User Manual, V 1.7, January 2001

i C166S V2

* 16-Bit Microcontroller

Microcontrollers

o~

< Infineon
technologies

Never stop thinking.

Edition 2001-01

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 Miinchen, Germany

© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

User Manual, V 1.7, January 2001

C166S V2

16-Bit Microcontroller

Microcontrollers

o~

Infineon
technologies

Never stop thinking.

C166S V2

Revision History: 2001-01 V1.7

Previous Version: -

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

ce.cmd@infineon.com

o
(Infineon User Manual
technologies C166$ V2

Table of Contents Page
1 Introduction 9
1.1 Technical Overview e e 9
1.2 System Description 10
1.2.1 CPU 11
1.2.2 On-Chip Memory Modules i 12
1.2.3 Data Management Unit (DMU) 12
1.2.4 Program Memory Unit (PMU) 12
1.2.5 Interrupt and PEC Controller 13
1.2.6 OCDS and JTAG ...t e 13
1.2.7 External Bus Controller (EBC) 13
1.2.8 System Control Unit (SCU) 13
1.2.9 Clock Generation Unit (CGU) 14
1.2.10 On-Chip Bootstrap Loader i 14
2 Central Processing Unit 15
2.1 Register Description Format 17
2.2 CPU Special Function Registers 18
2.3 Instruction Fetch and Program Flow Control 19
2.3.1 Branch Target AddressingModes oo, 20
2.3.2 Branch Detection and Branch Prediction 22
2.3.3 Sequential and Mispredicted Instruction Flow 24
2.3.3.1 Correctly Predicted Instruction Flow 24
2.3.3.2 Incorrectly Predicted Instruction Flow 26
2.3.4 Atomic and Extend Instructionsol 27
2.3.5 Code Addressing via Code Segment and Instruction Pointer 28
2.3.6 IFU Control Registers 30
2.3.6.1 The CPU Configuration Register CPUCONT 30
2.3.6.2 The CPU Configuration Register CPUCON2 31
2.4 Use of General Purpose Registers 34
2.4.1 Memory Mapped GPR Banks and the Global Register Bank 36
2.4.2 Local RegisterBank 40
24.3 Context Switch 40
2.4.3.1 Changing the selected Physical RegisterBank 40
2.4.3.2 Context Switching of the Global RegisterBank 42
2.5 Data Addressingo e 45
251 Short Addressing Modes 46
25.2 Long and Indirect AddressingModes 48
2.5.2.1 Addressing via Data Page Pointer DPP 49
2522 DPP Override Mechanism in the C166S V2CPU 51
2523 Long AddressingMode 52
2524 Indirect AddressingModes 53
2.5.3 DSP Addressing 56
254 The CoREG AddressingMode 63

User Manual 5 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Table of Contents Page
255 The System Stack 64
2.6 Data Processingo e 68
2.6.1 Data Types e 68
2.6.2 Constants e 70
2.6.3 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit 70
2.6.4 Bit Manipulation Unit 70
2.6.5 Multiply and Divide Unit e 71
2.6.6 The Processor Status Word PSW 74
2.7 Parallel Data Processing 78
2.7.1 Representation of Numbers and Rounding 79
2.7.2 The 16-bit by 16-bit signed/unsigned Multiplier and Scaler 80
2.7.3 Concatenation Unit 80
2.7.4 One-bit Scaler 80
2.7.5 The 40-bit Adder/Subtracter 81
2.7.6 The Data Limiter 81
2.7.7 The Accumulator Shifter 82
2.7.8 The 40-bit Signed Accumulator Register 82
2.7.9 The Repeat Counter MBRW 84
2.7.10 The MAC Unit Status Word MSW 85
2.7.11 The MAC Unit Control Word MCW 88
2.8 Dedicated CSFRs 89
3 C166S V2 Memory Organization 91
3.1 Data Organizationin Memory 93
3.2 Internal Program Memory 93
3.3 DPRAM, Internal SRAM, and SFR Areasc.coiou.... 94
3.3.1 Data Memories 94
3.3.2 Special Function Register Areas 96
3.3.3 1@ Y- 97
3.34 PEC Source and Destination Pointers 97
3.4 External Memory Space 98
3.4.1 Boot and Debug/Monitor Program Memories 98
3.5 Crossing Memory Boundaries i 99
3.6 System Stack 99
3.6.1 Data Organization in Global General Purpose Registers 100
4 Instruction Pipeline 103
4.1 Instruction Dependencies in Different Pipeline Stages 104
4.1.1 The General Purpose Registers 104
4.1.2 Indirect AddressingModes 106
41.3 Memory Bandwidth Conflicts 107
4.1.4 CPU-SFRs andthe Pipeline 110
5 Interrupt and Exception Handling 117

User Manual 6 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

5.1

5.1.1
51.2
51.3
514
51.5
5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.3

5.3.1
5.3.2
5.4

5.4.1
54.2
54.3
54.4
5.5

6

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.5.1
6.3.5.2
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.7

Interrupt Systemand Control 118
General Interrupt System Structure L. 118
Interrupt Arbitration 120
Interrupt Control 122
Interrupt Vector Table 124
Interrupt Jump Table Cache 125

Status and Switch Context Control 127
Interrupt Control Functionsinthe PSW 127
Saving the Status during Interrupt Service 129
Context Switching 130
Fast Bank Switching 131

TrAPS .« 132
Software Trapso 132
Hardware Traps e 133

Peripheral Event Controller 138
PEC Control Registers e 139
The PEC Source and Destination Pointer 145
PEC Handler Interrupt Actions Summary 147
PEC Channel Assignment and Arbitration 149

CPU Action Control Unit 151

External Bus Controller 153

Introduction 153

Timing Principles 154
A Phase ... 157
B Phase 157
CPhase ... 157
DPhase 157
EPhase 157
FPhase 158

Functional Description 158
Configuration Register Overview 158
The EBC MODE Registers EBCMODx 158
The Timing Configuration registers TCONCSx 161
The Function Configuration Registers FCONCSx 163
The Address Window Selection Registers ADDRSELX 164

Definition of Address Areas, 164
Address Window Arbitration L. 166
Ready Controlled Bus Cycles iiu... 167
General 167
The Synchronous/Asynchronous READY 168
Combining the READY function with predefined wait states 168
EBCldle State e 169

User Manual 7 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

6.4 Multi Master Systems e 169
6.4.1 External Bus Arbitration L 169
6.4.1.1 Initialization of Arbitration 169
6.4.1.2 Arbitration Master Scheme L 170
6.4.1.3 Arbitration Slave Scheme L. 171
6.4.1.4 Lockingthe Bus 171
6.4.2 Connecting Multimaster Systems 172
6.5 Fastest possible externalaccess 173
7 Instruction Set 175
7.1 Short Instruction Summary 175
7.2 Instruction Set Summary 178
7.3 Instruction Opcodes 192
8 Detailed Instruction Description 205
8.1 Normal Instruction Set 212
8.2 DSP Instruction Set e 315
8.3 Instructions for OCDS/ITC injection and System Control 417
9 Summary of CPU/Subsystem Registers 421
9.1 General Purpose Registers (GPRS) 421
9.2 Core Special Function Registers 423
9.2.1 Orderedby Name e 423
9.2.2 Ordered by Addressot e e 424
9.3 Register Overview Interrupt and Peripheral Event Controller 426
9.3.1 Orderedby Name i 426
9.3.2 Ordered by Addresso ot e e e 427
9.4 Register Overview External Bus Controller 430
9.4.1 Orderedby Name i i 430
94.2 Ordered by Address e 431
10 Keyword Index 433

User Manual 8 V1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Introduction

1 Introduction

C166S V2 is a member of the most recent generation of the popular C166
microcontroller cores. C166S V2 combines high performance with enhanced modular
architecture. It was developed to provide easy migration from standard existing C16x to
the new C166S V2 core with its impressive DSP performance and advanced interrupt
handling. The system architecture inherits successful hardware and software concepts
that have been established in the C16x 16-bit microcontroller families. C166 code
compatibility enable re-use of existing code. This dramatically reduces the time-to-
market for new product development.

The following features position C166S V2 strategically for contemporary and emerging
markets for performance-hungry real-time applications:

— High CPU performance. Single clock cycle execution doubles the performance at the
same CPU frequency (relative to the performance of the C166).

— Built-in advanced MAC unit dramatically increases DSP performance.

— High Internal Program Memory bandwidth and the instruction fetch pipeline
significantly improve program flow regularity and optimize fetches into the execution
pipeline.

— Sophisticated Data Memory structure and multiple high-speed data buses provide
transparent data access (0 cycles) and broad bandwidth for efficient DSP processing.

— Advanced exceptions handling block with multi-stage arbitration capability yields
stellar interrupt performance with extremely small latency.

— Upgraded Peripheral Event Controller supports efficient and flexible DMA features to
support a broad range of fast peripherals.

— Highly modular architecture and flexible bus structure provide effective methods of
integrating application-specific peripherals to produce customer-oriented derivatives.

This User's Manual describes the new standard C166S V2 core independently from its
use for the dedicated product. Differencies to existing standard products are therefore
described in the User’s Manual (or Target Specification) of the product.

1.1 Technical Overview

— b-stage execution pipeline

— 2-stage instruction fetch pipeline with FIFO for instruction pre-fetching

— Pipeline with forwarding that controls data dependencies in hardware

— Linear address space for code and data (von Neumann architecture)

— Multiple high bandwidth internal busses for data and instructions

— Enhanced memory map with extended 1/O areas

— 16 MBytes total linear address space

— C16x family compatible on-chip special function register area

— Fast multiplication (16-bit x 16-bit) in one CPU clock cycle

— Fast background execution of division (32-bit/16-bit) in 21 CPU clock cycles

User Manual 1-9 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Introduction

— Nearly all instructions executed in one CPU clock cycle

— Enhanced boolean bit manipulation facilities

— Zero cycle jump execution

— Additional instructions to support High Level Language (HLL) and operating systems
— Register-based design with multiple variable register banks

— Two additional fast register banks

— General purpose register architecture

— 16 General-purpose registers (GPRs) for byte operands

— 16 General-purpose registers (GPRs) for integer operands

— Overlapping 8-bit and 16-bit registers

— Opcode fully upward compatible with C166 family

— Variable stack with automatic stack overflow/underflow detection

— High performance branch-, call- and loop processing

— Multiply and accumulate instructions (MAC) executed in one CPU clock cycle
— Extremely short interrupt response time

— "Fast interrupt" and "Fast context switch" features

— Peripheral bus (PDBUS+) with bit protection

1.2 System Description

The basic C166S V2 System consists of the following main units:

» C166S V2 CPU

* On-Chip Data- and Code-Memories

e Data Management Unit (DMU)

* Program Management Unit (PMU)

* Interrupt and Peripheral Event Controller (PEC) Controller
* OCDS and JTAG-Interface

* External Bus Controller (EBC)

e System Control Unit (SCU)

» Clock Generation Unit (CGU)

The powerful C166S V2 core, the peripherals, and the internal memories of the
C166S V2 microcontroller are connected to various busses:

* 16-bit high performance system bus

e 16-bit enhanced peripheral bus (PDBUS+)
* 64-bit internal program memory bus

e 16-bit data memory bus

User Manual 1-10 V 1.7, 2001-01

—

(Infineon User Manual
techno|oegoies C1 668 V2

Introduction

Figure 1-1 shows a typical configuration of a C166S V2-based system.

C166S V2 MegaCore

y 3

C166S V2 CPU

v

Break
Interface

Injection

Trace
Interface | Interface

—T ‘ ‘
Y 111 ==
| wor | PLL
Interrupt Controller
scu cau T
Peripheral Event Controller
C166S V2 e
System ! ! ! <
High Speed System Bus
PDBUS+ 16
A
A
v \4 \4 \4 - o
= EBC Config.|

ocps - | JTAG External Bus Interface

PORT PORT PORT

Figure 1-1 C166S V2 System

1.2.1 CPU

— 5-stage execution pipeline

— 2-stage instruction fetch pipeline with FIFO for instruction pre-fetching
— Pipeline with forwarding that controls data dependencies in hardware
— Flexible PMU and DMU with cache capabilities

— Linear address space for code and data (von Neumann architecture)

— Multiple high bandwidth internal busses for data and instructions

— 16 MBytes total linear address space

— Nearly all instructions executed in one CPU clock cycle

— Enhanced boolean bit manipulation facilities

— Zero cycle jump execution

— Additional instructions to support HLL and operating systems

— Register-based design with multiple variable register banks

— Two additional fast register banks

— General purpose register architecture

— 16 General-purpose registers (GPRs) for byte operands

— 16 General-purpose registers (GPRs) for integer operands

User Manual 1-11 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Introduction

— Overlapping 8-bit and 16-bit registers

Multiply Accumulate Unit (MAC)

— Single cycle MAC with zero cycle latency including a 16*16 multiplier plus 40-bit barrel
shifter; single clock multiplication is ten times faster than C166 at the same CPU clock

— 40-bit accumulator to handle overflows

— Automatic saturation to 32 bit or rounding included with the MAC instruction

— Fractional numbers supported directly

— One Finite Impulse Response Filter (FIR) tap per cycle with no circular buffer
management

1.2.2 On-Chip Memory Modules

— Up to 3 KBytes on-chip dual ported SRAM for DSP data and register banks
— Up to 24 KBytes on-chip internal single ported SRAM module for data storage
— Up to 4 MBytes on-chip memory module for program storage

Note: The on-chip memory configuration may differ from product to product. Product
specific on-chip memory configurations are defined in the corresponding product
specifications.

1.2.3 Data Management Unit (DMU)

The Data Management Unit (DMU) handles all data transfers external to the core (i.e.
external memory or on-chip special function registers on the PDBUS+) and instruction
fetches in external memory. The DMU acts as a data mover between the various
interfaces. By handling all these interfaces, it incorporates the C166S V2 System Bus.
An access prioritization between External BUS Controller (EBC) accesses from the core
and Program Memory Unit (PMU) is handled by the DMU. This allows an instruction
fetch from external memory in parallel with data access that is not on EBC.

1.2.4 Program Memory Unit (PMU)

The PMU has two basic functions: to provide the CPU with instructions and to provide
the CPU (through the DMU) with data located in the Internal Program Memory. The
Internal Program Memory is implemented within the PMU.

The instructions requested by the CPU can be located in the Internal Program Memory;
in which case, the instructions are requested to the internal memory. Alternatively, they
can be located in external memory; in which case, the PMU re-sends this request to the
EBC through the DMU, receives the data from the external memory, through the EBC/
DMU, and delivers it as the requested instruction to the CPU.

User Manual 1-12 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Introduction

1.2.5 Interrupt and PEC Controller

16-Priority-level interrupt system with up to 128 sources on four group levels

Eight PEC channels with 24-bit source and destination pointers with segment pointer
registers

Enhanced PEC pointers. PEC source pointers and PEC destination pointers can be
simultaneously modified

Independent programmable PEC level and "End of PEC" interrupt

1.2.6 OCDS and JTAG

The OCDS (level 1) provides facilities to the debugger to emulate resources and assist
in application program debug. The main features are:

— Real time emulation

— Extended trigger capability including: instruction pointer events, data events on
address and/or value, external inputs, counters, chaining of events, timers, etc.

— Software break support

— Break and “break before make” (on IP events only)

— Interrupt servicing during break or monitor mode

— Simple monitor mode or JTAG based debugging through instruction injection

The C166S V2 OCDS is controlled by the debugger” through a set of registers
accessible from the JTAG interface. The OCDS also receives informations (such as IP,
data, status) from the core for monitoring the activity and generating triggers. Finally, the
OCDS interacts with the core through a break interface to suspend program execution,
and through an injection interface to allow execution of OCDS generated instructions.

1.2.7 External Bus Controller (EBC)

All external memory accesses are performed by a particular on-chip External Bus
Controller (EBC).

1.2.8 System Control Unit (SCU)

The System Control Unit supports all central control tasks and all product specific
features. The following typical sub-modules are implemented in this unit:

Reset Control
The reset function is controlled by the reset control unit.

) Debugger refers to the tool connected to the emulator, and more specifically to the OCDS via the JTAG and
which manages the emulation/debugging task.

User Manual 1-13 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Introduction

Power Saving Control

The Power Saving Control block, known from the power management of the C166
derivatives, manages idle mode, power down mode, and sleep mode of the C166S V2.

ID Control

A set of six identification registers is defined for the most important silicon parameters,
including the chip manufacturer, the chip type and its properties. These ID registers can
be used for automatic test selection.

External Interrupt Control
The C166S V2 System provides asynchronous fast external interrupt inputs.

Central System Control

The central system behavior of the C166S V2 is controlled by this block. The frequency
of the PDBUS+ (bus clock) and of all peripherals connected to this bus is programmable
according to the maximum physical bus speed and the application requirements.
Furthermore, the clock generation status is indicated. Depending on the application
state, various security levels (such as protected and unprotected mode) are supported
by the security level control state machine.

Watchdog Timer (WDT)

The Watchdog Timer is one of the fail-safe mechanisms that have been implemented to
prevent the controller from malfunctioning. However, the Watchdog Timer can detect
only long term malfunctions.

1.2.9 Clock Generation Unit (CGU)

The C166S V2 Clock Generation Unit uses either an oscillator or crystal to generate the
system clock. A programmable on-chip PLL adds high flexibility to clock generation for
the C166S V2.

1.2.10 On-Chip Bootstrap Loader

As in the C166, the on-chip bootstrap loader allows the start code to be moved into
internal RAM via the serial interface.

User Manual 1-14 V 1.7, 2001-01

.,.
(Infineon
technologies

User Manual
C166S V2

2

Central Processing Unit

Central Processing Unit

C166S V2 CPU represents the third generation of the well known C166 core family. It
combines many powerful enhancements with compatibility to the C166 family. The new
architecture results in high CPU performance, fast and efficient access to different kinds
of memories, and proficient peripheral units integration.

System-Bus
Internal Program Memory PWU
CPU DPRAM
Prefetch Unit Lo | IP | |—|VECSEG R
CPUCONT TR —I_'j_T;;ife‘?“
peline
Branch Unit CPUCON2
ranc ! CPUID 5-Stage
Pipeline
FIFO Return Stack Injection/Exception
IFU Handler IPIP
IDX0 QRO DPPO SPSEG [cp |
IDX1 QR1 DPP1 SP P addresg
Qxo DPP2 STKOV T
QX1 DPP3 STKUN Ria |
GPRs 7 |- i
- +- ADU = = 14 Ri4
—] [GPRs]
Mutily Uri MRW Division Unit [[Bit-Mask-Gen| R |] — —
Multiply Unit || Barrel-Shifter RO | R
MCW VDG U — RO
PSW
[mAH || MmAL | MDH MDL RF o
ZEROS || ONES . P ity
Buff
MAC ALU s 5 WB ‘— data oft
= = ? ¢¢ ? ¢¢
Peripheral-Bus System-Bus
Figure 2-1 CPU Architecture
User Manual 2-15 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

The new core architecture of the C166S V2 CPU results in higher CPU clock frequencies
and reduces the number of clock cycles per executed instruction by half, compared to
the C166 core. C166S V2 CPU also integrates a multiplication and accumulation unit
which dramatically increases performance of the DSP-intensive tasks.

C166S V2 CPU has eight main units that are listed below. All of these units have been
optimized to achieve maximum performance and flexibility.

* High Performance Instruction Fetch Unit (IFU)
— High Bandwidth Fetch Interface
— Instruction FIFO
— High Performance Branch-, Call-, and Loop-Processing with instruction flow
prediction

* Return Stack
— Injection/Exception Handler
— Handling of Interrupt Requests
— Handling of Hardware Failures

e Instruction Pipeline (IPIP)
— Bypassable 2-stage Prefetch Pipeline
— 5-stage Execution Pipeline

* Address and Data Unit (ADU)
— 16-bit arithmetic unit for address generation
— DSP address unit with a set of dedicated address- and offset pointers

e Arithmetic and Logic Unit (ALU)
— 8-bit and 16-bit Arithmetic Unit
— 16-bit Barrel Shifter

Multiplication and Division Unit

8-bit and 16-bit Logic Unit

— Bit manipulation Unit

e Multiply and ACcumulate Unit (MAC)
— 16-bit multiplier with 32-bit result generation”
— 40-bit Accumulator with 40-bit Barrel Shifter
— Repeat Control Unit

* Register File (RF)
— 5-port Register File with three independent register banks

* Write Back Buffer (WB)
— 3-entries buffer

1 The same hardware-multiplier is used in the ALU and in the MAC Unit.

User Manual 2-16 V 1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

2.1 Register Description Format

C166S V2 CPU contains a set of Special Function Register (SFR) and Extended Special
Function Registers (ESFR). They are described in the respective chapter of this manual.

The example below shows how to interpret the format and notation used to describe
SFRs and ESFRs.

A word register looks like this:

REG_NAME
Short Description SFR(b)/ESFR(b)/XSFR Reset Value: aaaay
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bitfield bit | bit | bit
A C B A
“rwh rw rw | rwh
A byte register looks like this:
REG_NAME
Short Description SFR(b)/ESFR(b)/XSFR Reset Value: aay
7 6 5 4 3 2 1 0
bitfield bit bit bit
A C B A
rwh rw rw rwh
Field Bits Type | Description
bitfieldX [m:n] |type |Description
value Function off(Default)
value Enable Function 1
bitX [n] type |Description
0 Function off(Default)
1 Enable Function
Elements:
REG_NAME Name of this register
bitX Name of bit
bitfieldX Name of bitfield
A16/ A8 Long 16-bit address/Short 8-bit address
SFR(b)/ESFR(b) Register space (SFR or ESFR (bit addressable) Register)
XSFR Register located in the internal 4 k 10 area

User Manual 2-17 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

(** Register contents after reset
'0/1° : defined value,
U’ : unchanged (undefined ('X’) after power up)
e : defined by reset configuration
[n] Bit number
[m:n] n : Bit number first bit of the bitfield
m : Bit number of last bit of the bitfield
type r : readable by software
W’ : writable by software
'h’ : writable by hardware
value '0/1° : defined value,
X : undefined,

: reserved for future purpose, read access delivers 0,
must not be set to 1

2.2 CPU Special Function Registers

The core CPU requires a set of CPU Special Function Registers (CSFRs) to maintain
the system state information, to control system and bus configuration, and to manage
code memory segmentation and data memory paging. The CPU also uses CSFRs to
access the General Purpose Registers (GPRs) and the System Stack, to supply the ALU
with register-addressable constants, and to support multiply and divide ALU operations.

The access mechanism for these CSFRs in the CPU core is identical to the access
mechanism for any other SFR. Since all SFRs can be controlled by any instruction
capable of addressing the SFR/CSFR memory space, there is no need for special
system control instructions.

However, to ensure proper processor operations, certain restrictions on the user access
to some CSFRs must be imposed. For example, the Instruction Pointer (IP) and Code
Segment Pointer (CSP) cannot be accessed directly at all. They can only be changed
indirectly via branch instructions.

The PSW, SP, and MDC registers can be modified not only explicitly by the programmer,
but also implicitly by the CPU during normal instruction processing.

Note: Note that any explicit write request (via software) to an CSFR supersedes a
simultaneous modification by hardware of the same register.

Note: All SFRs may be accessed wordwise, or bytewise (some of them even bitwise).
Reading bytes from word SFRs is a non-critical operation. Any write operation to
a single byte of an CSFR clears the non-addressed complementary byte within the
specified CSFR.
Non-implemented (reserved) CSFR bits cannot be modified, and will always
supply a read value of 0.

User Manual 2-18 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.3 Instruction Fetch and Program Flow Control

The Instruction Fetch Unit (IFU) pre-fetches and pre-processes instructions to provide a
continuous instruction flow. The IFU can fetch simultaneously at least two instructions
via a 64-bit wide bus from the Program Management Unit (PMU). The pre-fetched
instructions are stored in an instruction FIFO. Pre-processing of branch instructions
enables the instruction flow to be predicted. While the CPU is in the process of executing
an instruction fetched from the FIFO, the pre-fetcher of the IFU starts to fetch a new
instruction at a predicted target address from the PMU. The latency time of this access
is hidden by the execution of the instructions which have been buffered in the FIFO
before. Even for a non-sequential instruction, execution the IFU can generally provide a
continuous instruction flow. The IFU contains two pipeline stages: the Prefetch Stage
and the Fetch Stage.

64bit
data

24-bit address

IFU Control IFU Pipeline

D Instruction Buffer(up to 6 Instr.) ’“

S T

‘ Branch Detection and Prediction Logic

Return Stack QL

4D Instruction Buffer(up to 3 Instr.) }
[> CPUCON1 ‘

-

Prefetch
Stage

(0]

> CPUCON2 Branch Folding g

Unit b

> cPuD Q

<

Control Registers) 3 2

Instruction 8 5

FIFO 3 &

a 12

L | e] @

el 3]

e Q.

— [$} >

P 1 : :

[
Injection and Exception Handler @
g c o
> [ShRe))
DVECSEG | D> TFR] @ 5 S
\ Lo
:Dnstruction Buffer(up to 1 Instr.) }

Decode
Stage

Figure 2-2 IFU Block Diagram

User Manual 2-19 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

During the pre-fetch stage, the Branch Detection and Prediction Logic analyzes up to
three pre-fetched instructions stored in the first Instruction Buffer (up to six instructions).
If a branch is detected, then the IFU starts to fetch the next instructions from the PMU
according to the prediction rules. After having been analyzed, up to three instructions are
stored in the second Instruction Buffer (three instructions) which is the input register of
the Fetch Stage.

On the Fetch Stage, the pre-fetched instructions are stored in the instruction FIFO. The
Branch Folding Unit (BFU) allows processing of branch instructions in parallel with
preceding instructions. To achieve this the BFU pre-processes and re-formats the
branch instruction. First, BFU defines (calculates) the absolute target address. This
address—after being combined with branch condition and branch attribute bits—is
stored in the same FIFO step as the preceding instruction. The target address is also
used to pre-fetch the next instructions.

For the Execution Pipeline, both instructions are fetched from the FIFO again and are
executed in parallel. If the instruction flow was predicted incorrectly (or FIFO is empty),
the two stages of the IFU can be bypassed.

Note: Pipeline behavior in case of a incorrectly predicted instruction flow is described in
the following sections.

2.3.1 Branch Target Addressing Modes

The target address and the segment of jump or call instructions can be specified by
several addressing modes. The Instruction Pointer register (IP) may be updated using
relative, absolute, or indirect modes. The Code Segment Pointer register (CSP) can be
updated using an absolute value only. A special mode is provided to address the
interrupt and trap jump vector table which resides in the lowest portion of the code
segment selected by the VECSEG register contents.

Table 2-1 Branch Target Addressing Modes

Mnemonic | Target Address Target Segment | Valid Address Range
caddr (IP) = caddr - caddr= 0000y...FFFEH
rel (IP) = (IP)+2%rel - rel =00y...7FQ

(IP) = (IP) + 2*(rel+1) - rel =80y...FFH
[Rw] (IP) = (Rw) - Rww=0...15
seg - (CSP) = seg seg =0...255(3)
#trap7 (IP) =00004 + (CSP) = VECSEG |trap7 = 004...7Fn

VECSC*trap7

User Manual 2-20 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

caddr:

rel:

[Rw]:

seg:

#trap7:

Central Processing Unit

Specifies an absolute 16-bit code address within the current segment.
Branches MAY NOT be taken to odd code addresses. Therefore, the least
significant bit of ‘caddr’ is not used.

This mnemonic represents an 8-bit signed word offset address relative to the
current Instruction Pointer contents, which points to the instruction after the
branch instruction. Depending on the offset address range, both forward (’rel’=
00y to 7Fy) and backward (’rel'= 80y to FFy) branches are possible. The
branch instruction itself is repeatedly executed, when ’rel’ =’-1’ (FFp) for a
word-sized branch instruction, or 'rel’ = -2’ (FEy) for a double-word-sized
branch instruction.

In this case, the 16-bit branch target instruction address is determined indi-
rectly by the contents of a word GPR. In contrast to indirect data addresses,
indirectly specified code addresses are NOT calculated via additional pointer
registers (eg. DPP registers). Branches MAY NOT be taken to odd code
addresses. Therefore, the least significant bit of ‘caddr’ is not used.

Specifies an absolute code segment number. The C166S V2 CPU supports
256 different code segments, so only the eight lower bits (respectively) of the
'seqg’ operand value are used to update the CSP register.

Specifies a particular interrupt or trap number for branching to the correspond-
ing interrupt or trap service routine via a jump vector table. Trap numbers from
00y to 7Fy can be specified to access any double word code location within
the address range xx’0000y...xx’15D4 (depending of VECSC) in the selected
code segment (see VECSEG, i.e. the interrupt jump vector table), please refer
to Section 5.1.4.

User Manual 2-21 V1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.3.2 Branch Detection and Branch Prediction

The Branch Detection Unit pre-processes instructions and classifies detected branches.
Depending on the branch class, the Branch Prediction Unit predicts the program flow
using the rules in the following table:.

Table 2-2 Branch Target Addressing Modes

Instruction Classes Instructions Prediction
Branch instructions with user JMPA- xcc,caddr The User can specify whether
programmable branch JMPA+ xcc,caddr | the branch should be taken
prediction CALLA- xcc, caddr

CALLA+ xcc,caddr

Branch instructions with branch | JMPA xcc,caddr Assembler defines whether the
prediction defined by Assembler | CALLA xcc, caddr | branch should be taken based
on the jump condition.

Inter-segment branch JMPS seg, caddr | The branch is always taken.
instructions CALLS seg,caddr
Indirect branch instructions JMPI cc,[Rw] The branch is taken only if the
CALLI cc,[Rw] branch is unconditional.
Relative branches instructions | JMPR cc,rel The branch is taken if it is
with condition code unconditional or if the branch is
a backward branch.
Relative branch instructions CALLR rel The branch is always taken.
without condition code
Branch instructions with JB bitaddr,rel The branch is taken if it is a
bitcondition JBC bitaddr,rel backward branch. Forward
JNB bitaddr,rel branches are always not taken.
JNBS bitaddr,rel
Return instructions RET The branch is always taken.
RETS
RETP
RETI

Note: For IMPA+/- and CALLA+/- instructions, a static user programmable prediction
scheme is used. If bit 8 ("a’) of the instruction long word is cleared, the branch is
assumed ‘taken.’ If it is set, the branch is assumed ‘not taken’. The user controls
value of bit 8 by entering "+’ or -’ in the instruction mnemonics. This bit can be also
set/cleared by the Assembler for JIMPA and CALLA instructions depending on the
jump condition.

User Manual 2-22 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Note: For JMPA instruction, a pre-fetch hint bit is used (the instruction bit 9 = |). This bit
is required by the fetch unit to deal efficiently with short backward loops. It must
be set if 0 < IP_jmpa - IP_target <= 32, where IP_jmpa is the address of the JMPA

instruction and IP_target is the target address of the JMPA. Otherwise, bit 9 must
be cleared.

User Manual 2-23 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

2.3.3 Sequential and Mispredicted Instruction Flow

Because passing through one pipeline stage takes at least one clock cycle, any isolated
instruction takes at least five clock cycles to be completed. Pipelining, however, allows
parallel (i.e. simultaneous) processing of up to five instructions (with branches up to six
instructions). Therefore, most of the instructions appear to be processed during one
clock cycle as soon as the pipeline has been filled once after reset.

The pipelining increases the average instruction throughput considered over a certain
period of time. In this manual, any execution time specification always refers to the
average instruction execution time due to pipelined parallel processing.

2.3.3.1 Correctly Predicted Instruction Flow

Figure 2-3 and Figure 2-4 show the continuous execution of instructions in principal
under the assumption of a fast (0 wait states) Program Memory. In this example, most
of the instructions are executed in one CPU cycle while Instruction |, 4 takes two CPU
cycles for the execution. |, is a general example for multicycle instructions (two cycles
instruction in this case).

