intersil

Single, Low Voltage Digitally Controlled Potentiometer (XDCP ${ }^{\text {™ }}$)

ISL23415

The ISL23415 is a volatile, low voltage, low noise, low power, SPITM bus, 256 taps, single digitally controlled potentiometer (DCP), which integrates DCP core, wiper switches and control logic on a monolithic CMOS integrated circuit.

The digitally controlled potentiometer is implemented with a combination of resistor elements and CMOS switches. The position of the wipers are controlled by the user through the SPI bus interface. The potentiometer has an associated volatile Wiper Register (WR) that can be directly written to and read by the user. The contents of the WR controls the position of the wiper. When powered on, the ISL23415's wiper will always commence at mid-scale (128 tap position).

The low voltage, low power consumption, and small package of the ISL23415 make it an ideal choice for use in battery operated equipment. In addition, the ISL23415 has a V LOGIC pin allowing down to 1.2 V bus operation, independent from the V_{CC} value. This allows for low logic levels to be connected directly to the ISL23415 without passing through a voltage level shifter.

The DCP can be used as a three-terminal potentiometer or as a two-terminal variable resistor in a wide variety of applications including control, parameter adjustments, and signal processing.

Features

- 256 resistor taps
- SPI serial interface
- No additional level translator for low bus supply
- Daisy Chaining of multiple DCP
- Power supply
- $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$ to 5.5 V analog power supply
- $\mathrm{V}_{\text {LOGIC }}=1.2 \mathrm{~V}$ to 5.5 V SPI bus/logic power supply
- Wiper resistance: 70Ω typical @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Shutdown Mode - forces the DCP into an end-to-end open circuit and RW is shorted to RL internally
- Power-on preset to mid-scale (128 tap position)
- Shutdown and standby current <2.8 $\mu \mathrm{A}$ max
- DCP terminal voltage from OV to V_{CC}
- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$ total resistance
- Extended industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 10 Ld MSOP or 10 Ld μ TQFN packages
- Pb-free (RoHS compliant)

Applications

- Power supply margining
- RF power amplifier bias compensation
- LCD bias compensation
- Gain adjustment in battery powered instruments
- Portable medical equipment calibration

FIGURE 1. FORWARD AND BACKWARD RESISTANCE vs TAP POSITION, 10k

FIGURE 2. VREF ADJUSTMENT

Block Diagram

Pin Configurations

ISL23415 (10 LD μ TQFN) TOP VIEW

Pin Descriptions

MSOP	μ TQFN	SYMBOL	DESCRIPTION
1	10	V $_{\text {LOGIC }}$	SPI bus/logic supply. Range 1.2V to 5.5V
2	1	SCK	Logic Pin - Serial bus clock input
3	2	SDO	Logic Pin - Serial bus data output (configurable)
4	3	SDI	Logic Pin - Serial bus data input
5	4	CS	Logic Pin - Active low Chip Select
6	5	RL	DCP "low" terminal
7	6	RW	DCP wiper terminal
8	7	RH	DCP "high" terminal
9	8	VCC	Analog power supply. Range 1.7V to 5.5V
10	9	GND	Ground pin

Ordering Information

| PART NUMBER
 (Note 5) | PART
 MARKING | RESISTANCE
 OPTION
 $(\mathrm{k} \Omega)$ | TEMP. RANGE
 $\left({ }^{\circ} \mathrm{C}\right)$ | PACKAGE
 (Pb-free) |
| :--- | :--- | :---: | :---: | :--- | :--- |
| PKG. | | | | |

NOTES:

1. Add "-TK" or "-T7A" suffix for Tape and Reel option. Please refer to TB347 for details on reel specifications.
2. Please refer to TB 347 for details on reel specifications.
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
5. For Moisture Sensitivity Level (MSL), please see device information page for ISL23415. For more information on MSL please see techbrief TB363.

Absolute Maximum Ratings	
Supply Voltage Range	
$V_{\text {cc }}$	-0.3V to 6.0V
VLogic	-0.3V to 6.0V
Voltage on any DCP Terminal Pin	-0.3V to 6.0V
Voltage on any Digital Pins	-0.3V to 6.0V
Wiper Current ${ }^{\text {W (}}$ (10s).	$\pm 6 \mathrm{~mA}$
ESD Rating	
Human Body Model (Tested per JESD22-A114E).	. .6.5kV
CDM Model (Tested per JESD22-A114E) . . .	1kV
Machine Model (Tested per JESD22-A115-A)	. 200V
Latch Up	
(Tested per JESD-78B; Class 2, Level A)	$n \mathrm{~A}$ @ $+125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\text {JC }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right.$)
10 Ld MSOP Package (Note 6, 7).	170	70
10 Ld μ TQFN Package (Note 6, 7)	145	90
Maximum Junction Temperature (Plastic Package)+150 ${ }^{\circ} \mathrm{C}$		
Storage Temperature Range. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Pb-Free Reflow Profile http://www.intersil.com/pbfree/	flow.asp	see link below

Recommended Operating Conditions

V_{CC} Supply Voltage.. . . 1.7 V to 5.5 V
$V_{\text {LOGIC }}$ Supply Voltage . 1.2 V to 5.5 V
DCP Terminal Voltage 0 to V_{CC}
Max Wiper Current . $\pm 3 m A$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
6. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
7. For θ_{JC}, the "case temp" location is the center top of the package.

