

AN-2227 - LP5523 Evaluation Kit

22 Copyright © 1999-2012, Texas Instruments Incorporated

30187024

FIGURE 15. Schematics of the Evaluation Board USB Side

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 23

Bill of Materials

Designator Quantity Part Number Description Value Footprint

U6 1 LP5523TM Lighting management unit 25-bump micro SMD

U3 1 FT232RL USB to UART 28-SSOP

U2 1 MSP430F1612IPM microcontroller 64-LQFP

U1 1 LP2985AIM5-3.3 LDO regulator 0603L

U5 1 BH1600FVC-TR Light Sensor

D1, D2, D3 3 ASMT-YTC2-0AA02 RGB LED 6-PLCC

D13, D14 2 HSMS-A100-J00J1 Red LED 2-PLLC

D4, D5, D6,

D7, D8, D9,

D10, D11,

D12 9 CLM3C-WKW-CWBYA453 White LED 2-PLCC

C1, C2, C3 3 LMK212B7475KG-T Ceramic capacitor 4.7uF, 10V 0805

C5 1 C0603C103J5RACTU Ceramic capacitor 10nF , 50V 0603

C6, C9, C10,

C11, C12 5 C0603C104K8RACTU Ceramic capacitor 0.1uF , 10V 0603

C7 1 C2012Y5V1A106Z Ceramic capacitor 10uF, 10V 0805

C15, C14 2 LMK105BJ105KV-F Ceramic capacitor 1uF, 10V 0402

C16, C17 2 JMK105BJ474KV-F Ceramic capacitor 0.47uF, 6.3V 0402

C23 1 C0603C105Z8VACTU Ceramic capacitor 1uF , 10V 0603

C24 1 C0603C475K8PACTU Ceramic capacitor 4.7uF , 10V 0603

R1, R4, R5 3 ERJ-3GEYJ104V Resistor 100k 0603

R2, R8, R13 3 ERJ-3GEYJ103V Resistor 10k 0603

R3 1 RC0603JR-074K7L Resistor 4.7k 0603

R9 1 ERJ-3GEYJ562V Resistor 5.6k 0603

R10 1 ERJ-3GEYJ183V Resistor 18k 0603

R12 1 ERJ-3GEYJ101V Resistor 100 0603

R14, R15 2 ERJ-3GEYJ331V Resistor 330 0603

R6, R7 2 ERJ-3GEYJ152V Resistor 1.5k 0603

L1 1 MMZ2012S400A Ferrite 0805

AN-2227 - LP5523 Evaluation Kit

24 Copyright © 1999-2012, Texas Instruments Incorporated

AN-2227 - LP5523 Evaluation Kit

Copyright © 1999-2012, Texas Instruments Incorporated 25

Notes

Copyright © 1999-2012, Texas Instruments
Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

Мы молодая и активно развивающаяся компания в области поставок

электронных компонентов. Мы поставляем электронные компоненты

отечественного и импортного производства напрямую от производителей и с

крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем

комплексные и плановые поставки широчайшего спектра электронных

компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную

поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и

предпродажную проверку качества продукции. На все поставляемые продукты

мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на

предприятия военно-промышленного комплекса России , а также работаем в

рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система

менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный

ассортимент и индивидуальный подход к клиентам являются основой для

выстраивания долгосрочного и эффективного сотрудничества с предприятиями

радиоэлектронной промышленности, предприятиями ВПК и научно-

исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331

mailto:sales@st-electron.ru