The instructions are fetched from the Instruction FIFO while the IFU pre-fetches the next
instructions to fill the FIFO. The Instruction FIFO is being filled with new instructions
while the previously stored instructions are being fetched from the FIFO to be executed
in the CPU. As long as the instruction flow is correctly predicted by the IFU, both
processes are independent.

In+21 In+21 In+20 In+20 la+40

In+19 In+18 In+17 In+16 la+a2
<

In+16 In+15 In+15 In+14 la+24
-

In+14 In+13 Int12 Ins12 las16

In+11 In+11 In+10 In+10 la+s
-

In+9 In+8 In+7 In+6 Ia
-

Figure 2-3 Program Memory Contents for Figure 2-4

The diagram shows the sequential instruction flow through the different pipeline stages.
While the Prefetcher is prefetching the instruction from the PMU, the processing pipeline
is filled with instructions fetched out of the FIFO. In this example with a fast Internal
Program Memory, the Prefetcher is able to fetch more instructions than the processing
pipeline can execute. In T, 4, the FIFO and prefetch buffer are filled and no further

User Manual 2-24 V1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Central Processing Unit

instructions can be prefetched. The PMU address stays stable (T,,,4) until a whole 64-bit
double word can be buffered (T,,7) in the 96-bit Prefetch buffer again.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8

PMU Address | lai16 |lavoa |lass2 |larao |lasao |latao |lasao |lavas |latas

PMU Data 64bit |lg,1 |lgeo |lge3 |lava [lass [lass |laes [laes | las7

PREFETCH lnve |lnvo |lne12 [lne1a [lns1s [lnsts [lnste |17 | Ihets
96 bit Buffer | .. | |li1s |lnes
lnvo | Tn+11 lns19 [Ihe19 | lns19 |lnetg | Inso
FETCH lnss |lnse [lnso [Ine12 [Ine1a |- ln+15 |lns1e | Ins17
Instruction lh47 lhs1o | Ihe1s
Buffer e | Ihe11
FIFOcontents |ln,3 |lhia |lnss |[hie [lne7 [hez |Ines [eo [Inst0
lhis |lnes [e11 [hhe13 [Ihe1a [Ihe1a [Iheis [lnete | lnet7
FetchfromFIFO |lh.s |lnis |lhee |7 [hhe7 [Thes |[lheo |Ihe10 | Inetd
DECODE i3 |lnea |[les e [|[Ihez |lhes [lneo | lnst0
ADDRESS In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8 In+9
MEMORY In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7 In+8
EXECUTE In In+1 In+2 In+3 In+4 In+5 In+6 In+6 In+7
WRITE BACK In In+1 In+2 In+3 In+4 In+5 In+6 In+6

Figure 2-4 Sequential Instruction Execution

User Manual 2-25 V 1.7, 2001-01

User Manual
C166S V2

Central Processing Unit

.(.
(Infineon
technologies

2.3.3.2

If the CPU detects that the IFU made an incorrect prediction of the instruction flow, then
the pipeline stages and the Instruction FIFO containing the wrong prefetched instructions
are canceled. The entire instruction fetch must be restarted at the correct point of the
program. Figure 2-5 and Figure 2-6 show the behavior in the case of incorrectly
predicted instruction flow (0- wait states Internal Program Memory).

Incorrectly Predicted Instruction Flow

During the cycle T,, the CPU detects an incorrectly prediction case which leads to a
canceling of the pipeline. The new address is transferred to the PMU in T4 which
delivers the first data in the next cycle T,,,». But, the target instruction crosses the 64-bit
memory boundary and a second fetch in T, .3 is required to get the entire 32-bit
instruction. In T,,4, the Prefetch Buffer contains two 32-bit instructions while the first
instruction |, is directly forwarded to the Decode stage.

I 64-bit wide Program Memory with four
16 bit packages
L. Im+5 Im+5 Im+a Ia+24
Im+4 Im+3 Im+3 Im+2 Ia+16
Im+2 Im+1 Im+1 Im la+g
Im I I la
-
Figure 2-5 Program Memory Contents for Figure 2-6

The prefetcher is now restarted and prefetches further instructions. In T,,s, the
instruction |, is forwarded from the Fetch Instruction Buffer directly to the Decode
stage as well. The Fetch row shows all instructions in the Fetch Instruction Buffer and
the instructions fetched from the Instruction FIFO. The instruction |3 is the first
instruction fetched from the FIFO during T,,,5. During the same cycle, instruction I,,o
was still forwarded from the Fetch Instruction Buffer to the Decode stage.

User Manual 2-26 V 1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Tn+8
PMU Address || o |lass lats las2a | L []
PMU Data 64bit || lg lgs1 lgse lges |1 | |
PREFETCH | oy TP |
96-bit Buffer et ez | Imas
FETCH Inext+2 Im+1 Im+2 Im+4 I...
Instruction Imis | Imas
Buffer
Fetch from FIFO Inez |lm+a | Ims+s
DECODE next+1 m lm+1 Im+2 Im+3 Im+4
ADDRESS Inext Im Im+1 Im+2 Im+3
MEMORY |branch Im Im+1 Im+2
EXECUTE In lbranch m lm+1
WRITE BACK I, loranch iy

Figure 2-6 Incorrectly Predicted Instruction Flow

2.3.4 Atomic and Extend Instructions

The atomic and extend instructions (ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR)
disable the standard and PEC interrupts and class A traps until completion of the
immediately following sequence of instructions. The number of instructions in the
sequence may vary from 1 to 4. It is coded in the 2-bit constant field #irang2 and takes
values from 0 to 3. The EXTended instructions additionally change the addressing
mechanism during this sequence (see instruction description).

ATOMIC and EXTended instructions become active immediately, so no additional NOPs
are required. All instructions requiring multi cycles or hold states for execution are
considered to be one instruction. The ATOMIC and EXTended instructions can be used
with any instruction type.

Note: If a class B trap interrupt occurs during an ATOMIC or EXTended sequence, then
the sequence is terminated, an interrupt lock is removed, and the standard
condition is restored before the trap routine is executed. The remaining
instructions of the terminated sequence executed after returning from the trap
routine will run under standard conditions.

Note: Certain precautions are required when using nested ATOMIC and EXTended
instructions. There is only one counter to control the length of the sequence, i.e.

User Manual 2-27 V1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

issuing an ATOMIC or EXTended instruction within a sequence will reload the
counter with the value of the new instruction.

2.3.5 Code Addressing via Code Segment and Instruction Pointer

The C166S V2 CPU provides a total addressable memory space of 16 MBytes. This
address space is arranged as 256 segments of 64 Kilobytes each. A dedicated 24-bit
code address pointer is used to access the memories for instruction fetches. This pointer
has two parts: an 8-bit code segment pointer CSP and a 16-bit offset pointer called
Instruction Pointer (IP). The concatenation of the CSP and IP results directly in a correct
24-bit physical memory address.

Memory organized in segments 15 87 CSP 0 15 P 0
255 | ooon 2, ||
H
254
FE’0000
1 23 16 15 0
01’0000y segment offset
(0)
00’0000, . A)
A A :

Figure 2-7 Addressing via the Code Segment- and Instruction Pointer

The Instruction Pointer IP

This register determines the 16-bit intra-segment address of the currently fetched
instruction within the code segment selected by the CSP register. The IP register is not
mapped into the C166S V2 CPU’s address space, and thus it is not directly accessible
by the programmer. The IP can be modified indirectly via the stack by return instructions.
The IP register is implicitly updated by the C166S V2 CPU for branch instructions and
after instruction fetch operations.

IP
Instruction Pointer (not addressable) Reset Value: 0000y
15 14 13 12 11 10987[6[5|4[3|2|10
IP 0
. . . —

User Manual 2-28 V 1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

Field Bits Type | Description

IP [15:1] |h Specifies the intra segment offset from which the
current instruction is to be fetched. IP refers to the
current segment <SEGNR>.

0 [0] - IP is always word-aligned

The Code Segment Pointer CSP

This non-bit addressable register selects the code segment being used at run-time to
access instructions. The lower 8 bits of register CSP select one of up 256 segments of
64 Kilobytes each, while the higher 8 bits are reserved for future use. The reset value is
specified by the contents of the VECSEG register (Section 5.1.4).

CSP
Code Segment Pointer SFR Reset Value: 00004
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEGNR
| r\h | |
Field Bits Type | Description
SEGNR [7:0] rh Specifies the code segment from which the current
instruction is to be fetched.

The actual code memory address is generated by direct extension of the 16-bit contents
of the IP register by the lower byte of the CSP register as shown in the figure below. The
CSP register can be only read and may not be written by data operations.

There are two modes: segmented and non-segmented. The mode is selected with the
SGTDIS bit in the CPUCONT1 register. After reset, the segmented mode is selected.

CPUCON1
CPU Control Register 1 SFR Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGT
DIS

L

rw

Note: For a summary of the CPUCONT1 register, please refer to Section 2.3.6.

User Manual 2-29 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Field Bits Type | Description

SGTDIS [3] rw Segmentation Disable/Enable Control
0 Segmentation enabled
1 Segmentation disabled

Segmented Mode

The CSP is modified either directly by the JMPS and CALLS instructions, or indirectly via
the stack by the RETS and RETI instructions.

Upon the acceptance of an interrupt or the execution of a software TRAP instruction, the
CSP register is automatically loaded with the segment address of the vector location.

Non-Segmented Mode

In non-segmented mode, the CSP is fixed to the CSP value of the instruction that
disabled the segmentation. It is no longer possible to modify the CSP either directly by
the JMPS or CALLS instructions or indirectly via the stack by the RETS (RETI)
instruction.

In case of interrupt processing or a software TRAP instruction, the CSP register is
automatically loaded with the segment address of the vector location (VECSEG).

Note: For the correct execution of interrupt tasks, the contents of VECSEG must be the
same as the segment selected by the current value of CSP, i.e. the vector table
must be located in the segment pointed by the CSP.

Note: For Single Chip Mode, the contents of the CSP register are significant for internal
Program Memories accesses.

2.3.6 IFU Control Registers

2.3.6.1 The CPU Configuration Register CPUCON1

This register is used to configure the C166S V2 CPU. Most bits of this register enable
dedicated features of the Instruction Fetch Unit (IFU). CPICON1 may not exist in future
product derivatives.

CPUCON1
CPU Control Register 1 SFR Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WDT | SGT | INT
VECSC | ¢t | pis |scxt| BP | %€
I’W rw rw rw rw rw

User Manual 2-30 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Field Bits | Type | Description

VECSC [6:5] |rw Scaling factor of Vector Table

00 Space between two vectors is 2 words
01 Space between two vectors is 4 words
10 Space between two vectors is 8 words
11 Space between two vectors is 16 words

WDTCTL [4] rw Configuration of Watch Dog Timer
0 DISWDT executable until End of Init")
1 DISWDT/ENWDT always executable

SGTDIS [3] rw Segmentation Disable/Enable Control
0 Segmentation enabled
1 Segmentation disabled

INTSCXT 2] rw Enable Interruptibility of Switch Context
0 Switch context is not interruptible
1 Switch context is interruptible

BP [1] rw Enable Branch Prediction Unit
0 Branch prediction disabled
1 Branch prediction enabled

ZCJ [0] rw Enable Zero Cycle Jump function
0 Zero cycle jump function disabled
1 Zero cycle jump function enabled

Y The DISWDT (executed after EINIT) and ENWDT instructions are internally converted in a NOP instruction

Note: Register CPUCONT1 is only changeable in supervisor mode. Supervisor mode is
finished by executing the EINIT instruction.

2.3.6.2 The CPU Configuration Register CPUCON2

This register is used to configure the C166S V2 CPU. It is an extension of the CPUCON1
register. This register is implemented for test purposes only in the first C166S V2
demonstration devices. This register will not be implemented in production devices.

CPUCON2
CPU Control Register SFR Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BYP | BYP | EIO OV | RET
FIFODEPTH FIFOFED | o | " |jagN |STEN|LFIC| cin | ‘st SL
r\>v I‘\IN rw rw rw rw w rw rw w rw
) reserved

User Manual 2-31 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Central Processing Unit

Field Bits Type | Description
FIFODEPTH [15:12] |rw FIFO Depth configuration
0000 No FIFO (entries)
0001 One FIFO entry
1000 Eight FIFO entries
1001 reserved
1111 reserved
FIFOFED [11:10] |rw FIFO Fed configuration
00 FIFO disabled
01 FIFO filled with up to one instruction per cycle
10 FIFO filled with up to two instructions per cycle
11 FIFO filled with up to three instruction per cycle
BYPPF [9] rw Prefetch Bypass control
0 Bypass path from prefetch to decode disabled
1 Bypass path from prefetch to decode available
BYPF [8] rw Fetch Bypass control
0 Bypass path from fetch to decode disabled
1 Bypass path from fetch to decode available
EIOIAEN [7] rw Early 10 Injection Acknowledge Enable
0 Injection acknowledge by destructive read not
guaranteed
1 Injection acknowledge by destructive read
guaranteed
STEN? [6] rw | Stall Instruction Enable
0 Stall Instruction disabled
1 Stall Instruction enabled
LFIC [5] rw | Linear Follower Instruction Cache
0 Linear Follower Instruction Cache disabled
1 Linear Follower Instruction Cache enabled
OVRUN [4] rw Pipeline control
0 Overrun of pipeline bubbles not allowed
1 Overrun of pipeline bubbles allowed
RETST [3] rw Enable return Stack
0 Return Stack is disabled
1 Return Stack is enabled
User Manual 2-32 V1.7,2001-01

o~

Infineon

technologies

User Manual
C166S V2

Central Processing Unit

Field Bits Type | Description

FASTBL?) [2] w

SL [0] rw Enables short loop mode
0 Short loop mode disabled
1 Short loop mode enabled

) enables dedicated stall debug instructions:
STALLAM d,,h,,d,, h, Opcode: 44 d h,d,h,
STALLEW dg,h.,d,,h, Opcode: 45 d.h.d h, d and h are 6 bit each
Stalls the corresponding pipeline stage after d cycles for h cycles.

The FASTBL bit is implemented, but reserved. So do not use it. The block feature is implemented in the CPU,
but not used by the Interrupt and Injection Unit.

Note: Register CPUCONZ is changeable in supervisor mode only. Supervisor mode is
finished by executing the EINIT instruction.

User Manual 2-33 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

24 Use of General Purpose Registers

The C166S V2 CPU uses several banks of sixteen dedicated registers RO, R1, R2...
R15, called General Purpose Registers (GPR), which can be accessed in one CPU
cycle. The GPRs are the working registers of the arithmetic and logic units and many
also serve as address pointers for indirect addressing modes.

There are several banks of GPRs which are memory mapped and two special banks
which are not memory-mapped.

The banks of the memory-mapped GPRs are located in the internal DPRAM. One bank
uses a block of 16 consecutive words. A Context Pointer (CP) register determines the
base address of the current selected bank. Because of the required number of access
ports and access time, the GPRs located in the DPRAM cannot be accessed directly. To
get the required performance, the GPRs are cached in a 5-port register file for high
speed GPR accesses.

Core-RAM global Regis:terfile local
| /1)
[| ‘ | | } ‘] AGU Write Port
[‘] ALU Write Port
l l Jl \J
[V D4iE
R15 R15 —
R14 R14 —
s R13 R13 —
R14
R13 - R12 R12 —
R12 @
ST R11 R11 —
R10 éz“ R10 R10 —
E R9 R9 -
e R8 R8 —
\\ R5 R7 R7 —
7 R4
ﬂg’ = R6 R6 —
< R2 R5 R5 —
RO CP R4 R4 -
-
R3 R3 —
R2 R2 —
R1 R1 1
RO RO —
A\ 4 ﬁ
[* I i * | I ‘ AGU Read Port
* * ‘ ALU Read Port 1
[) ALU Read Port 2

Figure 2-8 Register File

User Manual 2-34 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

The register file is split into three independent physical register banks. Because of
behavior differences, the banks can be distinguished as global and local register banks.
There are two local and one global register bank.

The memory-mapped GPR bank selected by the current CP is always cached in the
global register bank. Only one memory-mapped GPR bank can be cached at the time.
In the case of a context switch, the cache contents must be sequentially saved and
restored.

Note: The global register bank is the equivalent of the memory-mapped GPR bank of the
C166 family which is selected by the context pointer CP.

To support a very fast context switch for time-critical tasks, two independent not memory
mapped GPR banks are available. They are physically and logically located in the two
special local register banks. They cannot be accessed via a 24-bit physical memory
address.

Only one of the three physical register banks can be activated at the same time. The
bank selection is controlled by the BANK bitfield of the PSW. The BANK bitfield can be
changed explicitly by any instruction which writes to the PSW, or implicitly by a RETI
instruction, an interrupt or hardware trap. In case of an interrupt, the selection of the
register bank is configured in the Interrupt Controller ITC. Hardware traps always use the
global register bank.

User Manual 2-35 V 1.7, 2001-01

o~
: User Manual
(Infineon C166S V2

Central Processing Unit

241 Memory Mapped GPR Banks and the Global Register Bank

The C166S V2 CPU uses the global register bank to cache an active memory-mapped
GPR bank selected by the Context Pointer (CP). The CP register value determines the
address of the first General Purpose Register (GPR) within the DPRAM of up to 16
wordwide and/or bytewide GPRs and selects the memory area which is automatically
cached in the global register bank.

Internal TM/-\
R15 (CP)}+30
R14 (CP)+28
R13
R12
R11
R10
16-Bit Context Pointer R9
: R8
: R7 10
' R6
: R5
: R4

15 0

R3
R2
R1 cpP+2 [/
________ RO _@ep _

/\/

Figure 2-9 Register Bank Selection via Register CP

The General Purpose Registers of a global register bank are memory-mapped. The
behavior is identical with a cache in which the CP is used as a tag. If the global register
bank is activated, the cache will be validated before further instructions are executed.
After validation, all further accesses to the GPRs are redirected to the global register
bank. If the global register bank is activated, there are three possible ways to access the
global register bank:

Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify addresses relative to the
memory location pointed by the contents of the CP register, i.e. the base of contents of
the current global register bank. Both byte and word GPR accesses are possible. The
short 4-bit GPR address is logically added to the contents of register CP in the case a
byte (Rb) GPR address is specified, or multiplied by two and then added to CP; in case
of a word (Rw) GPR address (see figure below).

Note: If GPRs are used as indirect address pointers, they are always accessed
woradwise.

User Manual 2-36 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

For some instructions, only the first four GPRs can be used as indirect address pointers.
These GPRs are specified via short 2-bit GPR addresses. The respective physical
address calculation is identical with the one for the short 4-bit GPR addresses.

Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from FOy to
FFy interpret the four least significant bits as short 4-bit GPR addresses, while the four
most significant bits are ignored. The respective physical GPR address is calculated
similar to the short 4-bit GPR addresses. For single bit GPR accesses, the GPR’s word
address is calculated in the same way. The accessed bit position within the word is
specified by a separate additional 4-bit value.

Specified by reg or bitoff \/\

12-Bit Context Pointer — A —
1 1 -Bi
| | address
Internal
For byte GPR For word GPR DPRAM
accesses ° @ accesses
\ 4
+ |
Must be within
the internal
DPRAM area

Figure 2-10 Implicit CP Use by logical Short GPR Addressing Modes

24-Bit Memory Addresses can be directly used to access GPRs. In this case, the CPU
immediately starts the memory access. At the same time, a hit detection logic checks if
the accessed memory location is cached in the global register bank. In case of a cache
hit, an additional global register bank read access is initiated. The data that is read from
cache will be used and the data that is read from memory will be discarded. This leads
to a delay of one CPU cycle (MOV R4,mem [CP<=mem<=CP+31]). In case of memory
write access, the hit detection logic determines a cache hit in advance. Nevertheless, the
address conversion needs one additional CPU cycle. The value is directly written into the
global register bank without further delay (MOV mem,R4).

Note: The 24-bit GPR addressing mode is not recommended because it requires an
extra cycle for the read and write access.

User Manual 2-37 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

Table 2-3 Addressing Modes to Access Word-GPRs

Name | Physical | 8-Bit 4-Bit Description Reset
%ddress Address | Address Value
RO (CP)+0 | FOy4 Oh General Purpose Word Register RO | UUUU,
R1 (CP)+2 | F1y, 1h General Purpose Word Register R1 | UUUU,
R2 (CP)+4 | F24 2h General Purpose Word Register R2 | UUUUy
R3 (CP)+6 | F34 3h General Purpose Word Register R3 | UUUUy
R4 (CP)+8 |F4y, 4h General Purpose Word Register R4 | UUUUy
R5 (CP)+10 |F5y 5h General Purpose Word Register R5 | UUUUy
R6 (CP)+12 |F6y 6h General Purpose Word Register R6 | UUUUy
R7 (CP)+14 |F74 7h General Purpose Word Register R7 | UUUUy
R8 (CP)+16 |F8y, 8h General Purpose Word Register R8 | UUUUy
R9 (CP)+18 |F9y, 9h General Purpose Word Register R9 | UUUUy
R10 |(CP)+20 |FA, Ah General Purpose Word Register R10 | UUUUy
R11 (CP)+22 | FBy Bh General Purpose Word Register R11 | UUUUy
R12 |(CP)+24 |FCy Ch General Purpose Word Register R12 | UUUUy
R13 |(CP)+26 |FDy Dh General Purpose Word Register R13 | UUUUy
R14 |(CP)+28 |FE, Eh General Purpose Word Register R14 | UUUUy
R15 |(CP)+30 |FFy Fh General Purpose Word Register R15 | UUUUy

R Addressing mode only usable if the GPR bank is memory mapped.

Note: The first 8 GPRs (R7...R0) may also be accessed bytewise.
Note: Writing to a GPR byte does not affect the other byte of the respective GPR.

User Manual 2-38 V 1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

The respective halves of the byte-accessible registers have special names (see
Table 2-4). .

Table 2-4 Addressing modes to access Byte-GPRs

Name | Physical | 8-Bit 4-Bit Description Reset
%ddress Address | Address Value
RLO [(CP)+0 |FOy4 Oh General Purpose Byte Register RLO | UUy
RHO |[(CP)+1 |F1y4 1h General Purpose Byte Register RL1 | UUy
RL1 (CP)+2 |F24 2h General Purpose Byte Register RL2 | UUy
RH1 | (CP)+3 |F3y4 3h General Purpose Byte Register RL3 | UUy
RL2 |(CP)+4 |F4y, 4h General Purpose Byte Register RL4 | UUy
RH2 |(CP)+5 |F5y 5h General Purpose Byte Register RL5 | UUy
RL3 |(CP)+6 |F6y 6h General Purpose Byte Register RL6 | UUy
RH3 | (CP)+7 |F74 7h General Purpose Byte Register RL7 | UUy
RL4 |(CP)+8 |F8y, 8h General Purpose Byte Register RL8 | UUy
RH4 | (CP)+9 |F9y4 9h General Purpose Byte Register RL9 | UUy
RL5 |(CP)+10 | FA, Ah General Purpose Byte Register RL10 | UUy
RH5 |[(CP)+11 |FBy Bh General Purpose Byte Register RL11 | UUy
RL6 |[(CP)+12 |FCy Ch General Purpose Byte Register RL12 | UUy,
RH6 |(CP)+13 |FDy Dh General Purpose Byte Register RL13 | UUy
RL7 |(CP)+14 |FE, Eh General Purpose Byte Register RL14 | UUy
RH7 | (CP)+15 |FFy Fh General Purpose Byte Register RL15 | UUy

Q) Addressing mode only usable if the GPR bank is memory mapped.

Note: Even if the local register bank is selected by BANK, an old memory-mapped GPR
bank can be cached in the global register bank. Memory accesses are still
redirected in case of a cache hit.

User Manual 2-39 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

24.2 Local Register Bank

C166S V2 CPU has two local register banks with sixteen independent GPRs each. Both
local register banks are not memory mapped. After a switch to a local register bank, the
GPRs are directly accessible. There are two different ways to access an activated local
register bank.

Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify addresses in the local
register banks. The local register bank is selected by the BANK bitfield of the PSW.

Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the
short 4-bit GPR address is either multiplied by two or not before it is used to physically
access the local register bank. Thus, both byte and word GPR accesses are possible in
this way.

Note: If GPRs are used as indirect address pointers, they are always accessed
wordwise.

For some instructions, only the first four GPRs can be used as indirect address pointers.
These GPRs are specified via short 2-bit GPR addresses. The respective physical
address calculation is identical with the one for the short 4-bit GPR addresses.

Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from FOy to
FFy interpret the four least significant bits as short 4-bit GPR address, while the four
most significant bits are ignored. The respective physical GPR address calculation is
identical with the one for the short 4-bit GPR addresses. For single bit accesses on a
GPR, the GPR’s word address is calculated as just described, but the position of the bit
within the word is specified by a separate additional 4-bit value.

For a summary of all addressing modes usable to access GPRs, please see Table 2-3
and Table 2-4.

2.4.3 Context Switch

An interrupt service routine or a task scheduler of an operating system usually saves into
the stack all the used registers and restores them before returning. The more registers
a routine uses, the more time is wasted with saving and restoring. There are two ways
to change a context in the C166S V2 core:

* Switching the context by changing the selected register banks.
* Switching the context of the global register bank by changing the context pointer CP.

2.4.3.1 Changing the selected Physical Register Bank

The switch between the three physical register banks is the fastest possible context
switch. It is possible to switch between the current memory-mapped GPR bank located
in the global register bank and the two not memory-mapped local register banks. The
BANK bit field of the PSW register determines the selected bank.

User Manual 2-40 V 1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

Ilzrsczlc\:lessor Status Word SFRb Reset Value: 0000
15‘14‘13|12 1110 9‘8 7 6 5 4 3 2 A 0
BANK
| rWh | rwh
Field Bits Type | Description
BANK 9-8 rwh | Reserved for register file bank selection

00 Global register bank
01 Reserved

10 Local register bank 1
11 Local register bank 2

In case of an interrupt service, the bank switch is automatically executed by updating the
PSW. The Interrupt Controller (ITC) configuration decides which register bank will be
selected. By executing a RETI instruction, the BANK bit field of the PSW will
automatically be restored and the context will switched to the original register bank.

global local global
Bank Bank Bank

Execution Execution Execution
Task A Task B Task A

A
Y
A
Y
A
\4

A
\
A
\
A
\4

Interrupt of Task B Execution of

recciniz‘ey le

Figure 2-11 Context Switch by Changing the Physical Register Bank

After a switch to a local register bank, the new bank is immediately available. After
switching to the global register bank, the cached memory-mapped GPRs must be valid
before any further instructions can be executed. If the global register bank is not valid at
this time (in case if the context switch process has been interrupted), the cache
validation process is repeated automatically. For further explanation, please refer to
Section 2.4.3.2.

Note: The switch between the three physical register banks of the register file can also
be executed by writing to the BANK bitfield of the PSW. Because of pipeline
dependencies an explicit change of the PSW must cancel the pipeline.

User Manual 2-41 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

24.3.2

The contents of the global register bank are switched by changing the base address of
the memory mapped GPR bank. The base address is given by the contents of the
Context Pointer (CP).

Context Switching of the Global Register Bank

The Context Pointer (CP)

The CP register is non-bit addressable. It can be updated via any instruction capable of
modifying SFRs.

CP

Context Pointer Reset Value: FCO0y

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXT POINTER
r r r r | | | 1 rW 1 | | | r
Field Bits Type | Description
1 [15:12] |r CP always points in the internal DPRAM
CONTEXT POINTER |[11:1] |rw Modifiable Portion of register CP
Specifies the (word) base address of the current
memory-mapped register bank.
When writing a value to register CP with bits
CP[11:9] =000, bits CP[11:10] are setto’11’
by hardware.
0 [0] r CP is always word-aligned

Note: It is the user’s responsibility that the physical GPR address specified via CP
register plus the short GPR address must always be an internal DPRAM location.
If this condition is not met, unexpected results may occur. Do not set CP below the
internal DPRAM start address.

Note: Due to the internal instruction pipeline, a write operation to the CP register stalls
the instruction flow until the register file context switch is really executed. The
instruction immediately following the instruction that updates CP register can use
the new value of the changed CP.

The C166S V2 CPU switches the complete memory-mapped GPR bank with a single
instruction. After switching, the service routine executes within its own separate context.

The instruction “SCXT CP, #New_Bank” pushes the value of the current context pointer
(CP) into the system stack and loads CP with the immediate value “New_Bank”, which
selects a new register bank. The service routine may now use its “own registers”. This

User Manual 2-42 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

memory register bank is preserved when the service routine terminates, i.e. its contents
is available on the next call.

Before returning from the service routine (RETI), the previous CP is simply popped from
the system stack which returns the registers to the original bank.

Context Pointer Updating

After the CP has been update, a state machine starts to store the old contents of the
global register bank and to load the new one. An instruction “SCXT CP, #New_Bank”
takes two cycles. The store and load algorithm is executed in nineteen CPU cycles: the
execution of the cache validation process takes sixteen cycles plus three cycles to stall
an instruction execution to avoid pipeline conflicts upon the completion of the validation
process. The context switch process has two phases:

1. Store phase: The contents of the global register bank is stored back into the DPRAM
by executing eight injected STORE instructions. After the last STORE instruction the
contents of the global register bank are invalidated.

2. Load phase: The global register bank is loaded with the new context by executing
eight injected LOAD instructions. After the last LOAD instruction the contents of the
global register bank are validated.

The code execution is stopped until the global register bank is valid. A hardware interrupt
which also uses a global register bank cannot be executed until the validation process is
finished (see Figure 2-12).

global - global P global o
Bank o Bank h Bank
Execution Execution Execution Execution Execution
Task A Task B Task B Task B Task A
Execution of Execution of
SCXT CcP POP CP

A\

A

Interrupt of Task B _ ‘ ‘ Execution of

i } o RETI
Execution of recognized Register Bank Register Bank
SCXT CP validation validation
‘ process process

started finished started finished
Register Bank
validation
process

started finished

Figure 2-12 Validation process and hardware interrupts using a global register
bank

But, the validation process can be interrupted by any hardware interrupt which will work
with a local register bank. After switching back to the global register bank, the validation
process must be finished. The way the validation process will be restarted depends on
the phase in which it has been interrupted.

User Manual 2-43 V 1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Central Processing Unit

If the interrupt occurred before the load phase, the entire validation process is restarted

from the very beginning. If the store phase has been completed before the interrupt, only
the load phase is executed.

P global - local L global o
- Bank o Bank o Bank i
Execution Execution Execution
< » e N E—
Task A b Task B Task A
Interrupt of Task B Execution of
recognized RETI
Execution of
SCXT CP
Register Bank Register Bank
validation validation
process process
started stopped restarted finished

Note: Validation Process and Hardware Interrupts using a Local Register Bank

Note: A cache validation process of Task A can be interrupted by a Task B which uses
alocal register bank. Task B itself is interrupted again by an interrupt Task C which
uses a global register bank again. In this case, the validation process of Task A
must be finished before code of Task C can be executed. This means that the
validation process of Task A does not affect the interrupt latency of Task B but the
latency of Task C. If Task C would immediately interrupt Task A, the register bank
validation process of Task A would be finished first. The worst case interrupt
latency is identical in both cases (see Figure 2-12 and Figure 2-13).

global local global local global
., »t——(/___—> D < B r—
Bank Bank Bank Bank Bank
Execution Execution Execution Execution Execution
Task A Task B Task C Task B Task A

Execution of
RETI

Interrupt of Task C
recognized

Register Bank
validation
process
Interrupt of Task B
Execution of

restarted finished Execution of
recognized
SCXT CP

~. RETI
Register Bank
validation
process

started stopped

Figure 2-13 Validation Process and Hardware Interrupts using Local and Global
Register Bank

User Manual 2-44 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

2.5 Data Addressing

The Address Data Unit (ADU) of the C166S V2 CPU contains two independent
arithmetic units to generate, calculate, and update addresses for data accesses. The
ADU performs the following major tasks:

e Standard Address Generation (Standard Address Generation Unit)
e DSP Address Generation (DSP Address Unit)

» Data Paging (Standard Address Unit)

e Stack Handling (Standard Address Unit)

The Standard Address Unit supports linear arithmetic for the indirect addressing modes
and also generates the address in case of all other short and long addressing modes.
The DSP Address Generation Unit contains an additional set of address pointers and
offset registers which are used in conjunction with the CoXXX instructions only.