Analog Specifications $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}$ to 5.5 V over recommended operating conditions unless otherwise stated. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 20) } \end{gathered}$	$\begin{aligned} & \text { TYP } \\ & \text { (Note 8) } \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { (Note 20) } \end{aligned}$	UNITS
$\mathrm{R}_{\text {TOTAL }}$	R_{H} to R_{L} Resistance	W option		10		k Ω
		U option		50		k Ω
		T option		100		k Ω
	R_{H} to R_{L} Resistance Tolerance		-20	± 2	+20	\%
	End-to-End Temperature Coefficient	W option		175		ppm $/{ }^{\circ} \mathrm{C}$
		U option		85		ppm $/{ }^{\circ} \mathrm{C}$
		T option		70		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RL}}$	DCP Terminal Voltage	V_{RH} or V_{RL} to GND	0		V_{cc}	v
Rw	Wiper Resistance	RH - floating, $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$, force I_{W} current to the wiper, $\mathrm{I}_{\mathrm{W}}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{RL}}\right) / \mathrm{R}_{\mathrm{TOTAL}}$, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V		70	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		580		Ω
$\mathrm{C}_{\mathrm{H}} / \mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{W}}$	Terminal Capacitance	See "DCP Macro Model" on page 8.		32		pF
${ }_{\text {Lkg }}$	Leakage on DCP Pins	Voltage at pin from GND to $\mathrm{V}_{\text {CC }}$	-0.4	<0.1	0.4	$\mu \mathrm{A}$
Noise	Resistor Noise Density	Wiper at middle point, W option		16		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		Wiper at middle point, U option		49		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		Wiper at middle point, T option		61		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Feed Thru	Digital Feedthrough from Bus to Wiper	Wiper at middle point		-65		dB
PSRR	Power Supply Reject Ratio	Wiper output change if $V_{C C}$ change $\pm 10 \%$; wiper at middle point		-75		dB

ISL23415

Analog Specifications $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}$ to 5.5 V over recommended operating conditions unless otherwise stated. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 20) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Note 8) } \end{gathered}$	MAX (Note 20)	UNITS
VOLTAGE DIVIDER MODE (0 - @ RL; $\mathrm{V}_{\text {CC }}$ @ RH; measured at RW, unloaded)						
$\begin{gathered} \text { INL } \\ \text { (Note 13) } \end{gathered}$	Integral Non-linearity, Guaranteed Monotonic	W option	-1.0	± 0.5	+1.0	$\begin{gathered} \text { LSB } \\ \text { (Note 9) } \end{gathered}$
		U, T option	-0.5	± 0.15	+0.5	$\begin{aligned} & \text { LSB } \\ & \text { (Note 9) } \end{aligned}$
$\begin{gathered} \text { DNL } \\ \text { (Note 12) } \end{gathered}$	Differential Non-linearity, Guaranteed Monotonic	W option	-1	± 0.4	+1	$\begin{aligned} & \text { LSB } \\ & \text { (Note 9) } \end{aligned}$
		U, T option	-0.4	± 0.1	+0.4	$\begin{gathered} \text { LSB } \\ \text { (Note 9) } \end{gathered}$
FSerror (Note 11)	Full-scale Error	W option	-3.5	-2	0	$\begin{aligned} & \text { LSB } \\ & \text { (Note 9) } \end{aligned}$
		U, T option	-2	-0.5	0	$\begin{aligned} & \text { LSB } \\ & \text { (Note 9) } \end{aligned}$
ZSerror (Note 10)	Zero-scale Error	W option	0	2	3.5	$\begin{gathered} \text { LSB } \\ \text { (Note 9) } \end{gathered}$
		U, T option	0	0.4	2	$\begin{gathered} \text { LSB } \\ (\text { Note } 9) \end{gathered}$
$\begin{gathered} \mathrm{TC}_{\mathrm{V}} \\ \text { (Note 14) } \end{gathered}$	Ratiometric Temperature Coefficient	W option, Wiper Register set to 80 hex		8		ppm $/{ }^{\circ} \mathrm{C}$
		U option, Wiper Register set to 80 hex		4		ppm $/{ }^{\circ} \mathrm{C}$
		T option, Wiper Register set to 80 hex		2.3		ppm $/{ }^{\circ} \mathrm{C}$
	Large Signal Wiper Settling Time	From code 0 to FF hex		300		ns
$\mathrm{f}_{\text {cutoff }}$	-3dB Cutoff Frequency	Wiper at middle point W option		1200		kHz
		Wiper at middle point U option		250		kHz
		Wiper at middle point T option		120		kHz

RHEOSTAT MODE (Measurements between RW and RL pins with RH not connected, or between RW and RH with RL not connected)