The C166S V2 CPU provides a lot of powerful addressing modes for word, byte, and bit
data accesses (short, long, indirect). The different addressing modes use different
formats and have different scopes.

User Manual 2-45 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

2.5.1

Central Processing Unit

Short Addressing Modes

All of these addressing modes use an implicit base offset address to specify a 24-bit
physical address.
Short addressing modes allow access to the GPR, SFR or bit addressable memory

space:

Physical Address = Base Address + A - Short Address

Note: A is 1 for byte GPRs, A is 2 for word GPRs..
Table 2-5 Short addressing modes

Mnemonic | Physical Address Short Address Scope of Access
Range
Rw (CP) +2*Rw or local Rw =0...15 GPRs(Word)
Rb (CP) + 1*Rb or local Rb =0..15 GPRs(Byte)
reg O0'FEOOy + 2%reg reg =00y...EFy4 |SFRs(Word, Low byte)
00’FO00y + 2*reg reg =00y...EFy | ESFRs(Word, Low byte)

(CP)+2*(regaOFp) or local |[reg = FOn...FFy | GPRs(Word)
(CP)+1*(regAOFp) or local |[reg = FOn...FFy | GPRs(Bytes)

bitoff 00’FD0O0y+ 2*bitoff bitoff = 00y...7F4 | RAM Bit word offset
00’FFO0y + 2*(bitoffA7Fy) | bitoff = 80...EFy | SFR Bit word offset
00’F100 + 2*(bitoffA7Fy) | bitoff = 80y...EFy | ESFR Bit word offset
(CP) + 2*(bitoffAOF) or | bitoff = FOn...FFy | GPR Bit word offset
local
bitaddr Word offset as with bitoff. | bitoff = 00y...FFy | Any single bit
Immediate bit position. bitpos= 0...15
Rw, Rb: Specifies direct access to any GPR in the currently active context (global reg-
ister bank or local register bank). Both '/Rw’ and 'Rb’ require four bits in the
instruction format.The base address of the global register bank is determined
by the contents of register CP. ’Rw’ specifies a 4-bit word GPR address relative
to the base address (CP), while 'Rb’ specifies a 4-bit byte GPR address rela-
tive to the base address (CP). In case of an active local register bank this 4
bits are used directly to address the GPR.
reg: Specifies direct access to any (E)SFR or GPR in the currently active context

(global or local register bank). The ’reg’ value requires eight bits in the instruc-
tion format. Short 'reg’ addresses in the range from 004 to EF always specify
(E)SFRs. In that case, the factor ‘D’ equates 2 and the base address is
00’FEOO for the standard SFR area or 00'’FO00y for the extended ESFR
area. The ‘reg’ accesses to the ESFR area require a preceding EXT*R instruc-
tion to switch the base address. Depending on the opcode, either the total
word (for word operations) or the low byte (for byte operations) of an SFR can

User Manual 2-46 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

bitoff:

bitaddr:

Central Processing Unit

be addressed via 'reg’. Note that the high byte of an SFR cannot be accessed
via the ’reg’ addressing mode. Short 'reg’ addresses in the range from FOy to
FFy always specify GPRs. In that case, only the lower four bits of 'reg’ are sig-
nificant for physical address generation and, therefore, it is identical to the
address generation described for the 'Rb’ and 'Rw’ addressing modes.

Specifies direct access to any word in the bit addressable memory space. The
‘bitoff’ value requires eight bits in the instruction format. Depending on the
specified 'bitoff’ range different base addresses are used to generate physical
addresses: Short ’bitoff’ addresses in the range from 00y to 7F use
00’FDOO0y as a base address to specify the 128 highest internal RAM word
locations in the range from 00’FD00yh to 00’FDFE. Short 'bitoff' addresses in
the range from 80y to EFp use base address 00’FFO0y to specify the internal
SFR word locations in the range from 00’FF00y to O0’FFDE or base address
00’F100y to specify the internal ESFR word locations in the range from
00’F100y to 00’F1DE. The ‘bitoff’ accesses to the ESFR area require a pre-
ceding EXT*R instruction to switch the base address. For short 'bitoff'
addresses from FOy to FFy, only the lowest four bits are used to generate the
address of the selected word GPR.

Any bit address is specified by a word address within the bit addressable
memory space (see 'bitoff'), and by a bit position (‘bitpos') within that word.
Therefore, 'bitaddr' requires twelve bits in the instruction format.

User Manual 2-47 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.5.2 Long and Indirect Addressing Modes

These addressing modes use one of the four DPP registers to specify a 24-bit address.
Any word or byte data within the entire address space can be accessed with these
modes.

Any long or indirect 16-bit address contain two parts that have different meanings. Bits
13...0 specify a 14-bit data page offset, while bits 15...14 specify the Data Page Pointer
(DPP) (1 of 4) register used to generate the full 24-bit address (see Figure 2-14).

The C166S V2 CPU also supports an override mechanism for the DPP addressing
scheme (EXTP(R) and EXTS(R) instructions). See following sections for details.

15 14 13 0

16-bit Long Address

Y

DPPO
DPP1
DPP2
DPP3

14-bit page offset

24-bit Physical Address

Figure 2-14 Interpretation of a 16-bit Long Address

Note: Word accesses on odd byte addresses are not executed. A hardware trap will be
triggered.

User Manual 2-48 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.5.2.1 Addressing via Data Page Pointer DPP

The four non-bit addressable Data Page Pointer registers select up to four different data
pages. The lower 10 bits of each DPP register select one of the 1024 possible 16-
Kilobyte data pages while the upper 6 bits are reserved for the future use. The DPP
registers provide an access to the entire memory space in 16 Kilobytes pages.

The DPP registers are implicitly used whenever data accesses to any memory location
are made via indirect or direct long 16-bit addressing modes (except for override
accesses via EXTended instructions and PEC data transfers).

Data paging is performed by concatenating the lower 14-bits of an indirect or direct long
16-bit address with the contents of the DDP register selected by the upper two bits of the
16-bit address. The contents of the selected DPP register specifies one of the 1024
possible data pages. This data page base address together with the 14-bit page offset
forms the physical 24-bit address.

16-Bit Data Address
1514 0
Memory | | |
[255] seleéts\DPP
L _1 FF0000, 9 DPP 0 v
o254 | DPP3 - 11
N 1 FE’0000, DPP2 - 10
DPP1 - 01
I_ % DPPO - 00
S S
- -
I N 15 14 0
L 1 0100004
= ° - %ﬁ_/k ~/
—| 0000004, —
A A Page Page offset
L o)
b Segment Segmént offset

Figure 2-15 Data Page Pointer Addressing

After reset, the DPP registers select data pages 3...0 within segment 0. If the user does
not want to use any data paging, no further action is required.

User Manual 2-49 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

DPPO
Data Page Pointer 0

Central Processing Unit

Reset Value: 0000y

15 14 13 12 11 1098|765|4 3|2|10
PN
\ . \ S . . \
DPP1
Data Page Pointer 1 SFR Reset Value: 0001y
15 14 13 12 11 10 9{8|7{6{5|4 3|2|1[0
PN
. o . .
DPP2
Data Page Pointer 2 SFR Reset Value: 0002,
15 14 13 12 11 1098|765|4 3|2|10
PN
w
DPP3
Data Page Pointer 3 SFR Reset Value: 0003y
15 14 13 12 11 1098|765|4 3|2|10
PN
\ . \ o . . \
Field Bits | Type | Description
PN [9:0] |rw Data Page Number of DPP

Specifies the data page selected via DPP.

Note: In case of non-segmented memory mode, the entire DPP register is still used for
the calculation of the physical 24-bit address.

A DPP register can be updated via any instruction capable of modifying an SFR.

User Manual

2-50

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Note: Due to the internal instruction pipeline, a write operation to the DPPx registers
could stall the instruction flow until the DPP is actually updated. The instruction
that immediately follows the instruction which updates the DPP register can use
the new value of the changed DPPx.

2.5.2.2 DPP Override Mechanism in the C166S V2 CPU

The C166S V2 CPU provides an override mechanism for the temporary bypass of the
DPP addressing scheme.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction
EXTP(R) replaces the contents of the respective DPP register, while instruction
EXTS(R) concatenates the complete 16-bit long address with the specified segment
base address. The overriding page or segment may be specified directly as a constant
(#pag, #seq) or via a word GPR (Rw).

EXTP(R): 16-bit Long Address = U)
#pag | | 14-bit page offset
v
24-bit Physical Address
EXTS(R): 16-bit Long Address -)
#iseg | | 16-bit segment offset
v
24-bit Physical Address

Figure 2-16 Overriding the DPP Mechanism

User Manual 2-51 V 1.7, 2001-01

.(.
(Infineon
technologies

2.5.2.3

User Manual
C166S V2

Long Addressing Mode

Central Processing Unit

The long addressing mode uses a 16-bit constant value encoded in the instruction format
which specifies the data page offset and the DPP.

The long addressing mode is referred to by the mnemonic ‘mem’. .

Table 2-6 Long Addressing Modes
Mnemonic Physical Address Scope of Access
mem (DPPO) Il memA3FFFy Any Word or Byte
(DPP1) Il memA3FFF
(DPP2) [l memA3FFFy
(DPP3) I memA3FFF
mem pag || mema3FFF Any Word or Byte
mem seg Il mem Any Word or Byte

Note: The long addressing may be used with the DPP overriding mechanism (EXTP(R)
and EXTS(R)).

User Manual

2-52

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.5.2.4 Indirect Addressing Modes

These addressing modes can be considered as a combination of short and long
addressing modes. This means that long 16-bit address is provided indirectly by the
contents of a word GPR which is specified directly by a short 4-bit address ((Rw’=0 to
15). There are indirect addressing modes, which add a constant value to the GPR
contents before the long 16-bit address is calculated. Other indirect addressing modes
can decrement or increment the indirect address pointers (GPR contents) by 2 or 1
(referring to words or bytes) or by the contents of the offset registers QRO and QR1.

The Offset Register QR0 and QR1

There are two non-bit addressable offset registers QRO and QR1 which can be used in
conjunction with the CoXXX instructions.

8mefget Register ESFR Reset Value: 0000y
15‘14‘13|12‘11|10|9‘8|7 6 5|4 3|2|1 0
QR 0
| rw | r
QR1
Offset Register ESFR Reset Value: 0000y
15‘14‘13|12‘11|10|9‘8|7 6 5|4 3|2|1 0
QR 0
| | | | rw | | | | r
Field Bits | Type | Description
QR [15:1] |rw Modifiable portion of register QRx

Specifies the 16-bit offset address for indirect
addressing modes.

0 [0] r Fixed to O

Note: During initialization of the QR registers, instruction flow stalls are possible. For the
proper operation refer to Chapter 4.1.4.

In each case, one of the four DPP registers is used to specify physical 24-bit addresses.
Any word or byte data within the entire memory space can be addressed indirectly.

Note: The indirect addressing may be used with the DPP overriding mechanism
(EXTP(R) and EXTS(R)).

User Manual 2-53 V 1.7, 2001-01

o—
< fineon User Manual
rlellhno|0690ies C1 663 V2

Central Processing Unit

Some instructions only use the lowest four word GPRs (R3...R0) as indirect address
pointers, which are specified via short 2-bit addresses in that case.

Physical addresses are generated from indirect address pointers using the following
algorithm:

1)

2)

3)

4)

5)

Calculate the physical address of the word GPR, which is used as indirect
address pointer, using the specified short address ('Rw’) and

- the current global register bank
GPR Address = (CP) + 2 « Short Address
- the current local register bank

GPR Address = 2 - Short Address.

If required, pre-decremented indirect address pointer (*-Rw’) by the data-type-
dependent value (D=1 for byte operations, D=2 for word operations) before
the long 16-bit address is generated:

(GPR Address) = (GPR Address) - D ; [optional step!]

Calculate the long 16-bit address by adding a constant value ('Rw+const16’ if
selected) to the contents of the indirect address pointer:

Long Address = (GPR Pointer) + Constant ; [+Constant is optional]

Calculate the physical 24-bit address using the resulting long address and the
corresponding DPP register contents (see long 'mem' addressing modes).

Physical Address = (DPPi) + Page offset

- If required, post-in/decrement indirect address pointers (‘Rwz’) by the data-
type-dependent value (D=1 for byte operations, D=2 for word operations).

- If required, post-in/decrement indirect address pointers (‘Rwx QRX’) by
D=QRXx:

(GPR Pointer) = (GPR Pointer) = D ; [optional step!]

User Manual 2-54 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

The following indirect addressing modes are provided: .
Table 2-7 Indirect Addressing Modes

Mnemonic Particularities

[Rw] Most instructions accept any GPR (R15...R0) as indirect address
pointer. Some instructions accept only the lower four GPRs (RS...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented
by 2 or 1 (for word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented
by 2 or 1 (for word or byte data operations) before the access.

[Rw+#data16] | The specified 16-bit constant is added to the indirect address pointer,
before the long address is calculated.

[Rw-] The specified indirect address pointer is automatically post-
decremented by 2 (word data operations) after the access.

[Rw+QRXx] The specified indirect address pointer is automatically post-incremented
by QRx (word data operations) after the access.

[Rw-QRx] The specified indirect address pointer is automatically post-
decremented by QRX (word data operations) after the access.

User Manual 2-55 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

253 DSP Addressing

In addition to the Standard Address Generation Unit, the DSP Address Generation Unit
provides an additional set of pointer and offset registers. An independent arithmetic unit
allows the update of these dedicated pointer registers in parallel with the GPR-Pointer
modification of the Standard Address Generation Unit. The DSP Address Generation
Unit only supports indirect addressing modes that use the special pointer registers IDXO0
and IDX1.

The Pointer Register IDX0 and IDX1

The additional set of pointer registers IDX0 and IDX1 allows the execution of DSP
specific CoXXX instruction in one CPU cycle.

IDXO0
Address Pointer SFRb Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDX 0
| | | 1 rW | | | | r
IDX1
Address Pointer SFRb Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDX 0
| rw | r
Field Bits | Type | Description
IDX [15:1] |rw Modifiable portion of register IDXx
Specifies the 16-bit value of a dedicated address
pointer.
0 [0] r Fixed to O

Note: During the initialization of the IDX registers, instruction flow stalls are possible. For
the proper operation, refer to the Section 4.1.4.

The address pointers can be used for arithmetic operations as well as for the special
CoMOYV instruction. But, the generation of the 24 bit memory address is different.

In case of arithmetic CoXXX operations, the IDX pointers are automatically zero
extended to a 24-bit memory address. The IDX address pointers should point to the
internal DPRAM area. Even if the IDX address pointers do not point to the internal

User Manual 2-56 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

DPRAM area, the address is mapped into the DPRAM area. The leading four bits of the
IDX pointers are not taken into account as shown in Figure 2-17.

16-Bit IDX Pointer

o 15 1211 0

e -
020000,

— 1]
01°0000,

[P - - - - - - DPRAM in Data Page 3

- | 03 15 1211 N/ 0

- i : [00000000 [1111] |
KO’OOOOH : I S

Figure 2-17 Arithmetic MAC Operations and Addressing via the IDX Pointers

For CoMOV MAC operation, the IDX pointers are concatenated with the Data Page
Pointers, just like normal GPR-Pointers as described in Section 2.5.2.1. The IDX pointer
can address the entire C166S V2 memory area without any restrictions.

User Manual 2-57 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

16-Bit Data Address (IDXXx)

1514 0
Memory | | | |
[255] seleéts\DPP
L _] FF0000, 9 DPP 0 v
[254] DPP3 - 11
I —1 FE’00004 DPP2 - 10
DPP1 - 01
I_ % DPPO - 00
XA
- 1
I R 15 14 0
L 1 01’0000,
o0 4 %ﬁ_/k J
— 000000, —
A A Page Page offset
: : N\
Co Segment Segmént offset

Figure 2-18 CoMOV Operations and Addressing via the IDX Pointers

There are indirect addressing modes which allow parallel data move operations before
the long 16-bit address is calculated. Other indirect addressing modes allow
decrementing or incrementing the indirect address pointers (IDXx contents) by 2 or by
the contents of the offset registers. There are two non-bit addressable offset registers
QX0 and QX1 which can be used in conjunction with the CoXXX instructions.

User Manual 2-58 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

The Offset Register QX0 and QX1

These two non-bit addressable registers are used only for CoXXX operations which
access operands using indirect addressing mode. The QX offset registers are used in
conjunction with the IDX pointers.

gz(fget Register ESFR Reset Value: 0000
15‘14‘13|12‘11|10|9‘8|7 6 5|4 3|2|1 0
QXx 0
| | | | rw | | | | r
Qxi1
Offset Register ESFR Reset Value: 0000y
15[14[13|12[11|10|9[8|7[6[5|4[3|2|1 0
QX 0
| | | | rw | | | | r
Field Bits | Type | Description
Qx [15:1] |rw Modifiable portion of register QXx

Specifies the 16-bit offset address for indirect
addressing modes.

0 [0] r Fixed to O

Note: During the initialization of the QX registers, instruction flow stalls are possible. For
the proper operation, refer to the Section 4.1.4.

Physical addresses are generated from indirect address pointers IDX via the following
algorithm:

1) Determine the used IDXx pointer

2) An intermediate long address is calculated for the parallel data move opera-
tion of CoXXXM instructions before the long 16-bit address is generated
[optional step!]:

- If required, indirect address pointers (‘IDXx+’) are de/incremented by D=2.

- If required, indirect address pointers (‘IDXx+ QXx’) are de/incremented by
D= QXXx.

User Manual 2-59 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

3)

4)

5)

Central Processing Unit

Intermediate Address = (IDXx Address) + D ; [optional step!]

Calculate long 16-bit address:

Long Address = (IDXx Pointer)

Calculate the physical 24-bit address using the resulting long address and the
corresponding DPP register contents (see long 'mem’ addressing modes and
DPPi override mechanism for arithmetic CoXXX instructions).

Physical Address = (DPPi) + Page offset

- If required, indirect address pointers (‘IDXx%’) are in/decremented by D=2 for
word operations.

- If required, indirect address pointers (‘IDXx+ QXXx’) are in/decremented by
D= QXXx for word operations.

(IDX Pointer) = (IDX Pointer) = D; [optional step!]

The following indirect addressing modes are provided: .
Table 2-8 DSP Addressing Modes

Mnemonic Particularities

[IDXX] Most CoXXX instructions accept IDXx (IDXO0, IDX1) as an indirect
address pointer.
[IDXx+] The specified indirect address pointer is automatically post-incremented

by 2 after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified
data move indirect address pointer is automatically pre-decremented by 2 for the

parallel move operation. The pointer itself is not pre-decremented.
Then, the specified indirect address pointer is automatically post-
incremented by 2 after the access.

[IDXx-]

The specified indirect address pointer is automatically post-
decremented by 2 after the access.

User Manual 2-60 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Table 2-8 DSP Addressing Modes (cont’d)

Mnemonic Particularities

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-incremented by 2 for the
parallel move operation. The pointer itself is not pre-incremented. Then,
the specified indirect address pointer is automatically post-decremented
by 2 after the access.

[IDXx+QXx] | The specified indirect address pointer is automatically post-incremented
by QXx after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-decremented by QXx for
the parallel move operation. The pointer itself is not pre-decremented.
Then, the specified indirect address pointer is automatically post-
incremented by QXx after the access.

[IDXx-QXX] The specified indirect address pointer is automatically post-
decremented by QXx after the access.

with parallel | In case of a CoXXXM instruction, the address stored in the specified

data move indirect address pointer is automatically pre-incremented by QXx for the

parallel move operation. The pointer itself is not pre-incremented. Then,
the specified indirect address pointer is automatically post-decremented
by QXx after the access.

The example in Figure 2-19 shows the complex operation of CoXXX instructions with a
parallel move operation based on the descriptions about addressing modes given in
Section 2.5.2.4 (Indirect Addressing Modes) and Section 2.5.3 (DSP Addressing

Modes).

User Manual

2-61 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

CoXXXMxx [IDX0+],[R2+]

Address operations

1) calculate pointer addresses

IDXx = IDXO0 R2 Address = CP + 2*2
(global register bank)

2) intermediate address of write pointer
for the parallel mov operation

Intermediate Address = (IDX0) - 2

3) calculate long 16bit address
Long Address 1 = (IDX0) Long Address 2 = (R2)

4) calculate 24bit physical address
Physical Address 1 = Page3 + Page offset Physical Address 2 = (DPPi) + Page offset

5) post modify address pointer
(IDX0)ew = (IDXO0) + 2 (R2)hew = (R2) + 2

Data operations
1) Read operands
op1 = (Physical Address 1) op2 = (Physical Address 2)

2) Write operand op1
(Intermediate Address) = op1

(IDX0)pew (updated pointer) (R2)new (updated pointer)
1 2
(op (IDX0) (read pointer) op (R2) (read pointer)
-«— Intermediate Address
parallel (write pointer for parallel move)
move

Figure 2-19 Arithmetic MAC Operations with Parallel Move

User Manual 2-62 V 1.7, 2001-01

.(.
(Infineon
technologies

254

User Manual
C166S V2

The CoREG Addressing Mode

Central Processing Unit

The CoSTORE instruction utilizes the special COREG addressing mode for immediate
storage of the MAC-Unit register after a MAC operation. The address of the MAC-Unit
register is coded in the CoSTORE instruction format as described in the following table:

Table 2-9 Coding of the COREG Addressing Mode

Mnemonic | Register Coding of wwww:w bits [31:27]
MSW MAC-Unit Status Word 00000

MAH MAC-Unit Accumulator High Word | 00001

MAS Limited MAC-Unit Accumulator High | 00010

Word

MAL MAC-Unit Accumulator Low Word 00100

MCW MAC-Unit Control Word 00101

MRW MAC-Unit Repeat Word 00110

User Manual 2-63 V1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

2.5.5 The System Stack

The C166S V2 CPU supports a system stack of 64 kBytes. The stack can be located
internally in one of the on-chip memories or externally. The 16-bit Stack Pointer (SP)
register addresses the stack within a 64 kByte segment. The Stack Pointer Segment
Register (SPSG) selects the segment in which the stack is located. A virtual stack
(usually bigger then 64 kBytes) can be implemented by software. This mechanism is
supported by registers STKOV and STKUN (see descriptions below).

The Stack Pointer Register SP

The non-bit addressable Stack Pointer SP register is used to point to the top of the
system stack (TOS). The SP register is pre-decremented whenever data is to be pushed
onto the stack, and it is post-incremented whenever data is to be popped from the stack.
Therefore, the system stack grows from higher toward lower memory locations.

The SP register can be updated via any instruction capable of modifying an 16-bit SFR.

Note: Due to the internal instruction pipeline, a stack pointer initialization stalls the
instruction flow until the operation is finished. A POP and RETURN instruction can
immediately follow an instruction updating the SP.

SP
Stack Pointer SFR Reset Value: FC00y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SP 0
| | | | rwh | | | | r
Field Bits | Type | Description
SP [15:1] |rwh | Modifiable portion of register SP
Specifies the top of the system stack.
0 [0] r Fixed to O
User Manual 2-64 V1.7,2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

The Stack Pointer Segment Register SPSEG

This non-bit addressable register selects the segment being used at run-time to access
system stack. The lower eight bits of register SPSEG select one of up 256 segments of
64-kilobytes each, while the higher 8 bits are reserved for future use.

SPSEG
Stack Pointer Segment SFRb Reset Value: 0000
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SPSEGNR
| r\llv | |
Field Bits | Type | Description
SPSEGNR [7:0] |rw Stack Pointer Segment Number
Specifies the segment where the stack is located.

System stack addresses are generated by directly extending the 16-bit contents of the
SP register by the contents of the SPSG register as shown in Figure 2-20.

The system stack cannot cross a 64k byte segment boundary.

Stack Pointer Segment 15 SF;SSESSEGNR 0 15 SP 0
ws | o
254 . FE’0000,
| 1 Io1’oooo 23 16 15 0
0 040’0020H (. \I/ N /)

Figure 2-20 Addressing via the Stack Pointer

In case of a non-segmented memory mode, the SPSG register is also used to generate
the physical address. If a non-segmented memory model is selected, extreme care
should be taken when changing the contents of the SPSG register. Improper SPSG
change may result in erroneous system behavior. The SPSG register can be updated via
any instruction capable of modifying an SFR.

User Manual 2-65 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

Note: Due to the internal instruction pipeline, a write operation to the SPSG register
stalls the instruction flow until the SPSG register is really updated. The instruction
immediately following the instruction updating the SPSG register can use the new
value.

The Stack Overflow Pointer STKOV

This non-bit addressable STKOV register is compared with the SP register before each
implicit write operation which decrements the contents of the SP register. If the contents
of the SP register are equal to the contents of the STKOV register, a stack overflow trap
will occur.

STKOV
Stack Overflow Pointer SFR Reset Value: FAOOy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STKOV 0
| | | | | | | v | | | | | | | r
Field Bits | Type | Description
STKOV [15:1] |rw Modifiable portion of register STKOV

Specifies the segment offset address of the lower
limit of the system stack.

0 [0] r Fixedto O

The STKOV register can be updated via any instruction capable of modifying a SFR.

Note: The Stack Pointer Segment Register SPSG is not taken into account for the stack
pointer comparison. The system stack cannot cross a 64k segment.

This checking mechanism is triggered before every implicit write access. The contents
of the stack pointer is compared with the contents of the overflow register, whenever the
SP is to be decremented either by a CALLA, CALLI, CALLR, CALLS, PCALL, TRAP,
SCXT or PUSH instruction.

Note: If the Stack Pointer was explicitly changed as a result of move or arithmetic
instruction, SP is not compared to the contents of the STKOV. Therefore, if the
modified Stack Pointer is below the limit set by STKOV register, the stack violation
will not be detected. The stack overflow can be detected only if the contents of SP
are equal to (not less than) the contents of the STKOV and only in case of implicit
SP modification. This means that SP may be explicitly set to the value below
permitted SP range and even be operated there without triggering any traps.
However, if SP crosses the limit of the permitted SP range from outside the range
as a result of implicit change (PUSH for example), the event (SP) = (STKOV) will

User Manual 2-66 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

trigger the corresponding trap. Note that event (SP) = (STKOV) resulting from an
explicit SP modification does not trigger the trap.

The Stack Overflow Trap is triggered when (SP) = (STKOV) and if SP is to be implicitly
decremented. This trap may be used in two different ways:

* Fatal error indication treats the stack overflow as a system error and executes
associated trap service routine. Under these circumstances, data in the bottom of the
stack may have been overwritten by the status information stacked upon servicing the
stack overflow trap.

e Automatic system stack flushing allows the system stack to be used as a ’Stack
Cache’ for a bigger external user stack.

The Stack Underflow Pointer STKUN

This non-bit addressable register STKUN is compared with the SP register before each
implicit read operation that increments the contents of the SP register. If the contents of
the SP register are equal to the contents of the STKUN register, a stack underflow
hardware trap will occur.

STKUN
Stack Underflow Pointer SFR Reset Value: FCO0y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
STKUN 0
| rw | r
Field Bits | Type | Description
STKUN [15:1] |rw Modifiable portion of register STKUN

Specifies the segment offset address of the upper
limit of the system stack.

0 [0] r Fixed to O

The STKUN register can be updated via any instruction capable of modifying a SFR.

Note: The Stack Pointer Segment Register SPSG is not taken into account for the stack
pointer comparison. The system stack cannot cross a 64 k segment.

This checking mechanism is triggered before each implicit read access. The contents of
the stack pointer are compared to the contents of the underflow register, whenever the
SP will be incremented either by a RET, RETS, RETP, RETI or POP instruction.

Note: If the Stack Pointer was explicitly changed as a result of move or arithmetic
instruction, SP is not compared to the contents of the STKUN register. Therefore,
if the modified Stack Pointer is above the limit set by STKUN register, the stack

User Manual 2-67 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

violation will not be detected. The stack underflow can be detected only if the
contents of SP are equal to (not higher than) the contents of the STKUN and only
in case of implicit SP modification. This means that SP may be explicitly set to the
value above the permitted SP range and even be operated there without triggering
any traps. However, if SP crosses the limit of the permitted SP range from outside
the range as a result of an implicit change (POP instruction, for example), the
event (SP) = (STKUN) will trigger the corresponding trap. Note that event (SP) =
(STKUN) resulting from an explicit SP modification does not trigger the trap.

The Stack Underflow Trap is triggered when (SP) = (STKUN) and if SP is to be implicitly
incremented. This trap may be used in two different ways:

Fatal error indication treats the stack underflow as a system error and executes
associated trap service routine.

* Automatic system stack refilling allows use of the system stack as a 'Stack Cache’
for a bigger external user stack.

Scope of Stack Limit Control

The stack limit control implemented by the register pair STKOV and STKUN detects

cases in which the Stack Pointer (SP) crosses the defined stack area as a result of

implicit change.

Note: If a stack overflow or underflow event occurs in an ATOMIC/EXT sequence, the
stack operations that are part of the sequence are completed. The trap is issued
after the completion of the entire ATOMIC/EXT sequence.

2.6 Data Processing

All standard arithmetic, shift and logical operations are performed in the 16-bit ALU. In
addition to the standard arithmetic and logic unit, the ALU of the C166S V2 CPU includes
bit manipulation, multiply and divide unit. Most internal execution blocks have been
optimized to perform operations on either 8-bit or 16-bit numbers. After the pipeline has
been filled, most instructions are completed in one CPU cycle. The status flags are
automatically updated in the PSW register after each ALU operation (see Section 2.6.6).
These flags allow branching upon specific conditions. Support of both signed and
unsigned arithmetic is provided by the user selectable branch test. The status flags are
also preserved automatically by the CPU upon entry into an interrupt or trap routine.

2.6.1 Data Types

The C166S V2 CPU supports operations on booleans/bits, bit strings, characters,
integers, and signed fraction numbers. Most instructions operate with specific data
types, while others are useful for manipulating several data types.

User Manual 2-68 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Central Processing Unit

The C166S V2 CPU data formats are able to support all ANSI C data types. Additional
to the ANSI C data types, some C-Compilers support new types that allow efficient use
of the bit manipulation instructions in embedded control applications.. .

Table 2-10 ANSI C Data Types

ANSI C Data Types | Size (bytes) | Range CPU Data Format

bit 1 bit Oor1 BIT

sfrbit 1 bit Oor1 BIT

esfrbit 1 bit Oorf BIT

signed char 1 -128 to +127 BYTE

unsigned char 1 0 to 255U BYTE

sfr 1 0 to 65535U WORD

esfr 1 0 to 65535U WORD

signed short 2 -32768 to 32767 WORD

unsigned short 2 0 to 65535U WORD

bitword 2 0 to 65535U WORD or BIT

signed int 2 -32768 to 32767 WORD

unsigned int 2 0 to 65535U WORD

signed long 4 -2147483648 to Not directly supported
+2147483647

unsigned long 4 0 to 4294967295UL | Not directly supported

float 4 +/-1,176E-38 to Not directly supported
+/-3,402E+38

double 8 +/- 2,225E-308 to | Not directly supported
+/- 1,797E+308

long double 8 +/- 2,225E-308 to | Not directly supported
+/- 1,797E+308

near pointer 2 16/14 bits WORD
depending on
memory model

far pointer 4 14 bits (16 k) in any | Not directly supported
page

User Manual 2-69 V1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Table 2-11 CPU Data Formats

CPU Data Format | Size (bytes) | Range

BIT 1 bit Oorf1

BYTE 1 0 to 255U or -128 to +127
WORD 2 0 to 65535U or -32768 to 32767

2.6.2 Constants

In addition to the powerful addressing modes, the C166S V2 CPU instruction set also
supports the use of wordwide or bytewide immediate constants. For optimum utilization
of the available code storage, these constants are represented in the instruction formats
by either 3, 4, 8, or 16 bits. The short constants are always zero-extended, while the long
constants are truncated if necessary, to match the data format required for the particular
operation (see table below): .

Table 2-12 Constant Formats

Mnemonic Word Operation Byte Operation
#data3 0000y + data3 00y + data3
#data4 0000y + data4 00y + data4
#data8 0000y + data8 data8

#data16 data16 data16 A FFy
#mask 0000y + mask mask

Note: Immediate constants are always signified by a leading sign #.

2.6.3 16-bit Adder/Subtracter, Barrel Shifter, and 16-bit Logic Unit

All standard arithmetic and logical operations are performed by the 16-bit ALU. In case
of byte operations, signals from bits 6 and 7 of the ALU result are used to control the
condition flags. Multiple precision arithmetic is supported by a “CARRY-IN” signal to the
ALU from previously calculated portions of the desired operation.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotations and
arithmetic shifts are also supported.

2.6.4 Bit Manipulation Unit

C166S V2 CPU offers a large number of instructions for bit processing. The special bit
manipulation unit was implemented for this purpose. The bit manipulation instructions
enable efficient control and testing of peripherals. Unlike other microcontrollers,

User Manual 2-70 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

C166S V2 CPU features instructions that provide direct access to two operands in the
bit addressable space without requiring them to be moved to temporary locations.

The same logical instructions that are available for words and bytes can also be used for
bits. The user can compare and modify a control bit for a peripheral in one instruction.
Multiple bit shift instructions have been included to avoid long instruction streams of
single bit shift operations. These instruction require a single CPU cycle. Additionally, bit
field instructions enable are able to modify the multiple bits in one operand in a single
instruction.

All instructions that manipulate single bits or bit groups internally use a read-modify-write
sequence that accesses the whole word containing the specified bit(s).

This method has several consequences:

* Bits can be modified only within the internal address areas, i.e. internal RAM and
SFRs. External locations cannot be used with bit instructions.

The upper 256 bytes of the SFR area, the ESFR area, and the internal RAM are bit
addressable, i.e. those register bits located within the respective sections can be directly
manipulated using bit instructions. The other SFRs must be accessed byte/word wise.

Note: All GPRs are bit addressable independent of the allocation of the register bank via
the Context Pointer (CP). Even GPRs allocated to not bit addressable RAM
locations provide this feature.

* The read-modify-write approach may be critical with hardware-effected bits. In such
cases, the hardware may change specific bits while the read-modify-write operation is
in progress, where the write back would overwrite the new bit value generated by the
hardware. The solution is either the implemented hardware protection (see below) or
realized through special programming (see Section 4.1).

Protected bits are not changed during the read-modify-write sequence, that is, when
hardware sets something like an interrupt request flag between the read and the write of
the read-modify-write sequence. The hardware protection logic guarantees that only the
intended bit(s) is/are effected by the write-back operation.

Note: If a conflict occurs between a bit manipulation generated by hardware and an
intended software access, the software access has priority and determines the
final value of the respective bit.

2.6.5 Multiply and Divide Unit

The C166S V2 CPU multiply and divide unit has two separated parts. One is the fast
16x16-bit multiplier that executes a multiplication in one CPU cycle. The other one is a
division sub-unit which performs the division algorithm in 21 CPU cycles maximum.
According to the data and division types, the division length varies between 18 and 21
cycles. The divide instruction requires four CPU cycles to be executed. For performance
reasons, the rest of the division algorithm runs in the background during the following

User Manual 2-71 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

seventeen CPU cycles, while further instructions are executed in parallel. If another
instruction tries to use the unit while a division is still running, the execution of this new
instruction is stalled until the division is finished.

Interrupt tasks can also be started and executed immediately without any delay. The
previous division will be finished in the background. If an instruction of the interrupt task
uses the multiply and divide unit before the previous division process is finished, the
instruction flow will be stalled as well. To avoid these stalls, the multiply and division unit
should not be used during the first fourteen CPU cycles of the interrupt tasks. This
requires up to fourteen one-cycle instructions to be executed between the interrupt entry
and the first instruction which uses the multiply and divide unit again (worst case).

The Multiply/Divide High Register MDH

The sixteen bit, non-bit addressable MDH register contains the high word of the 32-bit
multiply/divide MD register used by the CPU when it performs a multiplication or a
division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL, MULU). After an
implicitly addressed multiplication, this register represents the high order sixteen bits of
the 32-bit result. For long divisions, the MDH register must be loaded with the high order
sixteen bits of the 32-bit dividend before the division has started. After any division, the
MDH register represents the 16-bit remainder.

mgll:iply Divide High Word SFR Reset Value: 0000y
15‘14‘13|12‘11|10|9 8|7 6 5|4 3|2|1 0
MDH
rwh
Field Bits | Type | Description
MDH [15:0] |rwh |High part of MD

The high order sixteen bits of the 32-bit multiply and
divide register MD.

Whenever this register is updated via software, the Multiply/Divide Register In Use
(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to 1.

The Multiply/Divide Low Register MDL

The sixteen bit, non-bit addressable MDL register contains the low word of the 32-bit
multiply/divide MD register used by the CPU when it performs a multiplication or a
division using implicit addressing (DIV, DIVL, DIVLU, DIVU, MUL, MULU). After a

User Manual 2-72 V1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

multiplication, this register represents the low order sixteen bits of the 32-bit result. For
long divisions, the MDL register must be loaded with the low order sixteen bits of the
32-bit dividend before the division has started. After any division, the MDL register
represents the 16-bit quotient.

mgllt_iply Divide Low Word SFR Reset Value: 00004
15[14[13|12[11|10|9[8|7[6[5|4[3|2|1[O
MDL

. . . o . . .
Field Bits | Type | Description
MDL [15:0] |rwh |Low part of MD

The low order 16 bits of the 32-bit multiply and
divide register MD.

Whenever this register is updated via software, the Multiply/Divide Register In Use
(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to 1. The MDRIU flag is
cleared whenever the MDL register is read via software.

The Divide Control Register MDC

This bit addressable 16-bit register is implicitly used by the CPU when it performs a
division or multiplication in the ALU.

MDC
Multiply Divide Control SFRb Reset Value: 00004
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MDR
U
rwh
Field Bits | Type | Description
MDRIU (4] rwh | Multiply/Divide Register In Use

0: Cleared when MDL is read via software.

1: Set when MDL or MDH is written via
software, or when a multiply or divide
instruction is executed.

User Manual 2-73 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

The MDRIU flag is the only portion of the MDC register used for multiplication and
division within the C166S V2 CPU. This bit indicates the usage of the MDL and MDH
register. It must be stored prior to a new multiplication or division operation. The
remaining portions of the MDC register are never used by the dedicated multiplication
and division hardware.

2.6.6 The Processor Status Word PSW

This bit addressable register reflects the current status of the microcontroller. Two
groups of bits represent the current ALU status and the current CPU interrupt status.
Two separate bits (USRO and USR1) within register PSW are provided as general
purpose flags.

PSW
Processor Status Word SFRb Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HLD USR|USR |MUL
ILVL IEN EN BANK 1 0 IP E Y4 \' C N
rWh I rw rw rwh rwh rwh r rwh rwh rwh rwh rwh
Field Bits Type | Description
ILVL [15:12] |rwh | CPU Priority Level

Oy Lowest Priority

Fy Highest Priority

IEN [11] rw Interrupt/PEC Enable Bit (globally)

0 Interrupt/PEC requests are disabled

1 Interrupt/PEC requests are enabled
HLDEN [10] rw Hold Enable

0 external bus arbitration disabled

1 external bus arbitration enabled
BANK [9:8] rwh | Reserved for Register File Bank Selection

00 Global register bank
01 Reserved

10 Local register bank 1
11 Local register bank 2

USR1 [7] rwh | General Purpose Flag
May be used by application

USRO [6] rwh | General Purpose Flag
May be used by application

User Manual 2-74 V1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

Field Bits Type | Description
MULIP [5] r Multiplication/Division in progress
Always setto 0
E [4] rwh | End of Table Flag
0 Source operand is neither 8000}, nor 80y,
1 Source operand is 8000y, or 80y,
Y4 [3] rwh |Zero Flag
0 ALU result is not zero
1 ALU result is zero
Vv 2] rwh | Overflow Flag

0 No Overflow produced
0 Overflow produced

C [1] rwh | Carry Flag
0 No carry/borrow bit produced
1 Carry/borrow bit produced

N [0] rwh | Negative Result
0 ALU result is not negative
1 ALU result is negative

ALU Status (N, C, V, Z, E, MULIP)

The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status resulting from
the last performed ALU operation. They are set by the majority of instructions according
to the specific rules depending on the ALU operation or data movement.

After execution of an instruction which explicitly updates the PSW register, the condition
flags may no longer represent an actual CPU status. An explicit write operation to the
PSW register supersedes the condition flag values implicitly generated by the CPU. An
explicit read access to the PSW register returns the value of the PSW register after
execution of the immediately preceding instruction.

Note: After reset, all of the ALU status bits are cleared.

* N-Flag: For the majority of ALU operations, the N-flag is set to 1, if the most significant
bit of the result contains a 1; otherwise, it is cleared. In the case of integer operations,
the N-flag can be interpreted as the sign bit of the result (negative: N = 1, positive: N
= 0). Negative numbers are always represented as the 2s complement of the
corresponding positive number. The range of signed numbers extends from '-80004'
to '+7FFFy' for the word data type, or from '-804' to '+7Fy' for the byte data type. For
Boolean bit operations with only one operand, the N-flag represents the previous state
of the specified bit. For Boolean bit operations with two operands, the N-flag
represents the logical XORing of the two specified bits.

User Manual 2-75 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

* C-Flag: After an addition, the C-flag indicates that a “Carry” from the most significant
bit of the specified word or byte data type has been generated. After a subtraction or
a comparison, the C-flag indicates a “Borrow” which represents the logical negation of
a “Carry” for the addition.
This means that the C-flag is set to 1, if no carry from the most significant bit of the
specified word or byte data type has been generated during a subtraction. Subtraction
is performed by the ALU as a 2s complement addition. The C-flag is cleared when this
complement addition causes a “Carry”.

The C-flag is always cleared for logical, multiply and divide ALU operations, because
these operations cannot cause a “Carry” flag to be set.

For shift and rotate operations, the C-flag represents the value of the bit shifted out
last. If a shift count of zero is specified, the C-flag will be cleared. The C-flag is also
cleared for a Prioritize operation, because a 1 is never shifted out of the MSB during
the normalization of an operand.

For Boolean bit operations with only one operand, the C-flag is always cleared. For
Boolean bit operations with two operands, the C-flag represents the logical ANDing of
the two specified bits.

* V-Flag: The addition, subtraction and 2's complement operations set the V-flag to '1'
if the result exceeds the range of 16 bit signed numbers for word operations ('-80004'
to '+7FFFy'), or 8 bit signed numbers for byte operations (—80y' to '+7F4'). Otherwise,
the V-flag is cleared. Note, that the result of an integer addition, integer subtraction,
or 2's complement is not valid if the V-flag indicates an arithmetic overflow.

For multiplication and division the V-flag is set to 1 if the result can not be represented
in a word data type, otherwise it is cleared. Note that a division by zero will always
cause an overflow. Unlike the division result, the result of multiplication is valid
regardless of V-flag value.

Since the logical ALU operations cannot produce an invalid result, the V-flag is cleared
by these operations.

The V-flag is also used as 'Sticky Bit' for rotate right and shift right operations. Using
only the C-flag, a rounding error caused by a shift right operation can be estimated as
up to one half of the LSB of the result. In conjunction with the V-flag, the C-flag allows
evaluation of the rounding error with a finer resolution (see table below).

For Boolean bit operations with only one operand, the V-flag is always cleared. For
Boolean bit operations with two operands, the V-flag represents the logical ORing of
the two specified bits.

Shift Right Rounding Error Evaluation

* Z-Flag: The Z-flag is normally set to 1 if the result of an ALU operation equals zero;
otherwise, it is cleared.

User Manual 2-76 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

C-Flag V-Flag Rounding Error Quantity

0 0 No rounding error

0 1 0 < Rounding error < 1, LSB
1 0 Rounding error = 1/,LSB
1 1 Rounding error > 1/, LSB

For addition and subtraction with “Carry”, the Z-flag is only set to 1 if the Z-flag already
contains a 1 as a result from previous operation and the result of the current ALU
operation also equals zero. This mechanism supports the multiple precision
calculations.

For Boolean bit operations with only one operand, the Z-flag represents the logical
negation of the previous state of the specified bit. For Boolean bit operations with two
operands, the Z-flag represents the logical NORing of the two specified bits. For the
Prioritize operation, the Z-flag indicates whether the second operand was zero or not.

* E-Flag: End of table flag. The E-flag can be altered by the instructions which perform
ALU or data movement operations. The E-flag is cleared by those instructions that
cannot be reasonably used for table search operations. In all other cases, the E-flag
value depends on the value of the source operand to signify whether the end of a
search table is reached or not. If the value of the source operand of an instruction
equals the lowest negative number which depends on the data format of the
corresponding instruction ('8000y' for the word data type, or '80y' for the byte data
type), the E-flag is set to 1; otherwise, it is cleared.

e MULIP-Flag: The MULIP-flag always sticks to O.

Note: The MULIP flag is a part of the C166 task environment. For compatibility reasons,
the bit is still implemented even if not used. A multiply and divide ALU operation
of the C166S V2 CPU is no longer interruptible.

e BANK: The BANK bitfield of the PSW registers indicates which one of the three
physical register banks is activated. The BANK field is updated by hardware upon
entry into an interrupt service routine, but it can be also modified by software. The
BANK field can be changed explicitly by any instruction which can write to the PSW.
Also, it is implicitly updated by the RETI instruction.

* HLDEN: Refer to EBC Chapter 6.4.1.

CPU Interrupt Status (IEN, ILVL)

The Interrupt Enable bit allows global enable (IEN=1) or disable (IEN=0) of interrupts.
The 4-bit Interrupt Level field (ILVL) specifies the priority of the current CPU activity. The
interrupt level is updated by hardware upon entry into an interrupt service routine, but it
can also be modified via software to prevent other interrupts from being acknowledged.
In case an interrupt level '15' has been assigned to the CPU, it has the highest possible

User Manual 2-77 V1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

priority, and thus the current CPU operation cannot be interrupted except by hardware
traps or external non-maskable interrupts. For details please, refer to Section 5
“Interrupt and Trap Functions”.

After reset, all interrupts are globally disabled and the lowest priority (ILVL=0) is
assigned to the initial CPU activity.

2.7 Parallel Data Processing

The new CoXXX arithmetic instructions are performed in the MAC unit. The MAC unit
provides single instruction-cycle, non-pipelined, 32-bit additions; 32-bit subtraction; right
and left shifts; 16-bit by 16-bit multiplication; and multiplication with cumultative
subtraction/addition. The MAC unit includes the following major components, shown in
Figure 2-21:

* 16-bit by 16-bit signed/unsigned multiplier with signed result’)
* Concatenation Unit

» Scaler (one-bit left shifter) for fractional computing

e 40-bit Adder/Subtracter

* 40-bit Signed Accumulator

e Data Limiter

e Accumulator Shifter

* Repeat Counter

) The same hardware-multiplier is used in the ALU.

User Manual 2-78 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

16-bit input operands

Repeat Counter

MCW Register

Concatenation signed/unsigned

Unit Multiplier

Signed
Ext!

40-bit Adder/Subtracter

| Round+Saturation |

ACCU-Shifter

40-bit Signed Accumulator

MSW Register 16-bit

Limiter 32-bit

40-bit

Figure 2-21 Functional MAC Unit Block Diagram

The working register of the MAC Unit is a dedicated 40-bit wide Accumulator register. A
set of consistent flags is automatically updated in the MSW register (see Section 2.7.10)
after each MAC operation. These flags allow branching on specific conditions. Unlike the
PSW flags, these flags are not preserved automatically by the CPU upon entry into an
interrupt or trap routine. All dedicated MAC registers must be saved on the stack if the
MAC unit is shared between different tasks and interrupts.

2.7.1 Representation of Numbers and Rounding

The C166S V2 CPU supports the 2s complement representation of binary numbers. In
this format, the sign bit is the MSB of the binary word. This is set to zero for positive
numbers and set to one for negative numbers. Unsigned numbers are supported only by
multiply/multiply-accumulate instructions which specify whether each operand is signed
or unsigned.

In 2s complement fractional format, the N-bit operand is represented using the 1.[N-1]
format (1 signed bit, N-1 fractional bits). Such a format can represent numbers between
-1 and +1-2N-1, This format is supported when MP of MCW is set.

User Manual 2-79 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

The C166S V2 CPU implements 2s complement rounding’. With this rounding type, one
is added to the bit to the right of the rounding point (bit 15 of MAL), before truncation
(MAL is cleared).

2.7.2 The 16-bit by 16-bit signed/unsigned Multiplier and Scaler

The multiplier executes 16-bit by 16-bit parallel signed/unsigned fractional and integer
multiplication in one CPU-cycle. The multiplier allows the multiplication of unsigned and
signed operands. The result is always presented in a signed fractional or integer format.

The result of the multiplication feeds a one-bit Scaler to allow compensation for the extra
sign bit gained in multiplying two 16-bit 2s complement numbers.

2.7.3 Concatenation Unit

The Concatenation Unit enables the MAC unit to perform 32-bit arithmetic operations in
one CPU cycle. The Concatenation Unit concatenates two 16-bit operands to a 32-bit
operand before the 32-bit arithmetic operation is executed in the 40-bit adder/subtracter.
The second required operand is always the current Accumulator contents. The
Concatenation Unit is also used to pre-load the Accumulator with a 32-bit value.

2.7.4 One-bit Scaler

The One-bit scaler can shift the result of the concatenation unit or the output of the
multiplier one bit to the left. The scaler is controlled by the executed instruction for the
concatenation or by the MP control bit.

The product is shifted one bit to the left to compensate for the extra sign bit gained in
multiplying two 16-bit 2s complement numbers. The enabled automatic shift is performed
only if both input operands are signed.

MCw
MAC Control Word SFRb Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MP
rw
Field Bits | Type | Description
MP [10] rw One-bit scaler control
0 Multiplier product shift disabled
1 Multiplier product shift enabled

User Manual 2-80 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

* MP-Control Bit: If the MP mode bit is set and both multiplier operands are signed
types, the multiplier output is automatically shifted left by one bit. In the case of a
multiply and accumulate operation, the output of the multiplier is shifted before being
added to the accumulator.

2.7.5 The 40-bit Adder/Subtracter

The 40-bit adder/Subtracter allows intermediate overflows in a series of multiply/
accumulate operations. The adder/Subtracter has two input ports. The 40-bit port is the
feedback of the Accumulator output through the ACCU-Shifter to the Adder/Subtracter.
The 32-bit port is the input port for the operand coming from the One-bit Scaler. The
32-bit operands are signed and extended to 40-bits before the addition/subtraction is
performed.

The output of the Adder/Subtracter goes to the Accumulator. It is also possible to round
the result and to saturate it on a 32-bit value automatically after every accumulation. The
round operation is performed by adding 00°00008000y to the result. Automatic
saturation is enabled by setting the saturation bit, the MAC Control Word (MCW).

MCW
MAC Control Word SFRb Reset Value: 0000y
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MS
rw
Field Bits | Type | Description
MS [9] rw Saturation control
0 Saturation disabled
1 Saturation enabled

* MS-Control Bit: If the MS mode bit is set, the accumulator will be automatically
saturated to 32-bits. The MAC Unit supports signed saturation.

When the accumulator is in the overflow saturation mode and an overflow occurs, the
accumulator is loaded with either the most positive or the most negative value
representable in a 32-bit value, depending on the direction of the overflow as well as the
arithmetic used. The value of the accumulator upon saturation is 00’ 7fff’ffffh (positive) or
f8000°0000h (negative).

2.7.6 The Data Limiter

Saturation arithmetic is also provided to selectively limit overflow when reading the
accumulator by means of a CoSTORE <destination>., MAS instruction. Limiting is

User Manual 2-81 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

performed on the MAC-Unit accumulator. If the contents of the Accumulator can be
represented in the destination operand size without overflow, then the data limiter is
disabled and the operand is not modified. If the contents of the accumulator cannot be
represented without overflow in the destination operand size, the limiter will substitute a
“limited” data as explained in the next table:

Table 2-13 Limiter Output

ME-flag MN-flag Output of Limiter
0 X unchanged

1 0 7FFFy

1 1 8000y

Notice that in this particular case, both the accumulator and the status register are not
affected. MAS is readable by means of a CoSTORE instruction only.

2.7.7 The Accumulator Shifter

The accumulator shifter is a parallel shifter with a 40-bit input and a 40 bit output. The
source accumulator shifting operation are:

* No shift (Unmodified)
e Up to 16-bit Arithmetic Left Shift
* Up to 16-bit Arithmetic Right Shift

Notice that the ME, MSV, and MSL bits from MSW are affected by left shifts; therefore,
if the saturation mechanism is enabled (MS), the behavior is similar to the one of the
Adder/Subtracter.

Note: Certain precautions are required in case of left shift with saturation enabled.
Generally, if MAE contains significant bits, then the 32-bit value in the accumulator
is to be saturated. However, it is possible that left shift may move some significant
bits out of the Accumulator. The 40-bit result will be misinterpreted and will be
either not saturated or saturated incorrectly. There is a chance that the result of
left shift may produce a result which can saturate an original positive number to
the minimum negative value, or vice versa.

2.7.8 The 40-bit Signed Accumulator Register

The 40-bit Accumulator consists of three smaller registers, MAH, MAL, and MAE. MAH
and MAL are 16 bits wide; MAE is 8 bits wide. MAE is the Most Significant Byte of the
40-bit accumulator. This byte performs a guarding function. MAE is accessed as the
Least Significant Byte of MSW.

When MAH is written, the value in the accumulator is automatically adjusted to signed
extended 40-bit format. That means MAE will be automatically loaded by zeros for the
positive number (MAH has 0 in the most significant bit). In the case of the negative

User Manual 2-82 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

number (MAH has 1 in the most significant bit), the MAE will be loaded with ones,
representing the extended 40-bit negative number in 2s compliment notation. One may
see that the extended 40-bit value is equal to 32-bit value without extension. In other
words, after this extension, MAE does not contain significant bits. Generally, this
condition is present when the highest 9 bits of the 40-bit signed result are the same.

During the accumulator operations, an overflow may happen and the result may not fit
into 32-bits and the MAE will change. The extension flag “E”, which is the part of the most
significant byte of MSW, is set when the signed result in the accumulator has overflowed
the 32-bit boundary. This condition is present when the highest 9 bits of the 40-bit signed
result are not the same, i.e. MAE contains significant bits.

Most CoXXX operations specify the 40-bit accumulator register as a source and/or a
destination operand.

The MAC Unit Accumulator Extension Byte MAE

The MAE register is a part of the 40-bit MAC unit accumulator register. MAE is accessed
as the Least Significant Byte of MSW. It is implicitly used by the MAC unit for MAC
operation. In case a word operand is written into MAH, the MAE register becomes sign-
extended. It can be accessed via any instruction capable of accessing an SFR.

MSWwW
MAC Status Word SFRb Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAE
| | | rv\llh | | |
Field Bits | Type | Description
MAE [7:0] |rwh | The most significant bits of the 40-bit Accumulator

The MAC Unit Accumulator High Word MAH

The MAH register is a part of the 40-bit MAC unit accumulator register. It is implicitly used
by the MAC unit for MAC operation. In case the word operand is written into MAH, MAL
acquires the zero value and the MAE register becomes sign-extended. It can be
accessed via any instruction capable of accessing an SFR.

User Manual 2-83 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

;\-\n:cl-lljmulator High Word SFR Reset Value: 0000
15‘14‘13|12‘11|10|9 8|7 6 5|4 3|2|1 0
MAH
\ \ . \ . . o \ . \ . . \

Field Bits | Type | Description
MAH [15:0] |rwh |High part of Accumulator

The middle (bits 31 to 16) word of the 40-bit MAC
Accumulator.

The MAC Unit Accumulator Low Word MAL

The MAL register is a part of the 40-bit MAC unit accumulator register. It is implicitly used
by the MAC Unit for MAC operation. In case of explicit write access to MAH, MAL
receives a zero value. It can be accessed via any instruction capable of accessing an
SFR.

;Il\-\n:clzjmulator Low Word SFR Reset Value: 00004
15[14[13|12[11|10|9[8|7[6[5|4[3|2|1[O
MAL

. . . o . . .
Field Bits | Type | Description
MAL [15:0] |rwh |Low part of Accumulator

The low order 16 bits of the 40-bit MAC
Accumulator.

2.7.9 The Repeat Counter MRW

The Repeat Counter MRW controls the number of repetitions a loop must be executed.
The register must be pre-loaded before it can be used with -USRx CoXXX operations.
MAC operations are able to decrement this counter. When an -USRx CoXXX instruction
is executed, the MRW is checked on the zero value before the MRW is decremented. If

User Manual 2-84 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

the MRW equals zero, the USRXx bit is set and MRW is not further decremented. The
MRW can be accessed via any instruction capable of accessing a SFR.

MRW
MAC Repeat Word SFRb Reset Value: 0000y
15‘ 14 ‘13 I12 ‘11 I10 | 9 | 8 | 7 | 6 5 | 4 3 | 2 | 1 0
REPEAT COUNT
| rv\llh |
Field Bits | Type | Description

REPEAT COUNT [15:0] |rwh | 16-bit loop counter

All CoXXX instructions have a 3-bit wide repeat control field 'rrr’ in the operand field to
control the MRW repeat counter. It is located within CoXXX instructions at bit positions
[31:29].

— ‘000° -> regular CoXXX instruction.

- ‘001" -> RESERVED

- ‘010" -> “~USRO0 CoXXX’ instruction, decrements repeat counter.

- ‘011" -> ‘~USR1 CoXXX instruction, decrements repeat counter.
- "1xx’ -> RESERVED.

The following example shows a loop which is executed 20 times. Every time the
CoMACM instruction is executed, the MRW counter is decremented.

mov MRW, #19

loopO01l:

- USR1 CoMACM [IDX0+], [RO+]
ADD R2, #2
JMPA cc_nusrl, loop0l

Because correctly predicted JMPA is executed in 0-cycle, it offers the functionality of a
repeat instruction.

Note: The USRO bit should be used carefully because this bit was pre-existing and,
therefore, may have been used by programmer or compiler.

2.7.10 The MAC Unit Status Word MSW

The MSW bit addressable register shows the current MAC Unit state. Two groups of bits
represent the current MAC Unit status and the eight additional extension bits belonging
to the MAC accumulator.

User Manual 2-85 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

MAC Unit Status (MV, MN, MZ, MC, MSV, ME, MSL)

The condition flags (MV, MN, MZ, MC, MSV, ME, MSL) within the MSW indicate the
MAC resulting from the most recently performed MAC operation. These flags are
controlled by the majority of the MAC instructions according to specific rules. Those rules
depend on the instruction managing the MAC or data movement operation.

After execution of an instruction which explicitly updates the MSW register, the condition
flags may no longer represent an actual MAC status. An explicit write operation to the
MSW register supersedes the condition flag values implicitly generated by the MAC unit.
An explicit read access to the MSW register returns the value of the MSW register after
execution of the immediately preceding instruction. The MSW register can be accessed
via any instruction capable of accessing an SFR.

Note: After reset, all MAC status bits are cleared.

MSwW
MAC Status Word SFRb Reset Value: 0000y
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MV MSL| ME [MSV| MC | MZ | MN MAE
rwh rwh rwh rwh rwh rwh rwh rWh
Field Bits | Type | Description
MAE [7:0] |rwh | The most significant bits of the 40-bit Accumulator
MN [8] rwh | Negative Result
0 MAC result is positive
1 MAC result is negative
Mz [9] rwh | Zero Flag
0 MAC result is not zero
1 MAC result is zero
MC [10] |rwh |Carry Flag
0 No carry/borrow produced
1 Carry/borrow produced
MSV [11] |rwh |Sticky Overflow Flag
0 No Overflow occurred
1 Overflow occurred

User Manual 2-86 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Central Processing Unit

Field Bits | Type | Description
ME [12] |rwh |MAC Extension Flag
0 MAE does not contain significant bits
1 MAE contains significant bits
MSL [13] |rwh |Sticky Limit Flag
0 Result was not saturated
1 Result was saturated
Mv [14] |rwh |Overflow Flag
0 No Overflow produced
1 Overflow produced

Accu Extension MAE: These 8 bits are part of the 40-bit accumulator register. The
MAC Unit implicitly uses these bits during a MAC operation. When writing to the MAH,
the MAE is automatically signed extended with the most significant bit of the MAH
register.

MN-Flag: For the majority of the MAC operations, the MN-flag is set to 1 if the most
significant bit of the result contains a 1; otherwise, it is cleared. In the case of integer
operations, the MN-flag can be interpreted as the sign bit of the result (negative:
MN=1, positive: MN=0). Negative numbers are always represented as the 2s
complement of the corresponding positive number. The range of signed numbers
extends from ‘80000000004 to '7FFFFFFFFFy'.

MZ-Flag: The MZ-flag is normally set to 1 if the result of a MAC operation equals zero;
otherwise, it is cleared.

MC-Flag: After a MAC addition, the MC-flag indicates that a “Carry” from the most
significant bit of the accumulator extension MAE has been generated. After a MAC
subtraction or a MAC comparison, the MC-flag indicates a “Borrow” representing the
logical negation of a “Carry” for the addition. This means that the MC-flag is set to 1,
if no “Carry” from the most significant bit of the Accumulator has been generated
during a subtraction. Subtraction is performed by the MAC Unit as a 2s complement
addition and the MC-flag is cleared when this complement addition caused a “Carry”.
For left shift MAC operations, the MC-flag represents the value of the bit shifted out
last. Right shift MAC operations always clear the MC-flag. The arithmetic right shift
MAC operation can set the MC-flag if the enabled round operation generates a “Carry”
from the most significant bit of the Accumulator extension MAE.

MSV-Flag: The addition, subtraction, 2s complement, and round operations always
set the MSV-flag to 1 if the MAC result overflows the maximum range of 40-bit signed

User Manual 2-87 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Central Processing Unit

numbers. If the MSV-flag indicates an arithmetic overflow, the MAC result of an
operation is not valid. The MSV-flag is a "Sticky Bit’. Once set, other MAC operations
cannot affect the status of the MSV-flag. Only a direct write operation can clear the
MSV-flag.

 ME-Flag: The ME-flag is set if the accumulator extension MAE contains significant
bits. The ME-flag is set if the nine highest accumulator bits are not all equal.

* MSL-Flag: The MSL-flag is set if an automatic saturation of the accumulator has
happened. The automatic saturation is enabled if the MS-bit of the MAC Control Word
register MCW is set. The MSL-Flag can be also set by instructions which limit the
contents of the accumulator. If the accumulator has been limited, the MSL-Flag is set.
The MSL-Flag is a 'Sticky Bit'. Once set, it cannot be affected by the other MAC
operations. Only a direct write operation can clear the MSL-flag.

* MV-Flag: The addition, subtraction, and accumulation operations set the MV-flag to 1
if the result exceeds the maximum range of signed numbers (80°00000000y to
7FFFFFFFFFL); otherwise, the MV-flag is cleared. Note that if the MV-flag indicates
an arithmetic overflow, the result of the integer addition, integer subtraction, or
accumulation is not valid.

2.7.11 The MAC Unit Control Word MCW

This bit addressable register controls the operation of the MAC Unit. It can be accessed
via any instruction capable of addressing an SFR.