RINL(Note 18)	Integral Non-linearity, Guaranteed Monotonic	W option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-2.0	± 1	+2.0	$\begin{gathered} \text { MI } \\ \text { (Note 15) } \end{gathered}$
		W option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		10.5		$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-1.0	± 0.3	+1.0	$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		2.1		$\begin{gathered} \text { MI } \\ \text { (Note 15) } \end{gathered}$
$\begin{aligned} & \text { RDNL } \\ & \text { (Note 17) } \end{aligned}$	Differential Non-linearity, Guaranteed Monotonic	W option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-1	± 0.4	+1	$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		W option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		± 0.6		$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	-0.5	± 0.15	+0.5	$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		± 0.35		$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$

Analog Specifications $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}$ to 5.5 V over recommended operating conditions unless otherwise stated. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 20) } \end{gathered}$	$\begin{aligned} & \text { TYP } \\ & \text { (Note 8) } \end{aligned}$	$\begin{gathered} \text { MAX } \\ \text { (Note 20) } \end{gathered}$	UNITS
$\begin{gathered} R_{\text {offset }} \\ \text { (Note 16) } \end{gathered}$	Offset, Wiper at 0 Position	W option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	0	3	5.5	$\begin{gathered} \text { MI } \\ \text { (Note 15) } \end{gathered}$
		W option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		6.3		$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	0	0.5	2	$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
		U, T option; $\mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$		1.1		$\begin{gathered} \mathrm{MI} \\ \text { (Note 15) } \end{gathered}$
$\begin{gathered} \text { TCR } \\ \text { (Note 19) } \end{gathered}$	Resistance Temperature Coefficient	W option; Wiper register set between 32 hex and FF hex		220		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		U option; Wiper register set between 32 hex and FF hex		100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		Toption; Wiper register set between 32 hex and FF hex		75		ppm $/{ }^{\circ} \mathrm{C}$

Operating Specifications
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=1.2 \mathrm{~V}$ to 5.5 V over recommended operating conditions unless otherwise stated. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 20) } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { (Note 8) } \end{gathered}$	MAX (Note 20)	UNITS
ILogic	VLogic Supply Current (Write/Read)	$\begin{aligned} & \mathrm{V}_{\mathrm{LOGIC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{SCK}}=5 \mathrm{MHz} \text { (for SPI active read and write) } \end{aligned}$			1.5	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.7 \mathrm{~V}, \\ & \mathrm{fS}_{\mathrm{SCK}}=1 \mathrm{MHz} \text { (for SPI active read and write) } \end{aligned}$			30	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	VCC Supply Current (Write/Read)	$\mathrm{V}_{\text {LOGIC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {LOGIC }}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.7 \mathrm{~V}$			10	$\mu \mathrm{A}$
ILogic sb	$\mathrm{V}_{\text {LOGIC }}$ Standby Current	$\mathrm{V}_{\text {LOGIC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, SPI interface in standby			1.3	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {LOGIC }}=1.2 \mathrm{v}, \mathrm{V}_{\mathrm{CC}}=1.7 \mathrm{~V}$, SPI interface in standby			0.4	$\mu \mathrm{A}$
$I_{\text {cc SB }}$	$\mathrm{V}_{\text {CC }}$ Standby Current	$\mathrm{V}_{\text {LOGIC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, SPI interface in standby			1.5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.7 \mathrm{~V}$, SPl interface in standby			1	$\mu \mathrm{A}$
Logic shdn	$\mathrm{V}_{\text {LOGIC }}$ Shutdown Current	$\mathrm{V}_{\text {LOGIC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, SPI interface in standby			1.3	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.7 \mathrm{~V}$, SPI interface in standby			0.4	$\mu \mathrm{A}$
ICC ShDN	V_{CC} Shutdown Current	$\mathrm{V}_{\text {LOGIC }}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, SPI interface in standby			1.5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{LOGIC}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=1.7 \mathrm{~V}$, SPI interface in standby			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LkgDig }}$	Leakage Current, at Pins $\overline{\text { CS }}$, SDO, SDI, SCK	Voltage at pin from GND to $\mathrm{V}_{\text {LOGIC }}$	-0.4	<0.1	0.4	$\mu \mathrm{A}$

Operating Specifications
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=1.2 \mathrm{~V}$ to 5.5 V over recommended operating conditions unless otherwise stated. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN (Note 20)	TYP (Note 8)	MAX (Note 20)	UNITS
${ }^{\text {D }}$ DCP	Wiper Response Time	W option; $\overline{\mathrm{CS}}$ rising edge to wiper new position, from 10% to 90% of final value.		0.4		$\mu \mathrm{s}$
		U option; $\overline{\mathrm{CS}}$ rising edge to wiper new position, from 10% to 90% of final value.		1.5		$\mu \mathrm{s}$
		T option; $\overline{\mathrm{CS}}$ rising edge to wiper new position, from 10% to 90% of final value.		3.5		$\mu \mathrm{s}$
tShdnRec	DCP Recall Time From Shutdown Mode	$\overline{\mathrm{CS}}$ rising edge to wiper recalled position and RH connection		1.5		$\mu \mathrm{s}$
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{LOGIC}}$ Ramp	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {LOGIC }}$ Ramp Rate	Ramp monotonic at any level	0.01		50	V / ms

Serial Interface Specification For SCK, SDI, SDO, CS Unless Otherwise Noted.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN (Note 20)	TYP (Note 8)	MAX (Note 20)	UNITS
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3		$0.3 \times V_{\text {LOGIC }}$	V
V_{IH}	Input HIGH Voltage		$0.7 \times V_{\text {LOGIC }}$		$\mathrm{V}_{\text {LOGIC }}+0.3$	V
Hysteresis	SDI and SCK Input Buffer Hysteresis	$\mathrm{V}_{\text {LOGIC }}>2 \mathrm{~V}$	$0.05 \times V_{\text {LOGIC }}$			V
		$\mathrm{V}_{\text {LOGIC }}<2 \mathrm{~V}$	$0.1 \times V_{\text {LOGIC }}$			
V_{OL}	SDO Output Buffer LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}, \mathrm{~V}_{\text {LOGIC }}>2 \mathrm{~V}$	0		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}, \mathrm{~V}_{\text {LOGIC }}<2 \mathrm{~V}$			$0.2 \times \mathrm{V}_{\text {LOGIC }}$	V
R_{pu} (Note 19)	SDO Pull-up Resistor Off-chip	Maximum is determined by $t_{R O}$ and $t_{F O}$ with maximum bus load $\mathrm{Cb}=30 \mathrm{pF}, \mathrm{f}$ SCK $=5 \mathrm{MHz}$			1.5	k Ω
$\mathrm{C}_{\text {pin }}$	SCK, SDO, SDI, $\overline{\mathbf{C S}}$ Pin Capacitance			10		pF
${ }_{\text {f SCK }}$	SCK Frequency	$\mathrm{V}_{\text {LOGIC }}=1.7 \mathrm{~V}$ to 5.5 V			5	MHz
		$\mathrm{V}_{\text {LOGIC }}=1.2 \mathrm{~V}$ to 1.6 V			1	MHz
${ }^{\text {crec }}$	SPI Clock Cycle Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	200			ns
${ }^{\text {W WH }}$	SPI Clock High Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	100			ns
${ }^{\text {WL }}$	SPI Clock Low Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	100			ns
${ }_{\text {t LEAD }}$	Lead Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	250			ns
$t_{\text {LAG }}$	Lag Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	250			ns
${ }^{\text {t }}$ U	SDI, SCK and $\overline{\mathrm{CS}}$ Input Setup Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	50			ns
t_{H}	SDI, SCK and $\overline{\text { CS }}$ Input Hold Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	50			ns
$t_{\text {RI }}$	SDI, SCK and $\overline{\text { CS }}$ Input Rise Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	10			ns
t_{FI}	SDI, SCK and $\overline{\mathbf{C S}}$ Input Fall Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	10		20	ns
${ }^{\text {DIS }}$	SDO Output Disable Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	0		100	ns
$\mathrm{t}_{\text {So }}$	SDO Output Setup Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	50			ns
t_{V}	SDO Output Valid Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	150			ns
t_{HO}	SDO Output Hold Time	$\mathrm{V}_{\text {LOGIC }} \geq 1.7 \mathrm{~V}$	0			ns
t_{RO}	SDO Output Rise Time	$\mathrm{R}_{\text {pu }}=1.5 \mathrm{k}, \mathrm{Cbus}=30 \mathrm{pF}$			60	ns
t_{FO}	SDO Output Fall Time	$\mathrm{R}_{\mathrm{pu}}=1.5 \mathrm{k}, \mathrm{Cbus}=30 \mathrm{pF}$			60	ns

Serial Interface Specification For SCK, SDI, SDO, © $\overline{C S}$ Unless Otherwise Noted. (Continued)

SYMBOL	PARAMETER	MIN (Note 20)	TYP (Note 8)	MAX (Note 20)	UNITS
t_{CS}	$\overline{\mathrm{CS}}$ Deselect Time CONDITIONS				