MCW
MAC Control Word SFRb Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MP | MS
rw rw
Field Bits |Type | Description
MP [10] rw One-bit scaler control

0 Multiplier product shift disabled
1 Multiplier product shift enabled

MS [9] rw Saturation control
0 Saturation disabled
1 Saturation enabled

User Manual 2-88 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

e MS-Control Bit: If the MS mode bit is set, the accumulator will be automatically
saturated to 32 bits. The MAC Unit supports signed saturation.

* MP-Control Bit: If the MP mode bit is set and both multiplier operands are of signed
types, the multiplier output is automatically shifted left by one bit. In the case of a
multiply and accumulate operation, the output of the multiplier is shifted before being
added to the accumulator.

2.8 Dedicated CSFRs

The Constant Zeros Register ZEROS

All bits of this bit addressable register are fixed to 0 by hardware. This register is read-
only. Register ZEROS can be used as a register-addressable constant of all zeros for bit
manipulation or mask generation. It can be accessed via any instruction which is capable
of accessing an SFR.

ZEROS
Constant Zeros Register SFRb Reset Value: 0000y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r r r r r r r r r r r

Field Bits Type | Description
0 [all] r Fixed to Zero

User Manual 2-89 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Central Processing Unit

The Constant Ones Register ONES

All bits of this bit addressable register are fixed to 1 by hardware. This register is read-
only. Register ONES can be used as a register-addressable constant of all ones for bit
manipulation or mask generation. It can be accessed via any instruction capable of
accessing an SFR.

ONES
Constant Ones Register SFRb Reset Value: FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r r r r r r r r r r r r r r r r

Field Bits Type | Description
1 [all] r Fixed to One

CPU Identification Register CPUID

This 16-bit register contains the module and revision number of the implemented
C166S V2 core module.

CPUID
CPU Identification Register ESFR Reset Value: 03?7y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MODULE NUMBER VERSION NUMBER
| | | 'l‘ | | | | | | 'l‘ | | |
Field Bits Type | Description
MODULE NUMBER |[15:8] |r Module Number
03y C166S V2 core module number
VERSION NUMBER | [7:0] r Version Number
Version Number

User Manual 2-90 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

3 C166S V2 Memory Organization

The memory space of the C166S V2 CPU is configured in a “Yon Neumann”
architecture. This means that code and data are accessed within the same linear
address space. All of the physically separated memory areas, including internal ROM/
Flash/DRAM (if integrated into a specific derivative), internal RAM, internal Special
Function Register Areas (SFRs and ESFRs), and external memory are mapped into a
single common address space.

The C166S V2 CPU provides a total addressable memory space of 16 MBytes. This
address space is arranged as 256 segments of 64 KBytes each. Each segment is again
subdivided into four data pages of 16 KBytes each (see Figure 3-1).

Most internal memory areas are mirrored into the system segment, segment 0. The
upper 4 KBytes of segment 0 (00’FO004...00'FFFFH) hold the Special Function Register
Areas (SFR and ESFR) and the DPRAM areas.

Data may be stored in any part of the internal memory areas. Code may be stored in any
part of the internal memory areas except the SFR blocks, the DPRAM, and Internal
SRAM and internal IO area as these areas may be used for control/data, but not for
instructions.

The 64 KByte memory area of segment 191 (BF'00004...BF'FFFF) cannot be used to
store code and data. It is reserved for “on chip” boot and debug/monitor program
memories.

Accesses to internal memory areas on devices without the appropriate internal
memories will produce unpredictable results.

User Manual 3-91 V 1.7, 2001-01

o

Infineon

technologies

User Manual

C166S V2

C166S V2 Memory Organization

FF'FFFFy

~
—— Segment — 1~ Data Page 1023

)
g
© — 255 —
ef E L —
e § | — — — | FFoooo,
=
a /
| C0°0000y
— Segment —
— 191 —
— reserved —
> — ——"_ " BF'0000y - — — — O0’FFFF,
i | RAM /
4 E I — / SFR 00’F000,
BHE __ —] internal-10
% . / Area)
¢ | — — — | 41700004 Data Page 3 00’E000y
— Segment — /
L e4 — Internal
- _ / SRAM
. __ __ __ L 4070000y / 00°C000,
2 / Internal
é’ L L 2100004 Data Page 2 SRAM
N — Segment —
L — — — L 20°00004 00’8000,
- — — — |- 0870000y Data Page 1
% g‘ — Segment —
S5 — 2
e — —
‘B¢ L _ _ __ L 0270000y / _|__ External __|_ 004000
M
® — Segment — / emory
— 1 E—
| _ /
- — — — [0170000 Data Page 0
— Segment —1 —Data Page 3
- 0]
— 7/Da’ta Page 0)
oo‘oo00y_ - . . . _ __ 00°0000y
System Segment 0
16MByte ysten 4KB%6
Figure 3-1 Memory Areas and Address Space
User Manual 3-92 V1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

3.1 Data Organization in Memory

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address followed by the high byte at the next
odd byte address. Instruction double words are stored in ascending memory locations
as two subsequent words, without any restrictions (non aligned). Single bits are always
stored in the specified bit position at a word address. The memory and registers store
data and instructions in little endian byte order (the least significant bytes are at lower
addresses) The byte ordering is illustrated in Figure 3-2. Bit position 0 is the least
significant bit of the byte at an even byte address, and bit position 15 is the most
significant bit of the byte at the next odd byte address. Bit addressing is supported for a
part of the Special Function Registers, a part of the internal RAM, and for the General
Purpose Registers.

— T~
e XXXX XXXAH
111]..Bits ... 8 xxxx’xxx9,
76| ... Bits ... Of xxxx’xxx8,
Byte XXXX'XXX7 4
Byte XXXX'XXXB
Word (High Byte) XXXXXXX5
Word (Low Byte) XXXX'XXX4y,
Double Word (High) XXXX'XXX3y
Double Word (Third) XXXX XXX2y
Double Word (Second) | xxxx'xxx1,
Double Word (Low Byte)| xxxx'xxx0,
o XXXX'XXXF

/‘\/

Figure 3-2 Storage of Words, Bytes and Bits in a Byte Organized Memory

Note: Byte units forming a single word must always be stored within the same physical
(internal, external, ROM, RAM) and organizational (page, segment) memory area.

3.2 Internal Program Memory

The C166S V2 CPU reserves an address area of 4 MBytes for Internal Program
Memory. The internal memory can be ROM, SRAM, Flash or DRAM. Devices with

User Manual 3-93 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

Internal Program Memory expand the Internal Program Memory area from the beginning
of segment 192, i.e. starting at address C0’0000,.

The Internal Program Memory can be used for both code (instructions) and data
(constants, tables, etc.) storage.

Code fetches are always made on even word addresses. The highest possible code
storage location in the Internal Program Memory is either xx’xxFEy for single word
instructions, or xx’xxFCy, for double word instructions.

Any word and byte data read access may use the indirect or long 16-bit addressing mode.
There is no short addressing mode for Internal Program Memory operands. Any word
data access is made to an even byte address. Any double word access is made to a
modulo 4 address (even word address). The highest possible word data storage location
in the Internal Program Memory is xxxx’xxFEp, the highest double word location
XXXX'XXFC.

The Internal Program Memory is not provided for single bit storage, and therefore is not
bit addressable.

Note: The X’ in the locations above depend on the available Internal Program Memory.

3.3 DPRAM, Internal SRAM, and SFR Areas

The C166S V2 CPU differentiates between various internal memory types and internal

peripheral areas. These data memories and the I0/SFR areas are located within data

page 3 and provide fast accesses using one dedicated Data Page Pointer (see Figure 3-

3).

Note: Code access is not possible from the DPRAM, the Internal RAM, or the I0/SFR
areas.

3.3.1 Data Memories

Two dedicated volatile memories are available for data storage:

* The DPRAM can be used for:

— General Purpose Register Banks (GPRs)

— Variable and other data storage, especially for MAC operands

— System Stack (not recommended if Internal SRAM is integrated)
* The Internal SRAM can be used for:

— Variable and other data storage

— System Stack (recommended if Internal SRAM is integrated)

A 3 kByte memory area (00‘F2004...000°’FEQ0,,) is reserved for the DPRAM. The upper
256 Bytes of the DPRAM (00’FDO0y...00'FDFFy) and the GPRs of the current bank are
provided for single bit storage, and thus are bit addressable (see shaded blocks in
Figure 3-3). Any word or byte data in the DPRAM can be accessed via indirect or long
16-bit addressing modes, if the selected DPP register points to data page 3. Any word

User Manual 3-94 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

data access is made on an even byte address. The highest possible word data storage
location in the DPRAM is 0000’FDFEy,.

A 24 kByte memory area (00‘8000y...000'DFFF) is reserved for the Internal SRAM. Any
word and byte data in the Internal SRAM can be accessed via indirect or long 16-bit
addressing modes, if the selected DPP register points to data page 3 or data page 2. Any
word data access is made on an even byte address. The highest possible word data
storage location in the Internal SRAM is 0000’'DFFE.

'FFFF, - — — — — 00'FFFF
RAAM/SFR 00'FFFFy H
rea) ~ SFR
00’FO00 —
o | "o / Area
Data Page 3 Area 00'E000;, internal 00'FE00},
Intenal \ DPRAM
SRAM \ 00’FD00y
00'C000y \
\
Intenal \
Data Page 2
SRAM \
\
008000}, \
\
\ DPRAM
Data Page 1 \
\
\
1 External _]_ 0040004
Memory \
\
Data Page 0 \ | 00'F200,
\ | ESFRI _|
\ Area
00°00004 - — 00’F000
System Segment 0
64KByte

Figure 3-3 RAM and SFR Areas

User Manual 3-95 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

3.3.2 Special Function Register Areas

The functions of the CPU, the bus interface, the 10 ports, and the on-chip peripherals of
the C166S V2 device are controlled via a number of so-called Special Function
Registers (SFRs). These SFRs are arranged within two areas of 512 Bytes each. The
first register block, the SFR area, is located in the 512 Bytes above the DPRAM
(O0O’FEOOy...00'FFFFy). The second register block, the Extended SFR (ESFR) area, is
located in the 512 Bytes below the DPRAM (00’FO00...00'F1FFR).

Special Function Registers can be addressed via indirect and long 16-bit addressing
modes. Using an 8-bit offset together with an implicit base address allows word SFRs
and their respective low bytes to be addressed. However, this does not work for the
respective high bytes!

Note: High byte access of SFRs using the 8-bit offset addressing mode is not possible.

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to
be cleared!

Note: GPRs can be accessed using the 8-bit offset addressing mode, but they are not
mapped into the SFR and ESFR memory area. an internal peripheral bus access
is executed using the respective long address instead of a GPR access.

The upper half of each register block (except the 16 highest words, refer to Section 2.5.1
) is bit-addressable, so the respective control/status bits can be directly modified or
checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, the Extend Register (EXTR) instruction is required to switch the short
addressing mechanism from the standard SFR area to the Extended SFR area before
accessing registers in the ESFR area. This is not required for 16-bit and indirect
addresses. GPRs R15...R0 are duplicated, i.e. they are accessible within both register
blocks via short 2-, 4- or 8-bit addresses without switching.

Example:

EXTR #4 :Switch to ESFR area for the next four instructions
MOV ODP2, #data16 ;ODP2 (ESFR register) uses 8-bit register addressing
BFLDL DP6, #mask, #data8;DP6 (ESFR register) bit addressing for bit fields
BSET DP6.7 ;DP6 (ESFR register) bit addressing for single bits
MOV T8REL, R1 ;TBREL uses 16-bit address, R1 is duplicated®

;...and also accessible via the ESFR mode

;(EXTR is not required for this access)
R e ;The scope of the EXTR #4 instruction ends here!
MOV T8REL, R1 ; TBREL uses 16-bit address, R1 is duplicated®

;...and does not require switching

User Manual 3-96 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

C166S V2 Memory Organization

To minimize the switching of SFR banks, the ESFR area contains registers that are
mainly required for initialization and mode selection. Registers that need to be accessed
frequently are allocated to the standard SFR area wherever possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will
automatically insert EXTR instructions, switch the SFR bank address, or issue a
warning in case of missing or excessive EXTR instructions.

3.3.3 10 Area

Some parts of the C166S V2 CPU memory area are marked as |O. These memory areas
have the following special properties:

— Accesses are not buffered and cached
The write back buffers and caches of the C166S V2 CPU are not used to store 10
read and write accesses.

— Special handling of destructive reads
The pipeline of the C166S V2 CPU allows speculative reads. Memory locations of
the 10 area are not read until all speculations are solved. Destructive read accesses
are delayed.

— Write before read execution
The pipeline length of the C166S V2 CPU enables a read instruction to read a
memory location before a preceding write instruction has executed its write access.
Data forwarding guarantees the correct instruction flow execution. In case of an 10
read access, the read access will be delayed until all IO writes pending in the
pipeline are executed. In case of a write access, peripherals will change their
internal states. Write accesses must actually be executed before the next read
access is initiated.

Note: The bit manipulation instructions (BSET, BCLR...) use the read-modify-write
approach. The 10 read access of this instructions will be stalled until all 10 write
accesses are finished.

The following memory areas are marked as 10:

— 2 Mbytes of external 10 located to 20’0000y to 3F’FFFF

— SFR and ESFR areas located from 00’FEOO to 00'FFFFp and from 00’FO00y to
00’F1FF respectively

— 4 kByte internal 1O located from 00’E000y to OO’EFFFy

Note: All external 10 areas support real byte accesses. All internal 10 areas do not
support real byte transfers. For more details on the exception of (E)SFR areas
refer to Section 3.3.2.

3.3.4 PEC Source and Destination Pointers

The source and destination pointers for data transfers on the PEC channels are located
in the 4-kByte internal 10 area. Each channel uses a pair of pointers stored in two

User Manual 3-97 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

subsequent word registers, with the source pointer (SRCPx) on the lower and the
destination pointer (DSTPx) on the higher word address (x = channel number). The PEC
registers are part of the PEC itself and are addressed via the internal peripheral bus.

In contrast to the C166 family, the pointers are not located in the internal RAM. The
pointers are located in the 4 kByte internal 10.

If a PEC channel is not used, the corresponding pointer locations are not available and
cannot be used for word and byte storage.

Writing to any byte of the PEC pointers does cause the non-addressed complementary
byte to be cleared!

For more detail about use of the source and destination pointers for PEC data transfer,
see the “Interrupt and Exception Execution” section.

34 External Memory Space

The C166S V2 CPU is capable of using an address space of up to 16 MBytes. Only
portions of this address space are occupied by internal memory areas. All addresses not
used for on-chip memory or for registers may reference external memory locations. This
external memory is accessed via the external bus interface. This interface may further
limit the amount of addressable external memory.

External word and byte data can be accessed only via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short addressing mode for
external operands. Any word data access is made to an even byte address and double
word accesses to modulo 4 byte addresses (even word address).

The external memory is not provided for single bit storage and therefore is not bit
addressable.

3.4.1 Boot and Debug/Monitor Program Memories

The 64 KByte memory area of segment 191 (BF'0000y...BF'FFFFy) is reserved for boot
and debug/monitor program memories. These “on chip” memories are accessed using
the EBC and are a part of the EBC's external memory space. Accesses are not visible
at the port pins of the EBC even if these memories are part of the external memory
space. During normal code execution, this segment is not accessible for the C166S V2
CPU. In case of a read access, the EBC will deliver the predefined 00004 value and write
access will not be executed. Only in special boot and emulation modes can the
memories of segment 191 be accessed.

Note: Segment 191 (BF'0000y...BF°'FFFFy) is not usable for the system application.
External memories and peripherals located in this segment will never be
accessed.

User Manual 3-98 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

3.5 Crossing Memory Boundaries

The address space of the C166S V2 CPU is implicitly divided into logical memory areas
and equally sized blocks of different granularity. Crossing the boundaries between these
areas or blocks (code or data) requires special attention to ensure that the controller
executes the desired operations.

Memory Areas are partitions of the address space that represent different kinds of
memory (if provided at all). These memory areas are the internal RAM areas, the internal
IO areas, the internal Program Memories (if available), and the external memory.

Accessing subsequent data locations that belong to different memory areas is not fully
supported and may therefore lead to erroneous results. There is no problem if the
memory boundaries are word aligned. However, when executing code, the different
memory areas (Internal Program Memory areas and external memory) must be switched
explicitly via branch instructions. Sequential boundary crossing is not supported and may
leads to erroneous results.

Segments are contiguous blocks of 64 KBytes each. They are referenced via the Code
Segment Pointer (CSP) for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.

During code fetching, segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS, and RETS will do this. Larger
sequential programs make sure that the highest used code location of a segment
contains an unconditional branch instruction to the respective following segment, to
prevent the prefetcher from trying to leave the current segment.

Data Pages are contiguous blocks of 16 KBytes each. They are referenced via the data
page pointers DPP3...0 and via an explicit data page number for data accesses
overriding the standard DPP scheme. Each DPP register can select one of the possible
1024 data pages. The DPP register that is used for the current access is selected via the
two upper bits of the 16-bit data address. Subsequent 16-bit data addresses that cross
the 16 KByte data page boundaries will use different data page pointers, while the
physical locations need not be subsequent within memory.

3.6 System Stack

The system stack may be defined within the internal RAM, but can be also located
externally. The size of the system stack is limited to 64 kBytes and must be located in
one segment. For all system stack operations, the stack memory is accessed via a 24 bit
stack pointer. The Stack Pointer register (SP) represents the low order 16 bits of the
24 bit stack pointer, also referred to as Stack Pointer Offset. The Stack Segment Pointer
(SPSEG) represents the high order 8 bits of the stack pointer, also referred to as Stack
Segment.

The system stack implementation in the C166S V2 CPU is from high to low memory. The
system stack grows downward as it is filled. The SP register is decremented first each

User Manual 3-99 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

C166S V2 Memory Organization

time data is pushed on the system stack, and incremented after each time the data is
pulled from the system stack. Only word accesses are supported to the system stack.

The 24 bit stack pointer points to the address of the latest system stack entry, rather than
to the next available system stack address.

A stack overflow (STKOV) register and a Stack Underflow (STKUN) register are
provided to control the lower and upper limits of the selected stack area. These two stack
boundary registers can be used for protection against data destruction.

3.6.1 Data Organization in Global General Purpose Registers

The C166S V2 CPU differentiates between global memory mapped General Purpose
Register (GPR) banks and local not mapped GPR banks. In addition to the memory
mapped register banks, the C166S V2 CPU has two local not memory mapped GPR
register banks for very fast context switching (see Section 2.4).

Note: The local GPR banks are not memory mapped and the GPRs cannot be accessed
using a long or indirect memory address.

The C166S V2 CPU supports register bank (context) switching. Multiple global memory
mapped register banks can physically exist within the DPRAM at the same time;
however, only the global register bank selected by the Context Pointer register (CP) is
active at a given time. Selecting a new active global register bank is done by simply
updating the CP register.

User Manual 3-100 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

Mapping of the global General Purpose Registers to DPRAM Addresses is shown here:

DPRAM Address Byte Registers Word Register
<CP> + 1Ey --- R15
<CP> + 1Cy --- R14
<CP> + 1Ay --- R13
<CP> + 18y --- R12
<CP> + 16y --- R11
<CP> + 14y --- R10
<CP> + 12y R9
<CP> + 10y R8
<CP> + OEq RH7RL7 R7
<CP> + 0CH RH6RL6 R6
<CP> + 0Ay RH5RL5 R5
<CP> + 08y RH4RL4 R4
<CP> + 06y RH3RL3 R3
<CP> + 04y RH2RL2 R2
<CP> + 02 RH1RL1 R1
<CP> + 00y RHORLO RO

A patrticular Switch Context (SCXT) instruction performs register bank switching and an
automatic save of the previous context. The number of implemented register banks
(arbitrary sizes) is limited only by the size of the available DPRAM.

The memory mapped GPRs use a block of sixteen consecutive words within DPRAM
Segment 0. The Context Pointer (CP) register determines the base address of the
currently active register bank. This register bank may consist of up to sixteen word GPRs
(RO, R1, .. R15), and/or of up to sixteen byte GPRs (RLO, RHO, ¢, RL7, RH7). The sixteen
byte GPRs are mapped onto the first eight word GPRs (see table above).

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 bytes. The GPRs are accessed via short
2-, 4- or 8-bit addressing modes using the Context Pointer (CP) register as base address
(independent of the current DPP register contents). Additionally, each bit in the currently
active register bank can be accessed individually.

User Manual 3-101 V 1.7, 2001-01

o
Infineon User Manual
technologies C166$ V2

C166S V2 Memory Organization

User Manual 3-102 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

4 Instruction Pipeline

The pipeline of the C166S V2 CPU has seven stages. Each stage processes its
individual task. The first two stages form the instruction fetch pipeline and the remaining
five stages constitute the instruction processing pipeline. The instruction fetch pipeline is
used to pre-fetch instructions and to store them into an instruction FIFO. The
preprocessing of branch instructions in combination with the instruction FIFO allows
filling of the execution pipeline with a continuous flow of instructions. In the case of an
incorrectly predicted instruction flow, the instruction fetch pipeline is bypassed to reduce
the number of dead cycles. All instructions must pass through each of the five stages of
the instruction processing pipeline regardless of the need of some stages to complete
an execution of certain instructions. The following illustrates the pipeline stages
operation.

1st -> PREFETCH:

This stage pre-fetches instructions from the PMU in the predicted order. The instructions
are pre-processed in the branch detection unit to detect branches. The prediction logic
decides if the branches are assumed to be taken or not.

2st -> FETCH:

The instruction pointer of the next instruction to be fetched is calculated according to the
branch prediction rules. For zero-cycle branch execution, the Branch Folding Unit pre-
processes and combines detected branches with the preceding instructions. Pre-fetched
instructions are stored in the instruction FIFO. At the same time, instructions are
transported out of the instruction FIFO to be executed in the instruction processing
pipeline.

3st -> DECODE:

The instructions are decoded and, if required, the register file is accessed to read the
GPR used in indirect addressing modes.

4st -> ADDRESS:

All the operand addresses are calculated. The SP register is de/incremented for all
instructions which implicitly access the system stack.

5st -> MEMORY:
All the required operands are fetched.
6st -> EXECUTE:

An ALU or MAC-Unit operation is performed on the previously fetched operands. The
Condition flags are updated. All explicit write operations to CPU-SFR registers and all
auto-in/decrement operations of GPRs used as indirect address pointers are performed.

7st -> WRITE BACK:

User Manual 4-103 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

All external operands and the remaining operands within the internal DPRAM space are
written back. Operands located in the internal SRAM are buffered in the Write Back
Buffer.

There are C166S V2 CPU-specific so-called injected instructions. These instructions are
generated internally by the machine to provide the time needed to process instructions
requiring more than one CPU cycle for processing. They are automatically injected into
the decode stage of the pipeline, then they pass through the remaining stages like every
standard instruction. Program interrupt, PEC transfer, and OCE operations are also
performed by means of injected instructions. Although these internally injected
instructions will not be noticed in reality, they are introduced here to ease the explanation
of the pipeline operation.

Because up to five different instructions are processed simultaneously, additional
hardware has been dedicated in the C166S V2 CPU to deal with dependencies which
may exist between instructions in different pipeline stages. This extra hardware supports
forwarding’ of the operand read and write values and resolves most of the possible
conflicts—such as multiple usage of buses—in a time optimized way without
performance loss. This makes the pipeline unnoticeable for the user in most cases.
However, there are some rare cases in which the C166S V2 CPU pipeline requires
attention by the programmer. In these cases, the delays caused by the pipeline conflicts
can be used for other instructions to optimize performance.

Note: The C166S V2 CPU has a fully interlocked pipeline. Instruction re-ordering is only
required for performance reasons.

The following examples describe the pipeline behavior in special cases and give
principle rules to improve the performance by re-ordering the execution of instructions.

4.1 Instruction Dependencies in Different Pipeline Stages

Bandwidth limitations and data dependencies between instructions can dramatically
decrease the performance of CPUs. The C166S V2 CPU has dedicated hardware to
detect and to resolve different kind of dependencies. Some of those dependencies are
described in the following section.

41.1 The General Purpose Registers

The GPRs are the working registers of the C166S V2 CPU and there are a lot of possible
dependencies between instructions using GPRs. A high speed five port register file
prevents bandwidth conflicts. The dedicated hardware is implemented to detect and
resolve the data dependencies. Special forwarding busses are used to forward GPR
values from one pipeline stage to another. This allows the execution of instructions
without any delay despite of data dependencies.

I
I

. ADD RO,R1
ns1 ADD R3,RO

User Manual 4-104 V 1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Pipeline

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ini1= Inio= Ini3= Inta Ints
ADD RO,R1 ADD R3,R0 ADD R6,R0 ADD R6,R1
ADDRESS In-1 In= Iny1= Inyo= |n+3: Int4
ADD RO,R1 ADD R3,R0 ADD R6,R0 ADD R6,R1
MEMORY In-2 In-1 In= Ini1= Ino= Ini3=
ADD RO,R1 ADD R3,R0 ADD R6,R0 ADD R6,R1
EXECUTE I Iz - e A = lnyo= 4
ADD RO,R1 ADD R3,R0O ADD R6,R0
WRITE BACK In-a In-3 In-2 In-1 In= / Iny1=
ADD RO,R1 ADD R3,R0

Only in the case in which a GPR is updated in the ALU and then directly used in one of
the following instructions as an address pointer will the detection unit force the pipeline
to stall. None of the instructions using indirect addressing modes are capable of
using a GPR, which is to be updated by one of the two immediately preceding
instructions. The new value of the GPR is calculated in the execute stage, while the
instruction using an indirect addressing mode accesses the GPR already in the Decode
Stage. The instruction is stalled in the address stage until the operation in the ALU is
executed and the result is forwarded to the address stage.

User Manual

4-105

V1.7, 2001-01

o~

Infineon

technologies

User Manual

C166S V2

Instruction Pipeline

I,., ADD R6,RO
I,,; ADD R6,R1
Tpea eevennn.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE n= Iny1= Ins2 Ins2 Ins2 In+s

ADD RO,R1 MOV R3,[R0]
ADDRESS In-1 In= In1= In1= Ini1= Ins2

ADD RO,R1 MOV R3,[R0] MOV R3,[R0] MOV R3,[R0]
MEMORY In2 In-1 In= Ini1=
ADD RO,R1 MOV R3,[R0]
EXECUTE In-3 In2 In-1 In=
ADD RO,R1
WRITE BACK In-a In-3 In2 In-1 In=
ADD RO,R1

To avoid stalls, one multicycle or two single cycle instructions may be inserted. These
instructions must not update the GPR used for indirect addressing.

I, 1 ...
I, ADD RO,R1
I,., ADD R6,RO
I,,, ADD R6,R1
I,,3 MOV R3, [RO]
Tpeg ceevenn.
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE n= Ing1= Inio= Ini3= Insa Inss
ADD RO,R1 ADD R6,R0 ADD Re6,R1 MOV R3,[R0]
ADDRESS In-1 In= Iny1= Inyo= Iny3= Insa
ADD RO,R1 ADD R6,R0 ADD R6,R1 MOV R3,[R0]
MEMORY lho Ih-1 Ih= Ine1= Inso= Inia=
ADD RO,R1 ADD R6,R0 ADD R6,R1 MOV R3,[R0]
EXECUTE In—S In—2 In-1 In: |n+1: |n+2:
ADD RO,R1 ADD R6,R0 ADD R6,R1
WRITE BACK | ln4 I3 I I+ I= Iy=
ADD RO,R1 ADD R6,R0
4.1.2 Indirect Addressing Modes

In the case of read accesses using indirect addressing modes, the Address Generation
Unit uses a speculative addressing mechanism. The read data path to one of the
different memory areas (DPRAM, Internal SRAM, etc.) is selected according to a history
table before the address is decoded. This history table has one entry for each of the

User Manual

4-106

V1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Pipeline

GPRs. The entries store the information of the last accessed memory area using the
corresponding GPR. In the case of an incorrect prediction of the memory area, the read
access must be restarted.

It is recommended that the GPR used for indirect addressing point to the same memory
area. If an updated GPR points to a different memory area, the next read operation will
access the wrong memory area. The read access must be repeated, which leads to
pipeline stalls.

I, ADD R3,[R0O] , points to DPRAM
I,,1 MOV RO, R4

I; MOV DPPX, ... ,change DPPx
I, ADD R6, [RO] , points to SRAM
I... ADD R6,R1
Im+2
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE Ih= Ingt= Ins2 In+3 Insa Inss
MOV R3,[R0] MOV RO,R4
ADDRESS In-1 In= Int1= Int2 In+3 Insa
MOV R3,[R0] | MOV RO,R4
MEMORY In2 In-1 In= Iniq= Ine2 In+3
MOV R3,[R0] | MOV RO,R4
EXECUTE In-3 In2 In-1 In= Iniq1= Int2
MOV R3,[R0] MOV RO,R4
WRITE BACK | I I3 I I+ I= Ioy=
MOV RS3,[R0] MOV RO,R4
Tm Tm+1 Tm+2 Tn+3 Tn+4 Tn+5
DECODE Im= Ims1= Ime1= Im+2 Im+3 Im+a
MOV R6,[R0] ADD R6,R1 ADD R6,R1
ADDRESS Im-1 |m: Im: |m+1: Im+2 Im+3
MOV R6,[R0] MOV R6,[R0] ADD R6,R1
MEMORY In-2 In-1 In= Ine1= e
MOV R6,[R0] ADD R6,R1
EXECUTE Im-3 Im-2 Im-1 Im= Ims1=
MOV R6,[R0] | ADD R6,R1
WRITE BACK Im-4 Im-3 Im-2 Im-1 Im=
MOV R6,[R0]

41.3 Memory Bandwidth Conflicts

Memory bandwidth conflicts can occur if instructions in the pipeline access the same
memory area at the same time. Special access mechanisms are implemented in the
C166S V2 CPU to minimize conflicts. The internal DPRAM of the C166S V2 CPU has

User Manual 4-107 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

two independent read/write ports; this allows parallel read and write operation without
delays. Write accesses to the internal SRAM can be buffered in a Write BACK Buffer until
read accesses are finished.

e Bandwidth conflicts in the DPRAM Area
Allinstructions except the CoXXX instructions can read only one memory operand per

cycle. A conflict between the read and one write access cannot occur because the
DPRAM has two independent read/write ports.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ing1= Inio= Ini3= Insa Inss
ADD op1,R1 ADD R6,R0 ADD R6,0p2 MOV R3,[R0]
ADDRESS In-1 In= Ini1= Ino= Ini3= Insa
ADD op1,R1 | ADD R6,RO ADD R6,0p2 | MOV R3,[R0]
MEMORY lho Ih-1 Ih= Ine1= Inso= Inia=
ADD op1,R1 ADD R6,R0 ADD R6,0p2 MOV R3,[R0]
EXECUTE g I In-1 Iy= Inyq= o=
ADD op1,R1 ADD R6,R0 ADD R6,0p2
WRITE BACK In4 In-3 In-2 In-1 In= Iny1=
ADD op1,R1 ADD R6,R0

Note: Only other pipeline stall conditions can generate a DPRAM bandwidth conflict.
The DPRAM is a synchronous pipelined memory. The read access starts with the
valid addresses on the address stage. The data are delivered in the Memory
stage. If a memory read access is stalled in the Memory stage and the following
instruction on the Address stage tries to start a memory read, the new read access
must be delayed as well. But, this conflict is hidden by an already existing stall of
the pipeline.

User Manual 4-108 V 1.7, 2001-01

o~

Infineon

technologies

User Manual

C166S V2

e Bandwidth conflicts in the DPRAM Area
The CoXXX instructions are the only instructions able to read two memory operands
per cycle. A conflict between the two read and one pending write access can
occur if all three operands are located in the DPRAM areas. This is especially
important for performance in the case of executing a filter routine. One of the operands
should be located in the internal SRAM to guarantee a single cycle execution time of

the CoXXX instructions.