NOTES:
8. Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and 3.3 V supply voltages.
9. $L S B=\left[V(R W)_{255}-V(R W)_{0}\right] / 255 . V(R W)_{255}$ and $V(R W)_{0}$ are $V(R W)$ for the DCP register set to FF hex and 00 hex respectively. LSB is the incremental voltage when changing from one tap to an adjacent tap.
10. ZS error $=\mathrm{V}(\mathrm{RW})_{0} / \mathrm{LSB}$.
11. FS error $=\left[\mathrm{V}(\mathrm{RW})_{255}-\mathrm{V}_{\mathrm{CC}}\right] / \mathrm{LSB}$.
12. $\mathrm{DNL}=\left[\mathrm{V}(\mathrm{RW})_{\mathrm{i}}-\mathrm{V}(\mathrm{RW})_{\mathrm{i}-1}\right] / \mathrm{LSB}-1$, for $\mathrm{i}=1$ to 255 . i is the DCP register setting.
13. $\operatorname{INL}=\left[V(R W)_{i}-i \cdot L S B-V(R W)_{0}\right] / L S B$ for $i=1$ to 255
14. $\mathrm{T} C_{V}=\frac{\operatorname{Max}\left(\mathrm{V}(\mathrm{RW})_{\mathrm{i}}\right)-\operatorname{Min}\left(\mathrm{V}(\mathrm{RW})_{\mathrm{i}}\right)}{\mathrm{V}\left(\mathrm{RWi}\left(+25^{\circ} \mathrm{C}\right)\right)} \times \frac{10^{6}}{+165^{\circ} \mathrm{C}} \quad \begin{aligned} & \text { for } \mathrm{i}=16 \text { to } 255 \text { decimal, } \mathrm{T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text {. Max() is the maximum value of the wiper voltage } \text { and is the minimum value of the wiper voltage over the temperature range. }\end{aligned}$
15. $\mathbf{M I}=\left|R W_{255}-R W_{0}\right| / 255$. $M I$ is a minimum increment. $R W_{255}$ and $R W_{0}$ are the measured resistances for the DCP register set to FF hex and 00 hex respectively.
16. Roffset $=\mathrm{RW}_{0} / \mathrm{MI}$, when measuring between RW and RL.

Roffset $=$ RW $255 / \mathrm{MI}$, when measuring between RW and RH.
17. RDNL $=\left(R W_{i}-R W_{i-1}\right) / M I-1$, for $i=16$ to 255.
18. RINL $=\left[R W_{i}-(M I \cdot i)-R W_{0}\right] / M I$, for $i=16$ to 255.
19. $\Gamma C_{R}=\frac{[\mathrm{Max}(\mathrm{Ri})-\mathrm{Min}(\mathrm{Ri})]}{\mathrm{Ri}\left(+25^{\circ} \mathrm{C}\right)} \times \frac{10^{6}}{+165^{\circ} \mathrm{C}} \quad \begin{aligned} & \text { for } \mathrm{i}=16 \text { to } 255, \mathrm{~T}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text {. } \mathrm{Max}() \text { is the maximum value of the resistance and } \mathrm{Min}() \text { is the } \\ & \text { mine }\end{aligned}$
20. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

DCP Macro Model

Timing Diagrams

Input Timing

SDO

Timing Diagrams (Continued)

Output Timing

XDCPTM Timing (for All Load Instructions)

Typical Performance Curves

FIGURE 3. 10 k DNL vs TAP POSITION, $\mathrm{V}_{\mathbf{c c}}=\mathbf{5 V}$

FIGURE 4. 50 k DNL vs TAP POSITION, $\mathrm{V}_{\mathbf{c c}}=\mathbf{5 V}$

Typical Performance Curves (continued)

FIGURE 5. $\mathbf{1 0} \mathrm{k}$ INL vs TAP POSITION, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 7. 10k RDNL vs TAP POSITION, $\mathbf{v}_{\mathbf{c c}}=\mathbf{5 V}$

FIGURE 9. 10 k RINL vs TAP POSITION, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 6. 50 k INL vs TAP POSITION, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 8. 50 k RDNL vs TAP POSITION, $\mathrm{v}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 10. 50 k RINL vs TAP POSITION, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}$

Typical Performance Curves (Continued)

FIGURE 11. 10k WIPER RESISTANCE vs TAP POSITION, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 13. 10k TCv vs TAP POSITION

FIGURE 15. 10k TCr vs TAP POSITION

FIGURE 12. 50k WIPER RESISTANCE vs TAP POSITION, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}$

FIGURE 14. 50k TCv vs TAP POSITION

FIGURE 16. 50k TCr vs TAP POSITION

Typical Performance Curves (continued)

FIGURE 17. 100k TCv vs TAP POSITION

FIGURE 19. WIPER DIGITAL FEEDTHROUGH

FIGURE 21. WIPER LARGE SIGNAL SETTLING TIME

FIGURE 18. 100 k TCr vs TAP POSITION

FIGURE 20. WIPER TRANSITION GLITCH

FIGURE 22. POWER-ON START-UP IN VOLTAGE DIVIDER MODE

Typical Performance Curves (continued)

FIGURE 23. 10k -3dB CUT OFF FREQUENCY

Functional Pin Description

Potentiometers Pins

RH AND RL

The high (RH) and low (RL) terminals of the ISL23415 are equivalent to the fixed terminals of a mechanical potentiometer. The RH and RL are referenced to the relative position of the wiper and not the voltage potential on the terminals. With the WR register set to 255 decimal, the wiper will be closest to RH, and with the WR register set to 0 , the wiper is closest to RL.

RW

The RW is the wiper terminal, and it is equivalent to the moveable terminal of a mechanical potentiometer. The position of the wiper within the array is determined by the WR register.

Power Pins

$v_{c c}$

Power terminal for the potentiometer section analog power source. Can be any value needed to support voltage range of DCP pins, from 1.7 V to 5.5 V , independent of the $\mathrm{V}_{\text {LOGIC }}$ voltage.

Bus Interface Pins

SERIAL CLOCK (SCL)

This input is the serial clock of the SPI serial interface.

SERIAL DATA INPUT (SDI)

The SDI is a serial data input pin for SPI interface. It receives operation code, wiper address and data from the SPI remote host device. The data bits are shifted in at the rising edge of the serial clock SCK, while the CS input is low.

SERIAL DATA OUTPUT (SDO)

The SDO is a serial data output pin. During a read cycle, the data bits are shifted out on the falling edge of the serial clock SCK and will be available to the master on the following rising edge of SCK.

FIGURE 24. STANDBY CURRENT vs TEMPERATURE

The output type is configured through ACR[1] bit for Push-Pull or Open Drain operation. Default setting for this pin is Push-Pull. An external pull-up resistor is required for Open Drain output operation. When CS is HIGH, the SDO pin is in tri-state (Z) or high-tri-state (Hi-Z) depends on the selected configuration.

CHIP SELECT ($\overline{\mathbf{C S}}$)

$\overline{\mathrm{CS}}$ LOW enables the ISL23415, placing it in the active power mode. A HIGH to LOW transition on $\overline{C S}$ is required prior to the start of any operation after power-up. When $\overline{\mathrm{CS}}$ is HIGH, the ISL23415 is deselected and the SDO pin is at high impedance, and the device will be in the standby state.

VLogic

Digital power source for the logic control section. It supplies an internal level translator for 1.2 V to 5.5 V serial bus operation. Use the same supply as the $\mathrm{I}^{2} \mathrm{C}$ logic source.

Principles of Operation

The ISL23415 is an integrated circuit incorporating one DCP with its associated registers and an SPI serial interface providing direct communication between a host and the potentiometer.
The resistor array is comprised of individual resistors connected in series. At either end of the array and between each resistor is an electronic switch that transfers the potential at that point to the wiper.

The electronic switches on the device operate in a "make before break" mode when the wiper changes tap positions.

Voltage at any DCP pins, RH, RL or RW, should not exceed $V_{C C}$ level at any conditions during power-up and normal operation.

The $\mathrm{V}_{\text {LOGIC }}$ pin needs to be connected to the SPI bus supply which allows reliable communication with the wide range of microcontrollers and independent of the $V_{C C}$ level. This is extremely important in systems where the digital supply has lower levels than the analog supply.

DCP Description

Each DCP is implemented with a combination of resistor elements and CMOS switches. The physical ends of DCP are equivalent to the fixed terminals of a mechanical potentiometer (RH and RL pins). The RW pin of the DCP is connected to intermediate nodes, and is equivalent to the wiper terminal of a mechanical potentiometer. The position of the wiper terminal within the DCP is controlled by the 8-bit volatile Wiper Register (WR). When the WR of a DCP contains all zeroes (WR[7:0] = 00h), its wiper terminal (RW) is closest to its "Low" terminal (RL). When the WR register of a DCP contains all ones (WR[7:0] = FFh), its wiper terminal (RW) is closest to its "High" terminal (RH). As the value of the WR increases from all zeroes (0) to all ones (255 decimal), the wiper moves monotonically from the position closest to RL to the position closest to RH. At the same time, the resistance between RW and RL increases monotonically, while the resistance between RH and RW decreases monotonically.

While the ISL23415 is being powered up, the WR is reset to 80h (128 decimal), which locates RW roughly at the center between RL and RH.

The WR can be read or written to directly using the SPI serial interface as described in the following sections.

Memory Description

The ISL23415 contains two volatile 8-bit registers: the Wiper Register (WR) and the Access Control Register (ACR). Memory map of ISL23415 is in Table 1. The Wiper Register WR at address 0 contains current wiper position of the DCP. The Access Control Register (ACR) at address 10h contains information and control bits described in Table 2.

TABLE 1. MEMORY MAP

ADDRESS (hex)	VOLATILE	DEFAULT SETTING (hex)
10	ACR	40
0	WR	80

TABLE 2. ACCESS CONTROL REGISTER (ACR)

BIT \#	7	6	5	4	3	2	1	0
NAME	0	$\overline{\text { SHDN }}$	0	0	0	0	SDO	0

The SDO bit (ACR[1]) configures type of SDO output pin. The default value of SDO bit is 0 for Push-Pull output. The SDO pin can be configured as Open Drain output for some applications. In this case, an external pull-up resistor is required, reference the "Serial Interface Specification" on page 7.

Shutdown Function

The SHDN bit (ACR[6]) disables or enables shutdown mode for all DCP channels simultaneously. When this bit is 0 , i.e., each DCP is forced to end-to-end open circuit and each RW shorted to RL through a $2 \mathrm{k} \Omega$ serial resistor, as shown in Figure 25. Default value of the $\overline{\mathrm{SHDN}}$ bit is 1 .

FIGURE 25. DCP CONNECTION IN SHUTDOWN MODE
When the device enters shutdown, all current DCP WR settings are maintained. When the device exits shutdown, the wipers will return to the previous WR settings after a short settling time (see Figure 26).