Instruction Pipeline

Tpog oo
I, ADD opl,R1
I,,1 ADD R6,RO
I,.,, COMAC [IDX0], [RO]
I,,3 MOV R3, [RO]
Tpeg weevnns
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ini1= Inio= Ini3= Insa Insa
ADD op1,R1 ADD R6,R0 CoMAC MOV RS3,[R0]
ADDRESS In—1 In: |n+1: |n+2: |n+3: |n+3:
ADD op1,R1 ADD R6,R0 CoMAC A | MOV R3,[R0] MOV RS3,[R0]
MEMORY In-2 Ih-1 In= Iny1= Inso= Inso=
ADD op1,R1 ADD R6,R0 CoMAC CoMAC
EXECUTE In-3 In-2 In-1 In= Y| =
ADD op1,R1 ADD R6,R0
WRITE BACK In-a In-3 In2 In-1 In= Ing1=
ADD op1,R1 ADD R6,R0
User Manual 4-109 V1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

¢ |nternal SRAM
The internal SRAM is a single port memory with one read/write port. To reduce the
number of bandwidth conflict cases, a Write Back Buffer is implemented. It has three
entries for buffer data buffering. Only if the buffer is filled and a read and write
accesses occur at the same time, must the read access be stalled while one of
the buffer entries is written back.

Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE = Ini1= Ino= Ini3= Insa Insa
ADD op1,R1 ADD R6,R0 ADD R6,0p2 MOV R3,R2
ADDRESS Ih-1 Ih= Iny1= Inso= Ini3= Ini3=
ADD op1,R1 ADD R6,R0 ADD R6,0p2 A MOV R3,R2 MOV R3,R2
MEMORY Ih-2 Ih-1 Ih= Iny1= Inyo= Inyo=
ADD op1,R1 ADD R6,R0 ADD R6,0p2 ADD R6,0p2
EXECUTE In-3 In-2 In-1 In= Ini1=
ADD op1,R1 | | ADD R6,RO
WRITE BACK Ih-4 Ih-3 Ih-2 Ih-1 Ih= Iny1=
ADD op1,R1 ADD R6,R0
Write Back full full full full full full
Buffer
41.4 CPU-SFRs and the Pipeline

CPU-SFRs control the CPU functionality and behavior. Changes and updates of CSFRs
influence the instruction flow in the pipeline. Therefore, special care is required to ensure
that instructions in the pipeline always work with the correct CSFRs values. CSFRs are
updated late on the Executed stage of the pipeline. Meanwhile, without conflict
detection, the instructions in the Decode, Address, and Memory stages would still
work without updated register values. The C166S V2 CPU detects conflict cases and
stalls the pipeline to guarantee a correct execution. For performance reasons, the CPU
differentiates between different classes of CPU-SFRs. The flow of instructions through
the pipeline can be improved by following the given rules used for instruction re-ordering.

There are three classes of CPU-SFRs:

* The harmless CSFRs (CPUID, ONES, ZEROS, MCW) do not generate pipeline
conflict cases. The MCW can be changed without stalling the pipeline. The MCW is

User Manual 4-110 V 1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Pipeline

updated in the Execute Stage and is not used for control purposes in the previous
stages. CPUID, ONES, and ZEROS are not changeable at all.

N4d s s e e e
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE Ih= Ing1= Inio= Ini3= Insa Inss
MOV MCW,#16 | ADD R6,R0 ADD R6,R1 MOV R3,[R0]
ADDRESS In-1 In= Ini1= Ino= Ini3= Insa
MOV MCW,#16 | ADD R6,R0 ADD R6,R1 MOV R3,[R0]
MEMORY In2 In-1 In= Ini1= Inio= Ini3=
MOV MCW,#16 | ADD R6,R0 ADD R6,R1 MOV R3,[R0]
EXECUTE In-3 In-2 In-1 In= Ing1= Inyo=
MOV MCW,#16 | ADD R6,R0 ADD R6,R1
WRITE BACK In4 In-3 In-2 In-1 In= Iny1=
MOV MCW,#16 | ADD R6,R0

User Manual 4-111 V 1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Pipeline

* The CSFR result registers MDH, MDL, MSW, MAH, MAL, MRW of the ALU and MAC-
Unit are updated late in the Execute stage of the pipeline. If an instruction (except
CoSTORE) accesses explicitly these registers in the memory stage, the value cannot
be forwarded. The instruction must be stalled for one cycle on the Memory stage.

n- 1 cccccccc
I, MUL RO,R1
I,.; MOV Ré,MDL
I,,, ADD R6,R1
I,,; MOV R3, [RO]
Trug eeeenn--
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ins1= Inyo= Ini3= Ini3= In+a
MUL RO,R1 MOV R6,MDL ADD Re6,R1 MOV R3,[R0] MOV R3,[R0]
ADDRESS In-1 In= Iny1= Inyo= Inyo= Iny3=
MUL RO,R1 MOV R6,MDL ADD R6,R1 ADD R6,R1 MOV R3,[R0]
MEMORY In-2 In-1 In= Ini1= Iny1= Inso=
MUL RoO,R1 MOV R6,MDL | MOV R6,MDL | ADD R6,R1
EXECUTE Ih-3 In-2 Ih-1 Ih= Iniq=
MUL RO,R1 MOV R6,MDL
WRITE BACK In-a In-3 In2 In-1 In=
MUL RO,R1

By reordering instructions, the bubble in the pipeline can be filled with an instruction not
using this resource.

I, MOV R3, [RO]
I..> MOV R6,MDL
I,.,; ADD R6,R1
Tpeg ceevnen.
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ini1= Inio= Iny3= In+a Inss
MUL RoO,R1 MOV RS3,[R0] MOV R6,MDL ADD R6,R1
ADDRESS In-1 In= Ini1= Ino= Ini3= Insa
MUL RO,R1 MOV R3,[R0] MOV R6,MDL ADD R6,R1
MEMORY In2 In-1 In= Iny1= Inyo= Iny3=
MUL RO,R1 MOV R3,[R0] MOV R6,MDL ADD R6,R1
EXECUTE In—S In—2 In-1 In= In+1= |n+2=
MUL RoO,R1 MOV R3,[R0] MOV R6,MDL
WRITE BACK | In I I I-1 Iy= =
MUL RoO,R1 MOV R3,[R0]
User Manual 4-112 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

e The third class are CSFRs which affect the whole CPU or the pipeline before the
Memory stage. The CPU-SFRs CPUCON1, CP, SP, STKUN, STKOV, VECSEG,
TFR, and PSW affect the overall CPU functioning while the C-SFRs IDX0, IDX1, QX1,
QX0, DPPO, DPP1, DPP2 and DPPS3 only affect the Decode, Address, and Memory
stage when they are modified explicitly.

If this kind of CSFR has been modified, the pipeline behavior depends on the
instruction and addressing modes used to modify the CSFR.

— In the case of modification of these CSFRs by “POP CSFR” or by instructions using

the reg,#data16 addressing mode, a special mechanism is implemented to improve
performance during the initialization.
For further explanation, the instruction which modifies the CSFR can be called
“instruction_modify_CSFR”. This special case is detected in the Decode stage
when the instruction_modify_ CSFR enters the processing pipeline. Further on,
instructions described in the following list are held in the decode stage. All other
instructions are not held.

- Instructions using long addressing mode (mem)

- Instructions using indirect addressing modes ([R,,], IRy+]----..), except JMPI and
CALLI

- ENWDT, DISWDT, EINIT

- All CoXXX instructions

If the CPUCON1, CP, SP, STKUN, STKOV, VECSEG, TFR, or the PSW are
modified and the instruction_modify_CSFR reaches the execute stage, the pipeline
is canceled. The modification affects the entire pipeline and the instruction prefetch.
A clean cancel and restart mechanism is required to guarantee a correct instruction
flow. In case of modification of IDXO0, IDX1, QX1, QX0, DPP0O, DPP1, DPP2 or
DPP3 only the Decode, Address, and Memory stages are affected and the pipeline
must not be canceled. The modification does not affect the instructions in the
Address, Memory stage because they are not using this resource. Other kinds of
instructions are held in the Decode stage until the CSFR is modified.

The following example shows a case in which the pipeline is stalled. The instruction
MOV R6,R1 after the MOV IDX1,#12 instruction which modifies the CSFR will be
held in Decode Stage until the IDX1 register is updated. The next example shows
an optimized initialization routine.

User Manual 4-113 V 1.7, 2001-01

o~

Infineon

technologies

User Manual

C166S V2

Instruction Pipeline

In_ 1
I, MOV IDX1,#12
I,,1 MOV R6, mem
I,.» ADD R6,R1
I,,5 MOV R3, [RO]
Thig - vvvvnn.
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE In= Ine1= Ine1= Ine1= Int1= Inyo=
MOV IDX1,#12 | MOV R6,mem | MOV R6,mem | MOV R6,mem | MOV R6,mem | ADD R6,R1
ADDRESS Ih-1 Ih= 1=
MOV IDX1,#12 MOV R6,mem
MEMORY In-2 In-1 In:
MOV IDX1,#12
EXECUTE In-3 In2 In-1 Ih=
MOV IDX1,#12
WRITE BACK In-4 I3 Ih-o lh-1 l=
MOV IDX1,#12
I,.1 e,
I, MOV IDX1,#12
I,,; MOV MAH, #23
I,.», MOV MAL, #25
I,.; MOV R3, #08
Thig - vveenn.
Tn Tn+1 Tn+2 Tn+3 Tn+4 Tn+5
DECODE Ih= Ingt= Ino= Ini3= Insa Inss
MOV IDX1,#12 | MOV MAH,#23 | MOV MAL,#25 | MOV R3,#08
ADDRESS In-1 In= Ing1= Inyo= Iny3= Insa
MOV IDX1,#12 | MOV MAH,#23 | MOV MAL,#25 | MOV R3,#08
MEMORY lho Ih-1 Ih= Ine1= Inso= Inia=
MOV IDX1,#12 | MOV MAH,#23 | MOV MAL,#25 | MOV R3,#08
EXECUTE I3 In-2 In-1 = 1= lnso=
MOV IDX1,#12 | MOV MAH,#23 | MOV MAL,#25
WRITE BACK In-4 In-3 Ih2 In-1 = 1=
MOV IDX1,#12 | MOV MAH,#23
User Manual 4-114 V1.7, 2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Pipeline

— For all the other instructions that modify this kind of CSFR, a simple stall and cancel
mechanism guarantees the correct instruction flow.
A possible explicit write-operation to this kind of CSFRs is detected on the Memory
stage of the pipeline. The following instructions on the Address and Decode Stage
are stalled. If the instruction reaches the execute stage, the entire pipeline and the
Instruction FIFO of the IFU are canceled. The instruction flow is completely re-

started.
In_ 1 e e e e e e
I, MOV PSW,R4
I,,1 MOV R6,RL
I,., ADD R6,R1
I,.z MOV R3, [RO]
Thig ooeeeenn
Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6
DECODE |n+1— In+2= |n+2= In+1=
MOV R6,R1 ADD R6,R1 ADD R6,R1 MOV R6,R1
ADDRESS In= In+1= In+1=
MOV PSW,R4 MOV R6,R1 MOV R6,R1
MEMORY In-1 In=
MOV PSW,R4
EXECUTE Iho In-1 I=
MOV PSW,R4
WRITE BACK I3 Ih-2 Ih-1 In=
MOV PSW,R4
User Manual 4-115 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Pipeline

User Manual 4-116 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

5 Interrupt and Exception Handling

The Interrupt and Exception Handler is responsible for managing all system and core
exceptions. Four kinds of exceptions are executed in a similar manner:

Interrupts generated by the Interrupt Controller ITC

DMA transfers issued by the Peripheral Event Controller PEC.
Software Traps caused by the TRAP instruction

Hardware Traps issued by faults or specific system states

Normal Interrupt Processing

The CPU temporarily suspends current program execution and branches to an interrupt
service routine to service a device requesting an interrupt. The current program status
(IP and PSW; in segmentation mode, also CSP) is saved in the internal system stack. A
prioritization scheme with sixteen priority levels specifies the order for handling multiple
interrupt requests.

Software and Hardware Traps

Trap functions are activated in response to special conditions that occur during the
execution of instructions. A trap can also be caused externally by the Non-Maskable
Interrupt pin, NMI. Several hardware trap functions are provided to handle erroneous
conditions and exceptions that arise during program execution. Hardware traps always
have the highest priority and cause immediate system response. The software trap
function is invoked by the TRAP instruction that generates a software interrupt for a
specified interrupt vector. For all types of traps, the current program status is saved in
the system stack.

Interrupt Processing via the Peripheral Event Controller (PEC)

A faster alternative to normal interrupt processing uses the C166S V2 CPU's integrated
Peripheral Event Controller (PEC) to service an interrupt requesting device. Triggered
by an interrupt request, the PEC performs a single word or byte data transfer between
any two memory locations. During a PEC transfer, the normal program execution of the
CPU is halted. No internal program status information needs to be saved. The same
prioritization scheme is used for PEC service as for normal interrupt processing.

User Manual 5-117 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

5.1 Interrupt System and Control

5.1.1 General Interrupt System Structure

The C166S V2 CPU can provide up to 128 separate interrupt nodes that may be
assigned to sixteen interrupt priority levels with four sub-priorities inside each level
(group priority) for up to 64 interrupt nodes or with eight sub-priorities inside each level
(group priority) in the case of more than 64 interrupt nodes. To support modular and
consistent software design techniques, most sources of an interrupt or PEC request are
supplied with separate interrupt control registers and interrupt vectors. The control
register contains an interrupt request flag, an interrupt enable bit, and an interrupt priority
of the associated source. Each source request is activated by one specific event,
determined by the selected operating mode of the requesting device. In some cases,
multi-source interrupt nodes are incorporated for efficient use of system resources.
These nodes can be activated by various source requests.

The C166S V2 CPU provides a vectored interrupt system. This system reserves specific
vector locations in the memory space for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location associated with the
respective interrupt source. The reserved vector locations build a jump table in the
address space of the C166S V2 CPU.

All pending interrupt requests are arbitrated. The arbitration winner is sent to the CPU
together with its priority level and action request. The CPU triggers the corresponding
action based on the required functionality (normal interrupt, PEC, jump table cache, etc.)
of the arbitration winner.

An action request will be accepted by the CPU if the requesting source has a higher
priority than the current CPU priority level and interrupts are globally enabled. If the
requesting source has a lower (or equal) interrupt level priority than the current CPU
task, it remains pending.

The basic functionality of the interrupt and peripheral event controller can be seen in
Figure 5-1:

User Manual 5-118 V 1.7,2001-01

o~

technolog

Infineon

ies

User Manual
C166S V2

Interrupt and Exception Handling

Interrupt and Peripheral Event Controller
Interrupt .
Request PEC Pointer
Lines SRCPO DSTPO | | PECSEGO
SRCP1 DSTP1 PECSEG1
irg0 _\
SRCP7 DSTP7 PECSEG7
rat C166S V2
CPU
irqg2
irq3
' Arbitration PEC Request -
g Arbitr.
H) > . Request Request Injection —
i Winner | Peripheral | 4 > - ol N 55
! Event Control Control Control /_I\ @]
irq n-3 Controller Interrupt \I_\/ =
qn PEC p (CPU Action o 0
B EOP (PEC) Handler Request) ® 5
irg n-2 irg n-1 Interrupt Interrupt
INT 2) > >
_/ Request Request
@ @ OCE/
o6E OCDS
Injection
Arbitration PEC Interrupt Request &
Control Control Handler Control
Control
(Interrupt (PEC
Control Control Fast Bank
Registers) Registers) Switching
BNKSELO
irqoIC PECCO
BNKSEL3
irg11C PECC1
Interrupt Jump
irq1261C PECC7 Table Cache
EOPIC PECISNC FINTOCSP
FINTOADDR
FINT1CSP
FINT1ADDR
1) number of interrupt nodes n (upto 128)
2) End of PEC Interrupt (EOPINT) is connected to interrupt request line irq n-1.
Therefore, only n-1 interrupt lines (irq n-2...0) are available for peripheral request
handling.
Figure 5-1 Block Diagram of the Interrupt and PEC Controller
User Manual 5-119 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

5.1.2 Interrupt Arbitration

The C166S V2 interrupt arbitration system can handle interrupt requests from up to 128
sources. Interrupt requests may be triggered either by the C166S V2 peripherals or by
external inputs. The “End of PEC” interrupt for supporting enhanced PEC functionality is
connected internally to one interrupt request line.

The arbitration process starts with an enabled interrupt request and stays active as long
as an interrupt request is pending. If nothing is pending, the arbitration logic switches to
the idle state to save power.

Each interrupt request line is controlled by its interrupt control register xxIC (here and
below xx’ stands for the mnemonic of the respective interrupt source). An interrupt
request event sets the interrupt request flag in the corresponding interrupt control
register (bit xxIC.xxIR). The interrupt request can also be triggered by the software if the
program sets the respective interrupt request bit. This feature is specifically used by
operating systems.

If the request bit has been set and the corresponding interrupt request is enabled by the
interrupt enable bit of the same control register (bit xxIC.xxIE), an arbitration cycle starts
with the next clock cycle. However, if an arbitration cycle is currently in progress, the new
interrupt request will be delayed until the next arbitration cycle. If an interrupt request (or
PEC request) is accepted by the core, the respective interrupt request flag is cleared
automatically.

All interrupt requests pending at the beginning of a new arbitration cycle are considered
simultaneously. Within the arbitration cycle, the arbitration is independent of the actual
request time.

C166S V2 uses a three-stage interrupt prioritization scheme for interrupt arbitration as
shown in Figure 5-2.

User Manual 5-120 V 1.7,2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Interrupt and Exception Handling

Interrupt
: : Hardware
| Arbitration Traps
! OCDS break ! >
! request !
I " >
| | ocDs }
! or XXXXX |
} OCE (OCDS service }
Interrupt | request priority |
! level) I xxxxx
Request ! . !
. | > | (request
Lines ! | priority level) CPU

— \ ' | Arbitration
‘ CPU ‘
! OXXXX

> xxxx (ILVL) + | (ILVL Action | ! (ﬁ_vl)_(xpsw
—»| Request | XXx(XGLVL)! PEC/ ex(;e_nd'agévith Control | ! extended with
Lines Lp-| Interrupt i MSB) . ! 0in MSB)

— Arbitration ! Handler !

—- ;
| |
I I

e } } PSW
| |
| | CPU
1 1

Stage 1: } Stage 2: } Stage 3:
Compared 4-bit ILVL+ 2/3-bit XGLVL ! 4-bit IRQ/PEC priority level ! 5-bit request priority level
priority levels of interrupt sources } compared with } compared with
(64/128 priority levels) ; 5-bit OCDS priority level ; 4-bit PSW priority level

Figure 5-2 Interrupt Arbitration

The first arbitration stage compares the priority levels of interrupt request lines. The
priority level of each requestor consists of interrupt priority level and group priority level.
An interrupt priority level is programmed for each interrupt request line by the 4-bit bit
field ILVL of the respective xxIC register. The group priority level is programmed for each
interrupt request line by the 2-bit bit field GLVL—and, in the case of more than 64
interrupt nodes, by the extension bit GPX of the register xxIC. GPX and GLVL combined
form the 3-bit (extended) group priority level XGLVL, controlling up to eight interrupt sub-
priorities within one of the sixteen interrupt levels.

Note: All interrupt request sources that are enabled and programmed to the same
interrupt priority level (ILVL) must have different group priority levels. Otherwise,
an incorrect interrupt vector may be generated.

The second arbitration stage compares the priority of the first stage winner with the
priority of OCDS service requests. C166S V2 OCDS service requests bypass the first
stage of arbitration and go directly to the CPU Action Control Unit. The CPU Action
Control Unit disregards the group priority level of interrupt/PEC requests and deals only
with interrupt priority levels (ILVL). For comparison with an OCDS service request priority
programmed with a 5-bit value, the 4-bit ILVL of the interrupt/PEC request is extended
to a 5-bit value with MSB=0. This means that any OCDS request with MSB=1 will always

User Manual 5-121 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

win the second stage arbitration. However, if there is a OCDS request with MSB=0
conflicting with the same priority interrupt/PEC request, the latter is sent to the CPU.

On the third arbitration stage, the priority level of the second stage winner is compared
with the priority of the current CPU task. An action request will be accepted by the CPU
if the requesting source has a priority level higher than the current CPU priority level (bits
ILVL of the PSW register) and for interrupt and PEC requests if they are globally enabled
by the global interrupt enable flag IEN in PSW. The CPU denies all interrupt/PEC
requests in case of a cleared IEN flag and an injection level between 0 to 15. To compare
with the 5-bit priority level of the second stage winner, the 4-bit ILVL.PSW is extended
to a 5-bit value with MSB=0. This means that any request with MSB=1 will always
interrupt the current CPU task. If the requester has a priority level lower than or equal to
the current CPU task, the request remains pending.

Note: Priority level 0000g is the default level of the CPU. Therefore, a request on
interrupt priority level 0000g will be arbitrated, but the CPU will never accept an
action request on this level. However, every enabled interrupt request (including
all denied interrupt requests as well as priority level 0000g requests) triggers a
CPU wake-up from idle state independent of the setting of the global interrupt
enable bit PSW.IEN.

Both the OCDS break requests and the hardware traps bypass the arbitration scheme
and go directly to the core.

5.1.3 Interrupt Control

Allinterrupt control registers are organized identically. The lower eight bits of an interrupt
control register contain the complete interrupt control and status information of the
associated source required during one round of prioritization (arbitration cycle). The
upper eight bits of the respective register are reserved. All interrupt control registers are
bit addressable and all bits can be read or written via software. Therefore, each interrupt
source can be programmed or modified with just one instruction. In the case of reading
the interrupt control registers with instructions that operate with word data types, the
upper 7 bits (15...9) will return zeroes. It is recommended to always write zeroes to these
bit positions. The layout of the interrupt control registers shown below is applicable to all
xxIC regqisters.

User Manual 5-122 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

xxIC
Interrupt Control Register SFR Reset Value: 00004
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPX | xxIR | xxIE ILVL GLVL
rw rwh rw | W | W
Field Bits Type | Description
GPX [8] rw Group Priority Extension
Defines the value of high-order group level bit
xxIR") [7] rwh | Interrupt Request Flag
0 No request pending
1 This source has raised an interrupt request
xxIE [6] rw Interrupt Enable Control Bit
(individually enables/disables a specific source)
0 Interrupt request is disabled
1 Interrupt request is enabled
ILVL [5:2] rw Interrupt Priority Level

Fy Highest priority level

Oy Lowest priority level

GLVL [1:0] rw Group Priority Level
3y Highest priority level

Oy Lowest priority level

XGLVL [8],[1:0] Extended Group Priority Level
74 Highest priority level

Oy Lowest priority level

Y Bit xxIR supports bit-protection

The arbitration scheme allows nesting of up to fifteen interrupt service routines of
different priority levels (Level O cannot be used; see note above).

Note: To reduce power, the arbitration is stopped when no interrupt request is active.

User Manual 5-123 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

5.1.4 Interrupt Vector Table

The C166S V2 provides a vectored interrupt system. This system reserves the specific
vector locations in the memory space for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location associated with the
respective interrupt source. This vector position directly identifies the source causing the
request.

Note: Class B hardware traps all share the same interrupt vector. The status flags in the
Trap Flag Register (TFR) are used to determine which exception caused the trap.
For details, see Section 5.3.

The reserved vector locations are assembled into a vector table located in the address
space of the C166S V2. The vector table contains the appropriate jump instructions that
transfer control to the interrupt or trap service routines. These routines may be located
anywhere within the address space. The location and organization of the vector table is
programmable. The vector table can be located in all segments with exception of the
reserved segment 191. The Vector Segment register VECSEG specifies the segment of
the Vector Table.

VECSEG
Vector Segment Pointer bSFR Reset Value: xxxxy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VECSEG
wh
Field Bits Type | Description
VECSEG [7:0] rwh | Segment number of the Vector Table

The reset value of VECSEG can be configured during system reset or can be set
depending on the particular product. The C166S V2 supports the following reset values:

Start from Internal Program Memory (C0’0000y)

Start from Boot memory (BF0000y)

Start from external memory (00°'00004)

— Start from a segment specified from the system (xx’OOOOH)”

The VECSC bit field of the CPUCONT1 register controls the number of word locations
separating two vectors. The space between two vectors can be programmed to 2, 4, 8,
or 16 words.

Y The current startup routine does not support this reset configuration.

User Manual 5-124 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

Each vector location has an offset address to the segment base address of the vector
table. The address can be easily calculated. The segment part is given by the VECSEG
register and the offset is the trap number shifted by the space programmed in the
VECSC bit field.

CPUCON1
CPU Control Register SFR Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VECSC
w
Field Bits | Type | Description
VECSC [6:5] |rw Scaling factor of Vector Table

00 Space between two vectors is 2 words
01 Space between two vectors is 4 words
10 Space between two vectors is 8 words
11 Space between two vectors is 16 words

Note: For a summary of the CPUCONT1 register, please refer to Chapter 2.3.6.

5.1.5 Interrupt Jump Table Cache

The mechanism that uses the vector table location as the entry point for the interrupt
service routines can be overwritten by the Interrupt Controller (ITC). For a very fast
interrupt response time, the C166S V2 offers a new feature of the interrupt system—
Interrupt Jump Table Cache (also called “fast interrupt”). The ITC can transfer a 24-bit
vector to the CPU that is used directly as a start address for the service routine. This
feature skips the path through the vector table which normally saves the execution of at
least one branch. Due to the random nature of interrupt requests, execution of these
branches requires several CPU cycles, especially if memories with a high latency are
used, such as DRAMs. Therefore, avoiding the vector table may significantly improve
interrupt response time. However, the number of 24-bit vectors in the ITC is limited.

Fast interrupt is available for two interrupt sources with interrupt priority levels greater
than or equal to 12. The Interrupt Jump Table Cache skips the instruction fetches from
the interrupt vector table and executes a direct jump to the interrupt service routines
entry point. This feature is controlled by a set of two interrupt jump table cache registers
(FINTXCSP, FINTXADDR) for each of the two jump table entries.

Every interrupt jump table cache entry contains an enable bit, an associated arbitration
priority level (ILVL and GLVL), and the 24-bit address of the interrupt service routine.
Note that only the two lower bits of the interrupt priority level are selectable in the

User Manual 5-125 V 1.7,2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Interrupt and Exception Handling

respective control registers. The two upper bits of the interrupt priority level are set to
“11g’, which limits the allowed interrupt priority level to be greater than or equal to 12.

FINTOCSP

Fast Interrupt Control Register 0

XSFR Reset Value: 0000y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN GPX | ILVL GLVL SEG

rw rw r\IN rW rW

FINT1CSP

Fast Interrupt Control Register 1

15 14

13

12

11

10

XSFR Reset Value: 0000

9 8 7 6 5 4 3 2 1 0

EN

GPX

ILVL

GLVL SEG

rw

rw

rw

rw

Field

Bits

Type

Description

EN

[15]

rw

Fast Interrupt Enable

0 The interrupt jump table cache is disabled.
No fast interrupt is used.

1 The interrupt jump table cache is enabled.
A fast interrupt (direct jump to the interrupt
service routine) is used instead of the
normal fetch from the interrupt vector table.

GPX

[12]

rw

Group Priority Extension
This bit enables group extension for fast interrupts.
(hardwired to O for fewer than 64 interrupt nodes)

ILVL

[11:10]

Interrupt Priority Level

This bit field selects the lower two bits of the
interrupt priority level associated with this interrupt
jump table cache entry.

Note: The two upper bits of the interrupt priority
level are set to ‘11g’, which ends in an
interrupt priority level greater than or equal
to 12.

User Manual

5-126 V1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

Field Bits Type | Description

GLVL [9:8] rw Group Priority Level
This bit field selects the group priority level of the
associated interrupt jump table cache entry.

SEG [7:0] rw Segment Number of Interrupt Service Routine
This bit field specifies address bits 23:16 of the
interrupt service routine’s entry point.

FINTOADDR
Fast Interrupt Address Register 0 XSFR Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR 0
| | | \rWI | | | r
FINT1ADDR
Fast Interrupt Address Register 1 XSFR Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDR 0
| | | \rWI | | | r
Field Bits Type | Description
ADDR [15:1] |rw Address of Interrupt Service Routine

This bit field specifies address bits 15:1 of the
interrupt service routine’s entry point.

0 [0] r Interrupt Service Routine Address Bit 0
LSB of the interrupt service routine’s entry point
address is 0 because of word alignment.

5.2 Status and Switch Context Control

5.2.1 Interrupt Control Functions in the PSW

The Processor Status Word (PSW) is functionally divided into two parts: the lower byte
of the PSW represents the arithmetic status of the CPU, the upper byte of the PSW
controls the interrupt system of the C166S V2 CPU.

Note: For a summary of the PSW register, please refer to Section 2.6.6

User Manual 5-127 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

II;rScYc\:,essor Status Word bSFR Reset Value: 0000
15 | 14 | 13 | 12 11 10 9 | 8 7 6 5 4 3 2 1 0
ILVL IEN BANK
\ rWh I rw rwh
Field Bits Type | Description
ILVL [15:12] |rwh | CPU Priority Level

Oy Lowest Priority

Fy Highest Priority

IEN [11] rw Interrupt/PEC Enable Bit (globally)
0 Interrupt/PEC requests are disabled
1 Interrupt/PEC requests are enabled
BANK [9:8] rwh | Reserved for register file bank selection

00 Global register bank
01 Reserved

10 Local register bank 1
11 Local register bank 2

CPU Priority ILVL defines the current level for the CPU operation, thus, this bit field
reflects the priority level of the currently executed routine. When the CPU enters an
interrupt service routine this bit field is set to the priority level of the request that is being
serviced. The previous PSW is saved in the system stack before entering interrupt
service routine. To be serviced, any interrupt request must have a higher priority level
than the current CPU priority level. Any request of the same or a lower level will not be
acknowledged.

The current CPU priority level may be adjusted via software to select interrupt request
sources that can be serviced.

PEC transfers do not really interrupt the CPU, but rather “steal” some CPU cycle, so PEC
services do not influence the ILVL field in the PSW.

Hardware traps set the CPU level to the maximum priority (15). Therefore, no interrupt
or PEC requests will be acknowledged while an exception trap service routine is being
executed.

The TRAP instruction does not change the CPU level, so software trap service routines
may be interrupted by higher requests.

Register Bank BANK defines the currently used register bank for the CPU operation.
When the CPU enters an interrupt service routine, this bit field is updated to select the
register bank associated with the serviced request.

User Manual 5-128 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

Note: The TRAP instruction does not change the register bank.
Note: Hardware traps always use the global register bank.

Interrupt Enable bit IEN globally enables or disables interrupts and PEC operations.
When IEN is cleared, no new interrupt requests are accepted by the CPU after IEN was
set to 0. However, requests that have already entered the pipeline will be completed. If
IEN is set to 1, then all interrupt sources are globally enabled.

Note: To generate requests, interrupt sources must be also enabled by the interrupt
enable bits in their associated control register.

Note: Traps are non-maskable and, therefore, are not controlled by the IEN bit.

5.2.2 Saving the Status during Interrupt Service

Before an operating system or ITC can actually service a task switch request or interrupt,
the CPU must save the current task status. The C166S V2 CPU saves the CPU status
(PSW) along with the return address in the system stack. The return address defines the
point at which the execution of the interrupted task is to be resumed after returning from
the service routine. This return address is specified by the Instruction Pointer (IP) and,
in the case of a segmented memory model, also by the Code Segment Pointer (CSP).
Bit SGTDIS in the CPUCON1 register defines which memory model is used and,
therefore, controls how the return address is stored.

In the case of non-segmented mode, the system stack stores PSW first and then IP. In
segmented mode, PSW is followed by CSP and the IP. This order optimizes the use of
the system stack if segmentation is disabled.