FIGURE 26. SHUTDOWN MODE WIPER RESPONSE

SPI Serial Interface

The ISL23415 supports an SPI serial protocol, mode 0 . The device is accessed via the SDI input and SDO output with data clocked in on the rising edge of SCK, and clocked out on the falling edge of SCK. $\overline{C S}$ must be LOW during communication with the ISL23415. The SCK and $\overline{\mathrm{CS}}$ lines are controlled by the host or master. The ISL23415 operates only as a slave device.

All communication over the SPI interface is conducted by sending the MSB of each byte of data first.

Protocol Conventions

The SPI protocol contains Instruction Byte followed by one or more Data Bytes. A valid Instruction Byte contains instruction as the three MSBs, with the following five register address bits (see Table 3).

The next byte sent to the ISL23415 is the Data Byte.
TABLE 3. INSTRUCTION BYTE FORMAT

BIT \#	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
	12	I1	IO	R4	R3	R2	R1	R0

Table 4 contains a valid instruction set for ISL23415.
If the [R4:R0] bits are zero or one, then the read or write is to the WRi register. If the [R4:R0] are 10000, then the operation is to the ACR.

TABLE 4. INSTRUCTION SET

INSTRUCTION SET								
$\mathbf{I 2}$	I1	I0	R4	R3	R2	R1	R0	
0	0	0	X	X	X	X	X	NOP
0	0	1	X	X	X	X	X	ACR READ
0	1	1	X	X	X	X	X	ACR WRTE
1	0	0	R4	R3	R2	R1	R0	WRi or ACR READ
1	1	0	R4	R3	R2	R1	R0	WRi or ACR WRTE

Where X means "do not care".

FIGURE 27. TWO BYTE WRITE SEQUENCE

FIGURE 28. FOUR BYTE READ SEQUENCE

Write Operation

A write operation to the ISL23415 is a two or more bytes operation. It requires first, the $\overline{\mathbf{C S}}$ transition from HIGH-to-LOW. Then the host sends a valid Instruction Byte, followed by one or more Data Bytes to the SDI pin. The host terminates the write operation by pulling the $\overline{\mathrm{CS}}$ pin from LOW-to-HIGH. Instruction is executed on the rising edge of $\overline{\mathbf{C S}}$ (see Figure 27).

Read Operation

A Read operation to the ISL23415 is a four byte operation. It requires first, the $\overline{\mathrm{CS}}$ transition from HIGH-to-LOW. Then the host sends a valid Instruction Byte, followed by a "dummy" Data Byte, NOP Instruction Byte and another "dummy" Data Byte to SDI pin. The SPI host receives the Instruction Byte (instruction code + register address) and requested Data Byte from SDO pin on the rising edge of SCK during third and fourth bytes, respectively. The host terminates the read by pulling the $\overline{\mathrm{CS}}$ pin from LOW-to-HIGH (see Figure 28).

Applications Information

Communicating with ISL23415

Communication with ISL23415 proceeds using SPI interface through the ACR (address 10000b) and WR (addresses 00000b) registers.

The wiper of the potentiometer is controlled by the WR register. Writes and reads can be made directly to these register to control and monitor the wiper position.

Daisy Chain Configuration

When application needs more than one ISL23415, it can communicate with all of them without additional $\overline{\text { CS }}$ lines by daisy chaining the DCPs as shown on Figure 29. In Daisy Chain configuration, the SDO pin of the previous chip is connected to the SDI pin of the following chip, and each $\overline{\mathrm{CS}}$ and SCK pins are connected to the corresponding microcontroller pins in parallel, like regular SPI interface implementation. The Daisy Chain configuration can also be used for simultaneous setting of multiple DCPs. Note, the number of daisy chained DCPs is limited only by the driving capabilities of SCK and $\overline{\text { CS }}$ pins of microcontroller; for larger number of SPI devices buffering of SCK and $\overline{\text { CS }}$ lines is required.

Daisy Chain Write Operation

The write operation starts by HIGH-to-LOW transition on $\overline{\mathrm{CS}}$ line, followed by \mathbf{N} number of two bytes write instructions on SDI line with reversed chain access sequence: the instruction byte + data byte for the last DCP in chain is going first, as shown in Figure 30, where N is a number of DCPs in chain. The serial data is going through DCPs from DCPO to DCP(N-1) as follow: DCPO \rightarrow DCP1 $->$ DCP2 $\rightarrow>$... \rightarrow DCP(N-1). The write instruction is executed on the rising edge of $\overline{\mathbf{C S}}$ for all N DCPs simultaneously.

Daisy Chain Read Operation

The read operation consists of two parts: first, send the read instructions (N two bytes operation) with valid address; second, read the requested data while sending NOP instructions (N two bytes operation) as shown in Figures 31 and 32.

The first part starts by HIGH-to-LOW transition on $\overline{\mathrm{CS}}$ line, followed by N two bytes read instruction on SDI line with reversed chain access sequence: the instruction byte + dummy data byte for the last DCP in chain is going first, followed by LOW-to-HIGH transition on $\overline{\mathrm{CS}}$ line. The read instructions are executed during second part of read sequence. It also starts by HIGH-to-LOW transition on $\overline{\mathrm{CS}}$ line, followed by N number of two bytes NOP instructions on SDI line and LOW-to-HIGH transition of $\overline{\mathrm{CS}}$. The data is read on every even byte during second part of read sequence while every odd byte contains code 111b followed by address from which the data is being read.