The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request
that is to be serviced, so the CPU now executes on the new level.

The BANK field in the PSW register is changed to select the register bank associated
with the interrupt request. The associations between interrupt requests and register
banks are programmed in the Interrupt Controller (ITC).

User Manual 5-129 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

Status of
Interrupted Task

SP—»
- Psw | | | PSW
- sP—» 1P CsP

- -- IP__le—sP
1. System Stack before 2. System Stack after 3. System Stack after
Interrupt Entry Interrupt Entry Interrupt Entry
(Unsegmented) (Segmented)

Figure 5-3 Task Status Saved on the System Stack

After accepting an interrupt request, the C166S V2 CPU sends an acknowledge to the
ITC that the requested interrupt is being serviced. The vector associated with the
requesting source is loaded into the IP and CSP and the first instruction of the service
routine is fetched. All other CPU resources, such as data page pointers and the context
pointer, are not affected.

When the CPU returns from the interrupt service routine (RETI is executed), the status
information is popped from the system stack in reverse order. The status information
contents depend on the SGTDIS bit value (see Figure 5-3).

5.2.3 Context Switching

An interrupt service routine usually saves all the registers it uses in the stack, and
restores them before returning. The more registers a routine uses, the more time is
wasted by saving and restoring. The C166S V2 CPU allows the complete bank of CPU
registers (GPRs) to be switched, so the service routine executes within its own separate
context. There are two ways to switch a context in the C166S V2 core (for details, see
Section 2.4.3):

1. Switching Context by Changing the Selected Register Banks

Selection of the register bank used in the interrupt task is programmed in the Interrupt
Controller. During the execution of the interrupt entry procedure, the change of the
register bank is automatically executed. After switching to one of the two local register
banks, the service routine may now use its “own registers” directly. This local register
bank is preserved when the service routine is terminated; thus, its contents are
available on the next call.

When switching to the global register bank, the service routine must also switch the
context of the global register bank (see the next section) to get a private set of GPRs.

User Manual 5-130 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

2. Switching Context of the Global Register Bank by Changing Context Pointer
The C166S V2 CPU allows the complete global register bank of CPU registers
(GPRs) to be changed with a single instruction; so, the service routine executes within
its own separate context. The instruction “SCXT CP, #New_Bank” pushes the
contents of the context pointer (CP) into the system stack and loads CP with the
immediate value “New_Bank”. The new CP value sets a new global register bank. The
service routine may now use its “own registers”. This global register bank is preserved
when the service routine is terminated; thus, its contents are available for the next call.
Before returning (RETI), the previous CP is simply popped from the system stack;
thus, returning the registers to the original global register bank.

Note: Resources used by the interrupting program must eventually be saved and
restored, such as the DPPs and the registers of the MUL/DIV unit.
There are certain timing restrictions during context switching that are associated
with pipeline behavior. For details, see Section 2.4.3.2.

5.24 Fast Bank Switching

The interrupt handler of the C166S V2 CPU supports an additional enhanced feature
(compared to other members of the C166 family) for normal interrupts called Fast Bank
Switching. To speed up interrupt handling, the core can use fast General Purpose
Register (GPR) bank switching for interrupts with an interrupt level greater or equal 12.
For every arbitration priority level with ILVL = “155-“125" and XGLVL = 75’-‘0p’, the
register bank can be selected via two bits. These bits are located in the two register bank
selection registers BNKSELx (x = 0,..,3). The BNKSEL2 and BNKSELS3 registers are
only implemented in configurations using the GPX extension bit.

BNKSELX (x =0... 3)
Register Bank Selection Register x XSFR Reset Value: 0000y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPRSEL7 | GPRSEL6 | GPRSEL5 | GPRSEL4 | GPRSEL3 | GPRSEL2 | GPRSEL1 | GPRSELO

I I I I I I I I
rw rw rw rw rw rw rw rw

Field Bits Type | Description

GPRSELx (x=0...7) |[x+1:x] |rw Register Bank Selection
00 Gilobal register bank
01 Reserved

10 Local register bank 1
11 Local register bank 2

Note: The GPRSELXx value of the current triggered interrupt is automatically transferred
into the Program Status Word (PSW).

User Manual 5-131 V 1.7,2001-01

User Manual
C166S V2

.(.
(Infineon
technologies

Table 5-1 identifies the arbitration priority level assignment to the respective bit fields
within the four register bank selection registers:

Interrupt and Exception Handling

Table 5-1 Register Bank Assignment

Interrupt | Group Assigned Interrupt | Group Assigned

Priority Priority | GPRSELXx Priority Priority | GPRSELx

Level Level Register Level Level Register

(ILVL) (XGLVL) (ILVL) (XGLVL)

15 7 BNKSEL3.GPRSEL7 |13 7 BNKSEL2.GPRSEL7
15 6 BNKSEL3.GPRSEL6 | 13 6 BNKSEL2.GPRSEL6
15 5 BNKSEL3.GPRSEL5 |13 5 BNKSEL2.GPRSEL5
15 4 BNKSEL3.GPRSEL4 | 13 4 BNKSEL2.GPRSEL4
15 3 BNKSEL1.GPRSEL7 |13 3 BNKSELO.GPRSEL7
15 2 BNKSEL1.GPRSEL6 | 13 2 BNKSELO.GPRSEL6
15 1 BNKSEL1.GPRSEL5 |13 1 BNKSELO.GPRSEL5
15 0 BNKSEL1.GPRSEL4 | 13 0 BNKSELO.GPRSEL4
14 7 BNKSEL3.GPRSEL3 | 12 7 BNKSEL2.GPRSELS3
14 6 BNKSEL3.GPRSEL2 | 12 6 BNKSEL2.GPRSEL2
14 5 BNKSEL3.GPRSEL1 |12 5 BNKSEL2.GPRSEL1
14 4 BNKSEL3.GPRSELO | 12 4 BNKSEL2.GPRSELO
14 3 BNKSEL1.GPRSEL3 | 12 3 BNKSELO.GPRSELS3
14 2 BNKSEL1.GPRSEL2 | 12 2 BNKSELO.GPRSEL2
14 1 BNKSEL1.GPRSEL1 |12 1 BNKSELO.GPRSEL1
14 0 BNKSEL1.GPRSELO | 12 0 BNKSELO0.GPRSELO
5.3 Traps

A software trap is initiated by the TRAP instruction. The TRAP instruction can call an
interrupt service routine by its associated vector number. The trap number specified in
the operand field of the trap instruction determines which vector location of the vector
table will be used.

5.3.1

The TRAP instruction is used to cause a software call to an interrupt service routine. The
trap number specified in the operand field of the trap instruction determines which vector
location of the vector table will be used.

Software Traps

User Manual 5-132 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

The TRAP instruction has an effect similar to an interrupt request at the same vector.
PSW, CSP (in segmentation mode), and IP are pushed into the system stack and then
a jump is taken to the specified vector location. When a software trap is executed, the
CSP for the trap service routine is loaded with the value of the VECSEG register. No
Interrupt Request flags are affected by the TRAP instruction. The interrupt service
routine called by a TRAP instruction must be terminated with a RETI (return from
interrupt) instruction to ensure correct operation.

Note: The CPU priority level and the selected register bank in PSW register are not
modified by the TRAP instruction; so, the service routine is executed with the
same priority level as the interrupt task. Therefore, the service routine entered by
the TRAP instruction can be interrupted by other traps or by higher priority
interrupts, unless triggered by a real hardware event. The service routine also
works with an unchanged register bank. If the hardware triggers the same service
routine, register bank can be selected by the ITC and may be different.

5.3.2 Hardware Traps

Hardware Traps are issued by faults or specific system states that occur during runtime
(not identified at compile time). The C166S V2 CPU distinguishes eight different
hardware trap functions. When a hardware trap condition has been detected, the CPU
branches to the trap vector location for the respective trap condition. The instruction
causing the trap event is completed before the trap handling routine is entered.

Hardware traps are not-maskable and always have a priority higher than any other CPU
task. If several hardware trap conditions are detected within the same instruction cycle,
the highest priority trap is serviced. In case of a hardware trap, the injection unit injects
an ITRAP instruction into the pipeline.

The ITRAP instruction performs the following actions:

Pushes PSW, CSP (in segmented mode) and IP into the System Stack

Sets CPU level in the PSW register to the highest possible priority level, which
disables all interrupts and DMA transfers

Selects the global register bank for the trap service routine

— Branches to the trap vector location specified by the trap number of the trap condition

The eight hardware functions of the C166S V2 CPU are divided in two classes: Class A
and Class B.

Class A traps are:

External Non-Maskable Interrupts NMI
Stack Overflow

Stack Underflow

— Software Break

These traps share the same trap priority, but have an individual vector address.

User Manual 5-133 V 1.7,2001-01

—
H User Manual
(Infineon C166S V2

Interrupt and Exception Handling

Class B traps are:

Undefined Opcode

Parity Fault

Protection Fault

lllegal Word Operand Access

The Class B traps share the same interrupt node and interrupt vector. The bit
addressable Trap Flag Register (TFR) allows a trap service routine to identify the trap
that caused the exception.

The Trap Flag Register TFR

Each trap function is indicated by a separate request flag. When a hardware trap occurs,
the corresponding request flag in register TFR is set to 1.

TFR
Trap Flag Register bSFR Reset Value: 0000
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NMI STK | STK |SOFT UND PAR | PRT | ILL
OF | UF |BRK OPC FLT | FLT |OPA
rwh rwh rwh rwh rwh rwh rwh rwh
Field Bits | Type | Description
NMiY) [15] |rwh |Non maskable interrupt flag
0 No non-maskable interrupt detected
1 Non-maskable interrupt detected
STKOF") [14] |rwh |Stack overflow flag
0 No stack overflow event detected
1 Stack overflow event detected
STKUF [13] |rwh |Stack underflow flag
0 No stack underflow event detected
1 Stack underflow event detected
SOFTBRK" [12] |rwh |Software Break
0 No software break event detected
1 Software break event detected
UNDOPC") [7] |rwh |Undefined Opcode
0 No undefined opcode event detected
1 Undefined opcode event detected
PARFLTY [4] |rwh |Parity Fault?
0 No parity fault event detected
1 Parity fault event detected

User Manual 5-134 V 1.7,2001-01

o~
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

Field Bits | Type | Description
PRTFLT" [3] rwh | Protection Fault
0 No protection fault event detected
1 Protection fault event detected
ILLOPAY) [2] rwh | lllegal word operand access
0 No illegal word operand access event
detected
1 lllegal word operand access event detected

) This Bit supports bit-protection

2) Parity fault on instruction fetch interface, usable for memories with parity check.

Note: The trap service routine must clear the respective trap flag; otherwise, a new trap
will be requested after exiting the service routine. Setting a trap request flag by
software causes the same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be also regarded as a type of
trap. Reset functions have the highest priority (trap priority Ill). Class A traps have the
second highest priority (trap priority 1l). At the third rank are Class B traps (trap priority 1);
thus, a Class A trap can interrupt a Class B trap.

Table 5-2 Hardware Trap Summary

Exception Condition Trap Trap Trap Trap
Flag Vector Number | Priority
Reset Functions:
Hardware Reset RESET 00 M
Software Reset RESET 00H M
Watchdog Timer Overflow RESET 00y Il
Class A Hardware Traps:
Non-Maskable Interrupt NMI NMITRAP 02y 1.3
Stack Overflow STKOF STOTRAP |04y 1.2
Stack Underflow STKUF STUTRAP |06y 1.1
Software Break SOFTBRK | SBRKTRAP | 084 I1.0
Class B Hardware Traps:
Undefined Opcode UNDOPC |BTRAP 0AH I
Parity Fault PARFLT |BTRAP 0AH{ I
Protection Fault PRTFLT |BTRAP 0AH I
lllegal Word Operand Access | ILLOPA BTRAP 0AH I
Class A Trap

Class A traps are generated by the high priority system NMI or by special CPU events
such as the software break, a stack overflow, or an underflow event. Class A traps are

User Manual 5-135 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

not used to indicate hardware failures. After a Class A event, a dedicated service routine
is called to react to the events. Each Class A trap has its own vector location in the vector
table. After finishing the service routine, the instruction flow must be further correctly
executed. This explains why Class A traps cannot interrupt atomic/extend sequences
and 1/O accesses in progress. For example, an interrupted extend sequence cannot be
restarted.

All Class A traps are generated in the pipeline during the execution of instructions, with
an exception of NMI, which is an asynchronous external event. It is not possible for two
different instructions in the pipeline to generate traps in the same CPU cycle. Class A
trap events can be generated only during the memory stage of execution. The execution
of instructions which caused a Class A trap event is always completed. In the case of a
Class A trap, the pipeline is directly canceled and the IP of the instruction following the
last executed one is pushed into the stack. In the case of an atomic/extend sequence or
I/0 read access in progress, the execution continues till the sequence completion. Upon
completion of the sequence, the IP of the instruction following the last one executed is
pushed into the stack. Therefore, in the case of a Class A trap, the stack always contains
the IP of the first not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows an execution of branch instructions in parallel with
the preceding instruction. The pre-processed branch instruction is combined with
the preceding instruction. The branch is executed together with the instruction
which caused the Class A trap. The IP of the first following not-executed
instruction in the instruction flow is then pushed on the stack.

If more than one Class A trap occurs at a same time, they are prioritized internally. The
NMI trap has the highest priority and the software break has the lowest.

Note: In the case of two different Class A traps occurring simultaneously, both trap flags
are set. The IP of the instruction following the last one executed is pushed into the
stack. The trap with the higher priority is executed. After return from the service
routine, the IP is popped from the stack and immediately pushed again because
of the other pending Class A trap (unless the trap related to the second trap flag
in TFR has been cleared by the first trap service routine).

Class B Trap

Class B traps are generated by unrecoverable hardware failures. In the case of a
hardware failure, the CPU must immediately start a failure service routine. Class B traps
can interrupt an atomic/extend sequence and an I/O read access. After finishing the
Class B service routine, a restoration of the interrupted instruction flow is not possible.

All Class B traps have the same priority (trap priority 1). When several Class B traps
become active at the same time, the corresponding flags in the TFR register are set and
the trap service routine is entered. Because all Class B traps have the same vector, the
priority of service of simultaneously occurring Class B traps is determined by the
software in the trap service routine.

User Manual 5-136 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

The Parity Fault is an asynchronous external event while all other Class B traps are
generated in the pipeline during the execution of instructions. It is not possible for two
different instructions in the pipeline to generate Class A and Class B traps in the same
CPU cycle. Class B trap events can be generated only during memory stage execution.

Instructions which caused a Class B trap event are always executed. In the case of a
class B trap, the pipeline is directly canceled and the IP of the instruction following the
one which caused the trap is pushed on the stack. Therefore, the stack always contains
the IP of the first following not-executed instruction in the instruction flow.

Note: The Branch Folding Unit allows the execution of branch instructions in parallel with
the preceding instruction. The pre-processed branch instruction is combined with
the preceding instruction. The branch is executed together with the instruction
causing the Class B trap. The IP of the first following not-executed instruction in
the instruction flow is pushed into the stack.

During execution of a Class A trap service routine, any Class B trap will not be serviced
until the Class A trap service routine is exited with a RETI instruction. In this case, the
Class B trap condition is stored in the TFR register, but the IP value of the instruction
which caused this trap will be lost.

Note: If a Class A trap occurs simultaneously with a Class B trap, both trap flags are set.
The IP of the instruction following the one which caused the trap is pushed into the
stack, and the Class A trap is executed. If this occurs during execution of an
atomic/extend sequence or I/0O read access in progress, then the presence of the
Class B trap breaks the protection of atomic/extend operations and the class A
trap will be executed immediately without waiting for the sequence completion.
After return from the service routine, the IP is popped from the system stack and
immediately pushed again because of the other pending Class B trap. In this
situation, the restoration of the interrupted instruction flow is not possible.

e External NMI Trap: Whenever a high to low transition on the dedicated external NMI
pin (Non-Maskable Interrupt) is detected, the NMI flag in register TFR is set and the
CPU will enter the NMI trap routine.

» Stack Overflow Trap: Whenever the stack pointer is implicitly decremented and the
stack pointer is equal to the value in the stack overflow register STKOV, the STKOF
flag in register TFR is set and the CPU will enter the stack overflow trap routine.

* Stack Underflow Trap: Whenever the stack pointer is implicitly incremented and the
stack pointer is equal to the value in the stack underflow register STKUN, the STKUF
flag is set in register TFR, and the CPU will enter the stack underflow trap routine.

» Software Break Trap: When the instruction currently being executed by the CPU is
a SBRK instruction, the SOFTBRK flag is set in register TFR and the CPU enters the
software break debug routine. The flag generation of the software break instruction
can be disabled by an On-chip Emulation Module. In this case, the instruction only
breaks the instruction flow and signals this event to the debugger. The flag is not set
and the trap will not be executed.

User Manual 5-137 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

* Undefined Opcode Trap: When the instruction currently being decoded by the CPU
does not contain a valid C166S V2 CPU opcode, the UNDOPC flag is set in register
TFR and the CPU enters the undefined opcode trap routine. The instruction that
causes the undefined opcode trap is executed as a NOP.

* Parity Fault Trap: When a parity error is detected in the system, the PARFLT flag is
set in register TFR and the CPU enters the parity fault trap routine. For the C166S V2
CPU, the parity fault is an asynchronous system event. There is no link between the
fault and the instruction flow itself.

* Protection Fault Trap: Whenever one of the special protected instructions is
executed where the opcode of that instruction is not repeated twice in the second word
of the instruction and the byte following the opcode is not the complement of the
opcode, the PRTFLT flag in register TFR is set and the CPU enters the protection fault
trap routine. The protected instructions include DISWDT, EINIT, IDLE, PWRDN,
SRST, ENWDT and SRVWDT. The instruction that causes the protection fault trap is
executed like a NOP.

* lllegal Word Operand Access Trap: Whenever a word operand read or write access
is attempted to an odd byte address, the ILLOPA flag in register TFR is set and the
CPU enters the illegal word operand access trap routine.

5.4 Peripheral Event Controller

The Peripheral Event Controller (PEC) makes a decision about the CPU action required
to manage an interrupt request. It may be either normal interrupt service or fast data
transfer between two memory locations. The C166S V2 PEC controls eight fast data
transfer channels.

If normal interrupt is requested, the CPU temporarily suspends the current program
execution and branches to an interrupt service routine. The current program status and
context must be preserved.

If a PEC channel is selected for servicing an interrupt request, a single word or byte data
transfer between any two memory locations is to be performed. During a PEC transfer,
the normal program execution of the CPU is halted. No internal program status
information needs to be saved. The PEC transfer is the fastest possible interrupt
response. In many cases, a PEC transfer is sufficient to service the peripheral request
(serial channels, for example).

The PEC channels can perform the following actions:

* Byte or word transfer

* Continuous data transfer

* PEC channel-specific interrupt request upon data transfer completion or common for
all channels “End of PEC” interrupt for enhanced handling

* Automatic increment of source or/and destination pointers with support of memory to
memory transfer

Note: PEC transfer is executed if its priority level is higher than current CPU priority level.

User Manual 5-138 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

5.4.1 PEC Control Registers

Each PEC channel is controlled by the respective PEC channel Control register (PECCx)
and a set of source and destination pointers (SRCPx, DSTPx and PECSEGXx), where ‘X’
stands for the PEC channel number. The PECCx registers control the arbitration priority
level assignment to the PEC channels and the action to be performed.

PECCx
PEC Channel Control Register (x=7-0) SFR Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I?I\CI)'II? PLEV CL INC BWT COUNT
rw I’\IN rw I’\IN rw I rWh I
Field Bits Type | Description
EOPINT [14] rw End of PEC Interrupt Selection
0 End of PEC interrupt with the same level as

the PEC transfer is trigger

1 End of PEC interrupt is serviced by a
separate interrupt node with programmable
interrupt level (EOPIC) and interrupt sharing
control register (PECISNC)

PLEV [13:12] | rw PEC Level Selection
This bit field controls the PEC channel assignment

to an arbitration priority level.
(see section below)

CL [11] Channel Link Control
0 PEC channels work independently
1 Pairs of PEC channels are linked together

[10:9] |rw Increment Control

(Modification of source and destination pointer

after PEC transfer)

00 No modification

01 Increment of destination pointer DSTPx
by 1 (BWT = 1) or by 2 (BWT = 0)

10 Increment of source pointer SRCPx
by 1 (BWT = 1) or by 2 (BWT = 0)

11 Increment of destination pointer DSTPx and
source pointer SRCPx
by 1 (BWT = 1) or by 2 (BWT = 0)

User Manual 5-139 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

Field Bits Type | Description

BWT [8] rw Byte/Word Transfer Selection
0 Transfer a word
1 Transfer a byte

COUNT [7:0] rwh | PEC Transfer Count
Counts PEC transfers and influences the
channel’s action (see section below)

The Byte/Word Transfer bit (BWT) of the PECCx register determines if a byte or a word
is to be moved during a PEC service cycle and defines an increment step size for the
pointer(s) to be modified.

The PEC Transfer Count field (COUNT) of the PECCx directly controls the action of the
respective PEC channel. The contents of the bit field COUNT may specify a certain
number of PEC transfers, unlimited transfers, or no PEC service at all.

— If the PEC transfer counter COUNT value is set to 00y, the normal interrupt requests
are processed instead of PEC data transfers and the corresponding PEC channel
remains idle.

— Continuous data transfers are selected by setting the bit field COUNT to FFy value.
In this case, COUNT is not decremented by the transfers and the respective PEC
channel can serve unlimited number of PEC requests until it is modified by the
program.

— Ifthe bit field COUNT is set to service a specified number of requests by the respective
PEC channel, it is decremented with each PEC transfer and the request flag is cleared
to indicate that the request has been serviced. When COUNT reaches 00y, it
immediately activates the interrupt service routine that has the same priority level
(EOPINT = 0) or triggers the “End of PEC” interrupt with a different priority level
(EOPINT = 1). When COUNT is decremented from 01y to 004 after a data transfer,
the request flag will be cleared if EOPINT is set to 1. If EOPINT is 0, the request flag
will not be cleared and another interrupt request will be generated on the same priority
level. The respective PEC channel remains idle and the associated interrupt service
routine is activated instead of PEC transfer because COUNT contains the 00y value.
(see Section 5.4.3).

The EOPIC reqister is the interrupt control register of the End Of PEC interrupt.

The Register PECISNC contains flags of the “End of PEC” interrupt node. This node is
used when enhanced “End of PEC” interrupt feature was invoked and control bit EOPINT
is set to 1 in the corresponding PECCx.

Figure 5-4 shows the usage of the “End of PEC” interrupt subnode:

User Manual 5-140 V 1.7,2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

EOPIC
Interrupt Control Register!) bESFR Reset Value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EOP | EOP
GPX "R | IE ILVL GLVL
rw [rwh rw | w | w

) The EOPIC register is assigned to one of the interrupt nodes. The assignment is product specific.

Field Bits Type | Description
GPX [8] rw Group Priority Extension

Defines the value of high-order group level bit
EOPIR") [7] rwh | Interrupt Request Flag

0 No request pending

1 The source has raised an interrupt request
EOPIE [6] rw Interrupt Enable Control Bit

0 Interrupt request is disabled

1 Interrupt request is enabled
ILVL [5:2] rw Interrupt Priority Level

Fy Highest priority level

Oy Lowest priority level

GLVL [1:0] rw Group Priority Level
3y Highest priority level

Oy Lowest priority level

XGLVL [8],[1:0] Extended Group Priority Level
74 Highest priority level

Oy Lowest priority level

) Bit EOPIR supports bit-protection

PECISNC
PEC Interrupt Sub Node Control bSFR Reset Value: 0000y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C7IR | C7IE | C6IR | C6IE | C5IR | C5IE | C4IR | C4IE | C3IR | C3IE | C2IR | C2IE | C1IR | C1IE | COIR | COIE

rwh rw mwh w mwh w rwh w rmwh w 'rwh rw mwh rw rwh rw

User Manual 5-141 V 1.7,2001-01

o~

Infineon

technologies

User Manual
C166S V2

Interrupt and Exception Handling

Field Bits Type | Description

CxIR 15,13, |rwh |Interrupt Sub Node Request Flag of PEC
11, 9, Channel x 1) 2
7,5, 3, 0 No special end of PEC interrupt request is
1 pending for PEC channel x

1 PEC channel x has raised an end of PEC
interrupt request

CxIE 14,12, |rw Interrupt Sub Node Enable Control Bit
10, 8, of PEC Channel x 1) 3)
6, 4, 2, (individually enables/disables a specific source)
0 0 End of PEC interrupt request of PEC
channel x is disabled
1 End of PEC interrupt request of PEC
channel x is enabled
Y x=7.0
2) NOTE:

The “End of PEC” sub-node interrupt request flags are not cleared by hardware when entering the interrupt
service routine (interrupt has been accepted by the CPU), unlike the interrupt request flags of the interrupt
nodes (request flags xxIC.xxIR). The interrupt service routine must check the request flags and clear them
before executing the RETI instruction.

It is recommended to clear an interrupt request flag (CxIR) before setting the respective enable flag (CxIE).
Otherwise, former requests still pending will immediately trigger an interrupt request after setting the enable bit.

User Manual 5-142 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

PECISNC

C7IR|C7IE |C6IR| C6IE [C5IR| C5IE | C4IR| C4IE |C3IR| C3IE|C2IR | C2IE|C1IR|C1IE|COIR | COIE

15 0

Interrupt Request
Pulse Generator

EOPIC

I I I I
0 0 0 0 0 0 0 |GPX EIORP E”OEP ILVL GLVL

15 87 0

Figure 5-4 End of PEC Interrupt Sub Node

Table 5-3 summarizes the values the bit field COUNT and the corresponding PEC
channel actions.

User Manual 5-143 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Table 5-3

Interrupt and Exception Handling

PEC Channel Actions

Previous
COUNT Field
Value

Modified
COUNT Field
Value

Action of PEC Channel
and Comments

FFy

FFy

Move a Byte/Word
Continuous transfer mode; COUNT is not modified

FEy...024

FDy...014

Move a Byte/Word and decrement COUNT

01y

00y

Move a Byte/Word

Depending on bit EOPINT, one of two different
actions are taken:

EOPINT = 0 (compatible mode)

The service request flag (xxIR) of the respective
interrupt remains set (it is cleared for all other
COUNT values). Therefore, an additional interrupt
requestis triggered on the next arbitration cycle with
a COUNT field value of ‘00’ (see next raw)
EOPINT =1

The service request flag (xxIR) of the respective
interrupt is cleared. Additionally, the interrupt
request flag of the EOP sub node (PECISNC.CxIR)
is set. Furthermore, the interrupt request flag of the
end of PEC interrupt node (EOPIC.EOPIR) is
automatically set if the sub node request is enabled
(PECISNC.CXIE = 1).

(see also Section 5.4.3)

No PEC action
A normal interrupt is requested instead of a PEC
data transfer (see also Section 5.4.3).

00y 00y

The Increment Control Field (INC) of the PECCx register defines when ether one or
both of the PEC pointers must be incremented after the PEC transfer. If the pointers are
not to be modified (INC='00’), the respective channel will always move data from the
same source to the same destination.

Channel Link Mode (CL bit)

Channel linking allows to perform PEC data transfers via a pair of two PEC channels,
that are switched rotationaly, to provide the possibility of data chaining. The linked
transfer is in principal the same as described for standard PEC but if the transfer of a
linked channel has finished by decrementing the transfer count to zero the PEC
controller automatically switches to the partner channel of the pair. While the data

User Manual 5-144 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

transfers are then controlled by the partner channel the finished channel can be
reconfigured. The termination of the transfers of a linked channel is indicated by the
triggering of an interrupt. If the channel link bit CL of the active channel or the EOPINT
flag is set a End of PEC interrupt is called. Otherwise, the standard interrupt connected
to the even channel is requested.

The switch to the PEC channel partner is only possible if channel linking is enabled by
setting the PECCx.CL bit of the current channel x. If for a channel the link bit is set but
its count value is zero no switch is performed but the normal interrupt of the PEC channel
calling node is requested when a new interrupt request occurs for the corresponding
node. So the complete linked transfer is terminated if either in the active channel the
count value is 0 or the CL flag is 0. Possible channel pairs are only the combinations of
channels 0/1, 2/3, 4/5 and 6/7. The PEC channel assignment of the odd numbered
channels is ignored if at least one of the channel linking bits (CL) of the channel pair is
set. This means an interrupt request connected to the odd channel triggers only the
standard interrupt, but no PEC transfer. So, the channel pair is assigned to the interrupt
and group level of the even numbered channel partner. After the first initialization for
linked transfer the transfer is started with the even numbered channel. The channels
toggle as long as CL bit of the currently active channel is set on the transition of the PEC
transfer count value from 1 to 0. The even channel is automatically selected if both CL
flags are 0 or both transfer counts are 0. In all other cases the last active channel stays
selected. A reset of the CL bits during a programmed channel link mode may cause a
corruption of the sequence.

A chained PEC sequence should be programmed so that as long the sequence is not
finished, the CL bit is set, together with a new transfer count value. For the transfer
before the last transfer, the called END of PEC interrupt routine should not reconfigure
the count value and should not reset the CL bit. The last transfer channel should not have
the CL bit set. So, at the end of the complete transfer, either a standard or an END of
PEC trap can be selected by the EOPINT bit of the last channel.

5.4.2 The PEC Source and Destination Pointer

The PEC channels source and destination pointers specify the locations between which
the data is to be moved. All pointers are 24-bits wide. The 24-bit source address is stored
in the register SRCPx (lower 16 bits of address) and in the high byte of register
PECSEGx (highest 8 address bits).

User Manual 5-145 V 1.7,2001-01

o~
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

PECSEGx

SRCSEGXx DSTSEGx

15 87 0

SRCPx DSTPx

T T

SRCPx DSTPx

1 1
15 0 15 0
T T T T
Source Pointer Destination Pointer
1 1 1 1

23 16 15 0 23 16 15 0
Segment Address Segment Offset Segment Address Segment Offset

Data Transfer

x = 7...0, depending on PEC channel number
Figure 5-5 PEC Pointer Address Handling

The 24-bit destination address is stored in the register DSTPx (lower 16 bits of address)
and in the low byte of register PECSEGx (highest 8 address bits). Only the lower 16 bits
of the PEC address pointers (segment offset) can be modified (incremented) by the PEC
transfer mechanism. The highest 8 bits, which represent the segment number, are not
modified by hardware. Therefore, the PEC pointers may be incremented within the
address space of one segment and may not cross the segment border. If the offset
address pointer gets the ‘FFFFy’ value in the case of byte transfers (BWT = 1) or ‘FFFE}’
in the case of word transfers (BWT = 0), the next increment will be disregarded. The
address register will keep one of these maximum values and no overflow will happen.
The described behavior protects the memory from unintentional overwriting. No explicit
error event is generated by the system in case of address pointer(s) saturation;
therefore, it is the user’s responsibility to prevent this condition.

Note: PEC data transfers do not use the data page pointers DPP3...DPPO.

Note: If a word data transfer is selected for a specific PEC channel (BWT = 0), the
respective source and destination pointers must both contain a valid word address

User Manual 5-146 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

that points to an even byte boundary. Otherwise, the lllegal Word Access trap will
be invoked when this channel is used.

SRCPx
PEC Source Pointer (x=7-0) XSFR Reset Value: 0000
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SRCPx
| | | | | | | rv\llh | | | | | | |
Field Bits Type | Description
SRCPx [15:0] |rwh |Source Pointer Address of Channel x
Source Address bits 15-0

DSTPx
PEC Destination Pointer (x=7-0) xSFR Reset Value: 0000y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DSTPx
| | | rv\llh | | |
Field Bits Type | Description
DSTPx [15:0] |[rwh | Destination Pointer Address of Channel x
Destination Address bits 15-0

PECSEGXx
PEC Segment Pointer (x=7-0) xSFR Reset Value: 00004
15‘14‘13|12‘11|10|9 8 7 6 5|4‘3|2|1 0
SRCSEGx DSTSEGx
Tw Tw

5.4.3 PEC Handler Interrupt Actions Summary

As described above, two different kinds of interrupts can be triggered by the PEC handler
depending on the status of the bitfield COUNT.