Wiper Transition

When stepping up through each tap in voltage divider mode, some tap transition points can result in noticeable voltage transients, or overshoot/undershoot, resulting from the sudden transition from a very low impedance "make" to a much higher impedance "break within a short period of time ($<1 \mu \mathrm{~s}$). There are several code transitions such as 0 Fh to $10 \mathrm{~h}, 1 \mathrm{Fh}$ to $20 \mathrm{~h}, \ldots$. , EFh to FFh, which have higher transient glitch. Note, that all switching transients will settle well within the settling time as stated in the datasheet. A small capacitor can be added externally to reduce the amplitude of these voltage transients, but that will also reduce the useful bandwidth of the circuit, thus may not be a good solution for some applications. It may be a good idea, in that case, to use fast amplifiers in a signal chain for fast recovery.

VLogic Requirements

It is recommended to keep $V_{\text {LOGIC }}$ powered all the time during normal operation. In a case where turning $V_{\text {LOGIC }}$ OFF is necessary, it is recommended to ground the $V_{\text {LOGIC }}$ pin of the ISL23415. Grounding the $\mathrm{V}_{\text {LOGIC }}$ pin or both $\mathrm{V}_{\text {LOGIC }}$ and $\mathrm{V}_{\text {CC }}$ does not affect other devices on the same bus. It is good practice to put a $1 \mu \mathrm{~F}$ capacitor in parallel with $0.1 \mu \mathrm{~F}$ decoupling capacitor close to the $\mathrm{V}_{\text {LOGIC }}{ }^{\text {pin. }}$

$\mathbf{V}_{\text {cc }}$ Requirements and Placement

It is recommended to put a $1 \mu \mathrm{~F}$ capacitor in parallel with $0.1 \mu \mathrm{~F}$ decoupling capacitor close to the $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$.

FIGURE 29. DAISY CHAIN CONFIGURATION

FIGURE 30. DAISY CHAIN WRITE SEQUENCE OF N = 3 DCP

FIGURE 31. TWO BYTE READ INSTRUCTION

FIGURE 32. DAISY CHAIN READ SEQUENCE OF $\mathbf{N}=3$ DCP

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
$12 / 15 / 10$	FN7780.0	Initial Release.
$7 / 28 / 11$	FN7780.1	Added "Shutdown Function" section and revised "V $\mathrm{V}_{\text {LOGIC }}$ Standby Current"and " $\mathrm{V}_{\text {CC }}$ Shutdown Current" limits on page 6. On page 7, split "Wiper Response Time" up into 3 separate conditions for each option (W, U, T).

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL23415

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

[^0]Mini Small Outline Plastic Packages (MSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-187BA.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. Dimension " D " does not include mold flash, protrusions or gate burrs and are measured at Datum Plane. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions and are measured at Datum Plane. $-\mathrm{H}-$ Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. Formed leads shall be planar with respect to one another within $0.10 \mathrm{~mm}(.004)$ at seating Plane.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of " b " dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Datums $-\mathrm{A}-$ and $-\mathrm{B}-$ to be determined at Datum plane $-\mathrm{H}-$.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only

M10.118 (JEDEC MO-187BA)
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.037	0.043	0.94	1.10	-
A1	0.002	0.006	0.05	0.15	-
A2	0.030	0.037	0.75	0.95	-
b	0.007	0.011	0.18	0.27	9
c	0.004	0.008	0.09	0.20	-
D	0.116	0.120	2.95	3.05	3
E1	0.116	0.120	2.95	3.05	4
e	0.020 BSC		0.50 BSC		-
E	0.187	0.199	4.75	5.05	-
L	0.016	0.028	0.40	0.70	6
L1	0.037 REF		0.95 REF		-
N	10		10		7
R	0.003	-	0.07	-	-
R1	0.003	-	0.07	-	-
θ	5^{0}	15°	5^{0}	15°	-
α	0^{0}	6°	0°	6°	-

Rev. 0 12/02

Package Outline Drawing

L10.2.1x1.6A

10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 5, 3/10

NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
2. All Dimensions are in millimeters. Angles are in degrees. Dimensions in () for Reference Only.
3. Unless otherwise specified, tolerance : Decimal ± 0.05

Lead width dimension applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Maximum package warpage is 0.05 mm .
6. Maximum allowable burrs is 0.076 mm in all directions.
7. Same as JEDEC MO-255UABD except:

No lead-pull-back, MIN. Package thickness $=0.45$ not 0.50 mm
Lead Length dim. $=0.45 \mathrm{~mm}$ max. not 0.42 mm .
The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.

Стандарт Злектрон Связь

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:
Телефон: +7 8126271435
Электронная почта: sales@st-electron.ru
Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера H, помещение 100-Н Офис 331

[^0]: For information regarding Intersil Corporation and its products, see www.intersil.com