User Manual 5-147 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

Field Bits Type | Description

SRCSEGXx [15:8] |rw Source Pointer Segment Address of Channel x
Source Address bits 23-16

DSTSEGx [7:0] rw Destination Pointer Segment Address of
Channel x
Destination Address bits 23-16

* PEC channel is enabled’) and the bit field COUNT has a value higher than ‘01,
a) Control bit EOPINT =0 or 1
ACTIONS:
— PEC request is proceeded
— No other interrupt activity

* PEC channel is enabled and the bit field COUNT gets a decrement from ‘014’ to ‘004’

triggered by a service request.

a) Control bit EOPINT = 0 (compatible with C166)
ACTIONS:

— PEC request is proceeded

— Interrupt request flag (xxIR) of the requesting interrupt node (arbitration winner) is
not cleared, participates on the next arbitration cycle, and triggers a normal interrupt
on the same level as the PEC request is served.

b) Control bit EOPINT = 1 (enhanced end of PEC interrupt feature)
ACTIONS:

— PEC request is proceeded

— Interrupt request flag (xxIR) of requesting interrupt node (arbitration winner) is
cleared and will not trigger more actions.

— Interrupt request flag of the end of PEC interrupt subnode will be set
(PECISNC.CxIR = 1)

— If the respective interrupt enable flag of the end of PEC interrupt subnode was set
before by software (PECISNC.CxIE = 1), an end of PEC interrupt is requested
(EOPIC.EOPIR = 1). This end of PEC interrupt participates on the next arbitration
cycle with its priority (selected via EOPIC.ILVL and EOPIC.GLVL), if this interrupt
source was enabled before by software (EOPIC.EOPIR = 1). With this behavior, an
end of PEC interrupt can be triggered on a level lower than the respective PEC
requests have been serviced.

* PEC channel is disabled if the bit field COUNT is cleared (either by hardware or by
software).

) Every PEC channel is automatically enabled when its COUNT value is greater than 004.

User Manual 5-148 V 1.7,2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

Interrupt and Exception Handling

a) Control bit EOPINT =0 or 1
ACTIONS:
— A normal interrupt service routine is requested on the PEC channel priority level.

544 PEC Channel Assignment and Arbitration

The C166S V2 PEC channels can be assigned to a certain arbitration priority level. All
requests with interrupt priority levels 8 to 15 and group levels 0 to 3 can be associated
with the PEC functionality (eight PEC channels in total). The group extension is not
supported for PEC requests, because the 8 PEC channels are assigned to two interrupt
levels for compatibility to the C16x family.

The following mechanism shows how to program the bit field PECCx.PLEV to set up a
link to a certain interrupt priority level and a group priority level:

PEC Channel x

is linked to:

Interrupt priority level (in IC register): (1, ~PLEV.1l, ~PLEV.0, x.0)
Extended Group priority level: (0, x.1, x.0)

For an easier understanding of this formula, Table 5-4 lists all possible combinations.

User Manual 5-149 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

Table 5-4 PEC Channel Assignment

Arbitration Priority PEC Arbitration Priority PEC
Level Channel x Level Channel x
Interrupt |Group PLEV |Ch Interrupt | Group PLEV |Ch
Priority Priority Priority Priority

Level Level Level Level

xxIC.ILVL xxIC.XGLVL xxIC.ILVL | xxIC.XGLVL

15 3 00 7 11 3 10 7
15 2 6 11 2 6
15 1 5 11 1 5
15 0 4 11 0 4
14 3 3 10 3 3
14 2 2 10 2 2
14 1 1 10 1 1
14 0 0 10 0 0
13 3 01 7 9 3 11 7
13 2 6 9 2 6
13 1 5 9 1 5
13 0 4 9 0 4
12 3 3 8 3 3
12 2 2 8 2 2
12 1 1 8 1 1
12 0 0 8 0 0

All interrupt requests not assigned to a PEC channel go directly to the interrupt handler.

User Manual 5-150 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Interrupt and Exception Handling

5.5 CPU Action Control Unit

The CPU Action Control Unit multiplexes interrupt/PEC requests with OCDS requests
and forwards them to the CPU demanding the corresponding action. It also routes
request acknowledges and denies from the core to the corresponding requester. The
OCDS requests have programmable priority levels. If another interrupt request that has
won an arbitration conflicts with an OCDS request, the one with the higher priority will
trigger the CPU action first. However, if both requests (Interrupt/PEC and OCDS) have
the same priority level, the interrupt/PEC request wins.

The OCDS break request is sent directly from the OCDS module to the CPU (where it is
prioritized) and ignores the CPU Action Control Unit (or any other module of the interrupt
and Peripheral Event Controller).

User Manual 5-151 V 1.7,2001-01

o
(Infineon User Manual
rechno|0690ies C166$ V2

Interrupt and Exception Handling

User Manual 5-152 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

6 External Bus Controller

6.1 Introduction

Although the C166S V2 products provide a powerful set of on-chip peripherals and on-
chip program and data memories, these internal units only cover a small fraction of the
C166S V2's address space of up to 16 MByte. The external bus interface allows access
to external®) peripherals and additional volatile and non-volatile memories. The external
bus interface provides a number of configurations, so it can be tailored to fit perfectly into
a given application system.

Accesses to external memories or peripherals are executed by the integrated External
Bus Controller (EBC). The function of the EBC is controlled via a set of configuration
registers. The basic behavior can be programmed via the mode selection registers
EBCMODx.

The EBC supports up to eight external chip select channels. Each of these chip select
signals is programmable via a set of registers. The FCONCSKx registers specify the
external bus cycles in terms of address (mux/demux), data (16-bit/8-bit), chip select
enable and READY control. The timing of the bus access is controlled by the timing
configuration registers TCONCSx, which specify the length of the different access
phases. All these parameters are used for accesses within a specific address area which
is defined via the corresponding address select register ADDRSELX.

The seven register sets FCONCS1/TCONCS1/ADDRSEL1 to FCONCS7/TCONCS7/
ADDRSEL? define seven independent ‘address windows’, while all external accesses
outside these windows are controlled via the registers FCONCSO0 and TCONCSO0. Two
additional chip select channels with fixed address ranges are defined for the startup and
the monitor memory.

The external bus timing is related to the reference clock output CLKOUT. All bus signals
are generated in relation to the rising edge of this clock. This behavior eases the timing
specification drastically and allows high EBC operating frequencies above 100 MHz. The
external bus protocol is compatible with the C16x ones. However, the external bus timing
is improved in terms of wait state granularity.

Note: For supporting these improvements, an extended configuration scheme
compared to the C16x is defined. The C16x registers SYSCON and BUSCONXx
are no longer used. In principle the configuration of the external bus controller is
done during the application initialization. Therefore, only some initialization code
has to be adapted for using the C166S V2 EBC module instead of the C16x
external bus controller.

1) C166S V2 External’ means off-chip However, modules like customer ASIC, startup memory and additional
peripherals and memories can be connected on-chip to the external bus module as well. These modules are
from the controller sub-system point of view also external, but on-chip.

User Manual 6-153 V 1.7,2001-01

User Manual
C166S V2

External Bus Controller

N
(Infineon
technologies

6.2

The EBC supports four different access types. Reads and Writes in multiplexed and
demultiplexed mode. Multiplexed mode means that the data bus is used in a ‘time-
multiplex’ for address (the 16 LSBs) and for data. In demultiplexed mode the data bus is
used for data only and an additional 16 bit address bus is available.

Timing Principles

Naming Conventions

e ALE Address Latch Enable (high active)
L indicates that the applied address is valid
e WR/ Write Strobe (low active)/
WRL Write Low Byte Strobe (low active)
configured either to a general write request or a write request for the low
byte (see Table 6-1)
 BHE/ Byte High Enable (low active)/
WRH Write High Byte Strobe (low active)
configured either to an enable for the high byte or a write request for the
L high byte (see Table 6-1)
* RD Read Strobe (low active)
e READY Ready to indicated end of actions (programmable polarity)
e ADDR Address Bus split to a part [23:16] and [15:0]
e DATA Data Bus [15:0] or shared Data/Address [15:0] Bus
e HOLD Hold input for foreign bus requests (low active)
e HLDA Hold Acknowledge (low active)
master output to grant bus / slave input
e BREQ Bus Request (low active)
Table 6-1 Write Configurations (see Chapter 6.3.2)
written byte general write configuration | separated byte low/high writes
low high WR BHE ADDR[0]| WRL WRH | ADDRJO0]
- - inactive |don’t care 0/1 inactive | inactive 0/1
write - active inactive 0 active inactive 0/1
- write active active 1 inactive active 0/1
write write active active 0 active active 0/1

The timings of the external bus can be split up into six phases:

User Manual

6-154

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

Figure 6-1 Demultiplexed Bus Read

Ia Ib 1 C 1 d 1 e 1 f 1
[R I I I I
I I I I I
[I I I I

L L1]]]

ADDR, CS rod ' valid '
[I I I I
RD Lo | |
[I I
[I I I

read DATA L . . valid
[I I I
[I I I I
clock cycles 10-311-21 0-3 I 0-1 | 1-32 I 0-3 |
[I I I I
needed bits 291, 2 1 5 12rd
1 1 1 1 1 1 2Wr 1

Figure 6-2 Demultiplexed Bus Write

a b, ¢, d e R
I I I I I
[I I I I

L [1]]]

ADDR, CS . I alid I
[I I I I
WA R T
[I I

[| |

write DATA L1 ' valid ' —

[I | |
[I I I I
clock cycles 0-31-21 0-3 | 0-1 | 1-32 I 0-3 !
[I I I I
needed bits 201, 2 4 1 5 1 2rd
1 1 1 1 1 1 2Wr 1

a phase: addresses valid, ALE high, no command. CS switch tristate wait states

b phase: addresses valid, ALE high, no command. ALE length

¢ phase: addresses valid, ALE low, no command. R/W delay

d phase: write data valid, ALE low, no command. Data valid for write cycles

* e phase: command (read or write) active. Access time

f phase: command inactive, address hold. Read data tristate time, write data hold
time

User Manual 6-155 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

Figure 6-3 Multiplexed Bus Read

a,b ¢ | d | e S
t | | | |
ALE | | | | |
| | | | |
L | | | | | | |
ADDR, CS : : : : valid :
| | | | | | |
_ L | 1 1
RD I I I I I
| | | | |
| | | | | |
read DATA K | addr valid | >—_
| | | | |
| | | | | | |
clocks 10-31-2 0-3 | 01 1-32 ' 03 |
needed bits ! 2 ! 1 : 2 : 1 ! 5 : 2rd :
Figure 6-4 Multiplexed Bus Write
ab e di e 1 f
ALE I | | | |
| | | | |
| | | | | | |
L [| | |
ADDR, CS : ' ' I valid [
| | | | | | |
- I T I I L
WR | | | | |
| | | | |
| | | |
write DATA addljress valid I data out valid' next address
| | | | | | |
| | | | | | |
clocks 10-31-2 0-3 1 0-1 | 1-32 I 0-3 |
needed bits : 2:1 : 2 : 1 : 5 : 2wr :

* aphase: addresses valid, ALE high, no command. CS switch tristate wait states

b phase: addresses valid, ALE high, no command. ALE length

e c phase: addresses valid, ALE low, no command. Address hold, R/W delay

d phase: address tristate for read cycles, data valid for write cycles, ALE low, no
command

e phase: command (read or write) active. Access time

f phase: command inactive, address hold. Read data tristate time, write data hold
time.

User Manual 6-156 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

6.2.1 A Phase

The A phase can take 0-3 clocks. It is used to tristate the databus drivers activated in
the previous cycle (tristate wait states after CS switch).

Phase A cycles are not inserted in every access cycle but only when changing the CS.
If an access using one chipselect CSx was finished and the next access with a different
chipselect CSy is started then Phase A cycles are performed according to the PHA bits
set for the first chipselect CSx. This feature is used to optimize wait states with devices
having a long turn off delay at their databus drivers like EPROM and FLASH.

The A Phase cycles are inserted while the addresses and ALE of the next cycle are
already applied.

If there are idle cycles in between two accesses these clock cycles are taken into
account and the A Phase is shortened accordingly. For example if there are three tristate
cycles programmed and two idle cycles occurred then the A Phase takes only one clock
cycle.

6.2.2 B Phase

The B phase can take 1-2 clocks. It is used for selecting devices and registers before
giving a command and to define the length of the active ALE. In multiplexed bus mode
the address is applied on the data bus for latching.

6.2.3 C Phase

The C phase is similar to the A and B phases but ALE is already low. It can take 0-3
clock cycles.

In multiplexed bus mode the address is held for being latched safely. Phase C cycles can
be used to delay the command signals (RW delay).

6.2.4 D Phase

The D phase can take 0-1 clocks. It is used to tristate the address on the multiplexed
bus when a read cycle is performed. For all write cycles it is used to have the data valid
on the bus before the command is applied.

6.2.5 E Phase

The E phase is the command respectively access phase and takes 1-32 clocks. Read
data is fetched, write data is put onto the bus; the command signals are active. Read
data is registered with the terminating clock cycle of this phase.

The READY function is lengthening this phase, too (see Table 6.3.6). READY controlled
access cycles have a random cycle time.

User Manual 6-157 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

6.2.6 F Phase

The F phase can take 0-3 clocks. Addresses and write data are held while the command
is inactive. The number of wait states being inserted at the F phase is programmable
independently for read and write accesses. The F phase is used for data reads to
program tristate wait states on the bidirectional data bus in order to avoid bus conflicts.

6.3 Functional Description

6.3.1 Configuration Register Overview

The EBC registers are functionally split up into three groups:

» EBC mode registers that have influence on global functions.

* Chip select related registers to configure the functionality, timing and size of the
chipselect windows.

e Startup and Monitor Memory registers to control the access to these dedicated
memories.

CSO0 is the default chip select that selects all address space not addressed by another
chip select or occupied by internal address space. Therefore CS0 has no ADDRSEL
register.

All EBC registers are write protected by the EINIT protection mechanism. This means
that after execution of the EINIT instruction by the C166S V2 CPU these registers are
not writeable anymore.

For a list of all EBC control registers refer to Chapter 9.4. All EBC registers are located
in a 128 byte segment.

6.3.2 The EBC MODE Registers EBCMODXx

EBC Mode Register 0

EBCMODO XSFR Reset value: 00FOy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T T T T T T
RDY | RDY | ALE | BYT | WR | EBC | SLA | ARB
POL | DIS | DIS | DIS |CFG | DIS | VE | EN CSPEN SAPEN
rw rw rw rw rw rw rw rw FW I I I'\IN

The EBC Mode Register 0 controls the alternate function of the pins.

User Manual 6-158 V 1.7,2001-01

o~
H User Manual
(Infineon C166S V2

External Bus Controller

Field Bits |Typ |Description

RDYPOL 15 rw READY pin Polarity

0 READY is active low

1 READY is active high

RDYDIS 14 rw READY pin Disable

0 READY enabled

1 READY disabled")

ALEDIS 13 rw ALE pin Disable

0 ALE enabled

1 ALE disabled"

BYTDIS 12 rw BHE pin Disable

0 BHE enabled

1 BHE disabled

WRCFG?) 11 rw Configuration for pins WR/WRL, BHE/WRH
0 WR and BHE

1 WRL and WRH

EBCDIS 10 rw EBC pins Disable

0 EBC is using the pins for external bus
1 EBC pins disabled?

SLAVE 9 rw SLAVE mode enable

0 Bus arbiter acts in master mode

1 Bus arbiter acts in slave mode

ARBEN 8 rw BUS Arbitration Pins enable
0 HOLD, HLDA and BREQ disabled"
1 pins act as HOLD, HLDA and BREQ

User Manual 6-159 V 1.7,2001-01

o~
< fineon User Manual
rlellhno|0690ies C1 665 V2

External Bus Controller

Field Bits | Typ |Description

CSPEN [7:4] |rw | CS Pins EnableV

0000 no chipselect pins enabled
0001 enables pin CSO

1000 enables pins CS7, ..., CSO

else reserved

SAPEN [3:0] |rw Segment Addresses Pins Enable!
0000 no segment address pin enabled
0001 enables address pin A[16]

1000 enables address pins A[23:16]
else reserved

) disabled pins are tristate and/or usable as General Purpose 10 (GPIO)

2) A change of the bit content is not valid before the next external bus access cycle.

The EBC Mode register 1 controls the general behaviour of the EBC.

EBC Mode Register 1

EBCMOD1 XSFR Reset value: 00004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DHP
DIS APDIS
r r r r r r r r r rw r Two
Bits |Typ |Description
0 [15:7] |r Reserved
[5] The software always reads a ’'0’. Although these bits are read
only, the software should always write a '0’ in case of a write
access.
DHPDIS [6] rw Data High Pins Disable
0 AD Bus Pins[15:8] enabled
1 AD Bus Pins[15:8] disabled, can be used as GPIO
APDIS? [4:0] |rw Address Pins Disable
00000 Address Bus Pins [15:0] enabled
11111 Address Bus Pins [15:0] disabled, can be used as GPIO
others reserved (do not use)

Y Fora demultiplexed external bus access with the address pins disabled no address will be available.

User Manual 6-160 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

6.3.3

The timing control registers are used to program the described cycle timing for the
different access phases. The timing control registers may be reprogrammed during code
fetches from the affected address window. The new settings are first valid for the next
access.

The Timing Configuration registers TCONCSx

Timing Configuration Register for Chip Select Channel 0

TCONCSO XSFR Reset value: 6243
15 14 13 12 11 10 8 5 4 3 2 1 0
WRPHF RDPHF PHE PHD PHC PHB PHA
r I’\‘N I‘\‘N rw rw I’\‘N rw I’\‘N
Timing Configuration Register for Chip Select Channel x
TCONCSXx XSFR Reset value: 0000
15 14[13 12[11 10 8 5 4[3 2 1[0
WRPHF RDPHF PHE PHD PHC PHB PHA
r I‘\‘N I’W | | rw | rw I’W rw I’W
x=1..7

For controlling accesses to the monitor memory and start up memory there are two
timing control registers TCONCSMM and TCONCSSM. The functional control selection
and address windows are fixed and not changeable for the built-in memories.

Timing Configuration Register for Chip Select Monitor Memory

TCONCSMM XSFR Reset value: 6243y
15 14 13 12 11 10 8 5 4 3 2 1 0

WRPHF RDPHF PHE PHD PHC PHB PHA
r I’\‘N I’\‘N rw rw I’\‘N rw I’\‘N

Timing Configuration Register for Chip Select Startup Memory

TCONCSSM XSFR Reset value: 6243
15 14 13 12 11 10 8 5 4 3 2 1 0
WRPHF RDPHF PHE PHD PHC PHB PHA
r w W rw rw w rw w
User Manual 6-161 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

External Bus Controller

Field

Bits

Typ

Description

15

Reserved

The software always reads a’0’. Although this bit is
read only, the software should always write a’0’ in

case of a write access.

WRPHF

[14:13]

rw

Write Phase F

00 Oclock cycles

11 3 clock cycles

RDPHF

[12:11]

rw

Read Phase F

00 Oclock cycles

11 3 clock cycles

PHE

[10:6]

rw

Phase E

00000 1 clock cycle

11111 32 clock cycles

PHD

rw

Phase D
0 0 clock cycles
1 1 clock cycle

PHC

[4:3]

rw

Phase C

00 Oclock cycles

11 3clock cycles

PHB

rw

Phase B
0 1 clock cycle
1 2 clock cycles

PHA

[1:0]

rw

Phase A

00 Oclock cycles

11 3 clock cycles

User Manual

6-162

V1.7, 2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

6.3.4

The Function Control registers are used to control the bus and ready functionality for a
selected address window. It can be distinguished between 8 and 16 bit bus and
multiplexed and demulitplexed accesses. Furthermore the READY functionality can be
programmed and defined whether the address window is enabled or not.

The Function Configuration Registers FCONCSx

Function Configuration Register for Chip Select Channel 0
FCONCSO XSFR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset value: 0021

RDY | RDY | EN
MOD| EN | CS

r r r r r r r r r r rw r rw rw rw

Function Configuration Register for Chip Select Channel x
FCONCSXx XSFR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset value: 0000y

RDY | RDY | EN
MOD| EN | CS

r r r r r r r r r r rw r rw rw rw

Bits

Typ

Description

[15:6]

Reserved

The software always reads a’0’. Although these
bits are read only, the software should always
write a ’0’ in case of a write access.

BTYP [5:4] |rw Bus Type Selection

00 8 bit Demultiplexed

01 8 bit Multiplexed

10 16 bit Demultiplexed

11 16 bit Multiplexed

Reserved

The software always reads a’0’. Although this bit
is read only, the software should always write a’0’
in case of a write access.

User Manual 6-163 V 1.7,2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

Field Bits |Typ |Description

RDYMOD 2 rw Ready Mode

0 asynchronous READY
1 synchronous READY

RDYEN 1 rw Ready enable
0 access time is controlled by bitfield PHEx
1 access time is controlled by bitfield PHEXx
and READY signal
ENCS") 0 rw | Enable Chip Select
0 disable
1 enable

Q) Disabling a Chip Select not only effects the chip select output signal; it also deactivates the respective address
window of the disabled chip select. A disabled address window is also ignored by an address window
arbitration (see Chapter 6.3.5.2).

6.3.5 The Address Window Selection Registers ADDRSELXx

Address range and size Select for Chip Select Channel x

ADDRSELXx XSFR Reset value: 00004
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RGSAD RGSzZ
w W
x=1..7
Field Bits |Typ |Description
RGSAD [15:4] |rw Address Range Start Address Selection
RGSZ [3:0] |rw Address Range Size Selection (see Table 6-2)

Note: There is no register ADDRSELDO, as register set FCONCSO0 / TCONCSO0 controls
all external accesses outside the seven address windows built by the seven
address selects ADDRSEL1 to ADDRSEL?.

6.3.5.1 Definition of Address Areas

The seven register sets FCONCS1/TCONCS1/ADDRSEL1 to FCONCS7/TCONCS7/
ADDRSEL?7 define seven separate address areas within the address space of the
C166S V2. Within each of these address areas external accesses can be driven in one

User Manual 6-164 V 1.7,2001-01

o~
(Infineon User Manual
technologies C166$ V2

External Bus Controller

of the four different bus modes independently. Each ADDRSELX register cuts out an
address window, where the corresponding parameters of the registers FCONCSx and
TCONCSXx are used to control external accesses. The range start address of such a
window defines the most significant address bits of the selected window which are
consequently not needed to address the memory/module in this window (Table 6-2).
The size of the window chosen by ADDRSELXx.RGSZ defines the relevant bits of
ADDRSELXx.RGSAD (marked with ‘R’) which are used to select with the most significant
bits of the request address the corresponding window. The other bits of the request
address are used to address the memory locations inside this window. The lower bits of
ADDRSELXx.RGSAD (marked ‘x’) are disregarded.

Two additional chip select channels, which are used for accessing the startup and the
monitor memory, are located in a predefined address range. The size of these two
address areas is fixed to 32 kByte.

The address area from 00’8000y to 00'FFFF (32 kbyte) is reserved for C166S V2 CPU
internal I/O, the area from BF'0000y to BFFFFFy (64 kbyte) for startup and monitor
memory and the area from C0’00004 to FF’FFFFy (4 Mbyte) is used by the internal
program memory. Therefore, these address areas cannot be used by external resources
connected to the external bus.

Table 6-2 Address range and size for ADDRSELXx

ADDRSELx Address Window
Range Relevant (R) bits | Selected Range start address A[23:0]
Size of RGSAD address range | selected with R-bits of RGSAD
RGSZ
3..0 15 coo 4 size A23 0o A0
0000 RRRR RRRR RRRR 4 KBytes RRRR RRRR RRRR 0000 0000 0000
0001 RRRR RRRR RRRx 8 KBytes RRRR RRRR RRRO 0000 0000 0000
0010 RRRR RRRR RRxx 16 KBytes RRRR RRRR RROO 0000 0000 0000
0011 RRRR RRRR Rxxx 32 KBytes RRRR RRRR ROOO 0000 0000 0000
0100 RRRR RRRR xxXXX 64 KBytes RRRR RRRR 0000 0000 0000 0000
0101 RRRR RRRx xXxxxX 128 KBytes RRRR RRRO 0000 0000 0000 0000
0110 RRRR RRxXX XXXX 256 KBytes RRRR RROO 0000 0000 0000 0000
0111 RRRR RXXX XXXX 512 KBytes RRRR RO0O 0000 0000 0000 000O
1000 RRRR XXXX XXXX 1 MBytes RRRR 0000 0000 0000 0OOO 0000
1001 RRRX XXXX XXXX 2 MBytes RRRO 0000 0000 0000 0000 0000
1010 RRXX XXXX XXXX 4 MBytes RROO 0000 0000 0000 0000 0000
1011 RXXX XXXX XXXX 8 MBytes RO0OO 0000 0000 0000 0000 00O0O
11xx XKXXX XXXX XXXX reserved!) | ---- ---- oo oo o ____

Y The complete address space of 12 MByte can be selected by the default chip select CS0.

Note: The range start address can only be on boundaries specified by the selected
range size according to Table 6-2.

User Manual 6-165 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

6.3.5.2 Address Window Arbitration

For each external access the EBC compares the current address with all address select
registers (programmable ADDRSELx and hardwired address select registers for startup
and monitor memory) of enabled windows. This comparison is done in four levels.

Priority 1: The hardwired address select registers for startup and monitor memories
are evaluated first. A match with one of these two address ranges directs
the access to the respective memory using the corresponding chip select
with its timing control register. The window of monitor and start up is not
accessible by other chip selects.

Priority 2: Registers ADDRSELX [x = 2, 4, 6] are evaluated first. A window match with
one of these registers directs the access to the respective external area
using the corresponding set of control registers FCONCSx/TCONCSx and
ignoring registers ADDRSELy. An overlapping of windows of this group will
lead to an undefined behaviour.

Priority 3: A match with registers ADDRSELYy [y = 1, 3, 5, 7] directs the access to the
respective external area using the corresponding set of control registers
FCONCSyY/TCONCSy. An overlapping of windows of this group will lead to
an undefined behaviour. Overlaps with priority 2 ADDRSELx are only
allowed for the (x,y) pairs (2,1), (4,3) and (6,5).

Priority 4. If there is no match with any address select register (neither the hardwired
ones nor the programmable ADDRSEL) the access to the external bus uses
the general set of control registers FCONCSO/TCONCSO if enabled.

[] Active Window Not external addressable Window CSSM CSMM
[] Inactive Window ?\/Aer:iow reserved for Startup and l:‘:l 1
onitor
L
cs2 CS6 Cs4 | b
| | |
2 [] = | | o 2
I 1 I 1 | | |
-*E I I I I I I I I I =
_g | | | | | | | | | ,§
o csi | | | Cs5 | | cs3 cs7 | &
s S i v N o v v 7 ;
I | | | |
| | | | | | | ! ! !
| | | | | | | ! ! !
| | |
| : | csh | Lo | |
: R :
=1 V7 [| [| [| %
T I . T T T T
S S internal I/O S startup and S internal program S
g g g §C:é23?n2§'?%7§ mermory g
[T
o o —) o o
S S o (&) S

Figure 6-5 Address Window Arbitration

Note: Only the indicated overlaps are allowed. All other overlaps lead to erroneous bus
cycles. E.g. ADDSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The

User Manual 6-166 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

hardwired address ranges for the startup memory and the monitor memory are
defined non-overlapping.

6.3.6 Ready Controlled Bus Cycles

6.3.6.1 General

For situations, where the response (access) time of a peripheral is not constant, or where
the programmable wait states are not enough, the C166S V2 EBC provides external bus
cycles that are terminated via a READY input signal. In this case during phase E the
C166S V2 EBC first counts a programmable number of clock cycles (1...32) and starts
in the last wait cycle to monitor the internal READY line (see Figure 6-6) to determine
the actual end of the current bus cycle. The external device drives READY active in order
to indicate that data has been latched (write cycle) or is available (read cycle).

The READY pin is generally enabled by setting the bit RDYDIS in EBCMODO to ’0’ in
order to switch the corresponding port pin. Also the polarity of the READY is defined
inside the EBCMODO register on the RDYPOL bit.

For a specific access the READY function is enabled via the RDYEN bit in the FCONCSXx
registers. With FCONCSx.RDYMOD the READY is handled either in synchronous or in
asynchronous mode (see also Figure 6-6).

When the READY function is enabled for a specific address window, each bus cycle
within this window must be terminated with an active READY signal. Otherwise the
controller hangs until the next reset. This is also the case for an enabled RDYEN but a
disabled READY port pin.

async.

e —» -
READY ext READY int

: sync
O—e 1 -1

EBCMODO0.RDYPOL FCONCSx.RDYMODXx

Figure 6-6 External to internal READY conversion

User Manual 6-167 V 1.7,2001-01

o~
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

6.3.6.2 The Synchronous/Asynchronous READY

The synchronous READY provides the fastest bus cycles, but requires setup and hold
times to be met. The CLKOUT signal should be enabled and may be used by the
peripheral logic to control the READY timing in this case.

The asynchronous READY is less restrictive, but requires one additional wait state
caused by the internal synchronization. As the asynchronous READY is sampled earlier
programmed wait states may be necessary to provide proper bus cycles

A READY signal (especially asynchronous READY) that has been activated by an
external device may be deactivated in response to the trailing (rising) edge of the
respective command (RD or WR).

Bus Cycle with active READY : Bus Cycle extended via READY
!] prolgrammed p:hase E programr:ned phaseEE ' !
« wait states . wait.states .+ ! !
ALE _]—I : : : l : : : : l

. R @ $ 2 | 7

async. READY

t sampling of READY input - not interesting READY cycles

Figure 6-7 Ready controlled bus cycles

6.3.6.3 Combining the READY function with predefined wait states

Typically an external wait state or READY control logic takes a while to generate the
READY signal when a cycle was started. After a predefined number of clock cycles the
C166S V2 will start checking its READY line to determine the end of the bus cycle.

When using the READY function with so-called ‘normally-ready’ peripherals, it may lead
to erroneous bus cycles, if the READY line is sampled too early. These peripherals pull
their READY output active, while they are idle. When they are accessed, they drive
READY inactive until the bus cycle is complete, then drive it active again. If, however,
the peripheral drives READY inactive a little late, after the first sample point of the
C166S V2, the controller samples an active READY and terminates the current bus cycle
too early. By inserting predefined wait states the first READY sample point can be shifted
to a time, where the peripheral has safely controlled the READY line.

User Manual 6-168 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

6.3.7 EBC Idle State

When the external bus interface is enabled, but no external access is currently executed,
the EBC is idle. As long as only internal resources (from a CPU point of view) like RAM,
peripherals or registers, etc. are used, the external bus interface remains unchanged
(see Table 6-3). The external control signals (RD and WR or WRL/WRH if enabled)
remain inactive (high).

Table 6-3 Status of the External Bus Interface during EBC Idle State

Pins Internal accesses only

AD15 to ADO | Tristate (floating)

A15to AO Undefined address (if used for the bus interface)
A23 to A16 Undefined segment address (on selected pins)
CS71t0 CSO | Inactive (high)

BHE Level corresponding to last external access
ALE Inactive (low)

RD Inactive (high)

WR/WRL Inactive (high)

WRH Inactive (high)

6.4 Multi Master Systems

6.4.1 External Bus Arbitration

The C166S V2 supports multi master systems on the external bus by its external bus
arbitration. This bus arbitration allows an external master to request the C166S V2’s bus.
The C166S V2 will release the external bus and will float the data and address bus lines
and force the control signals via pull ups/downs to their inactive state.

6.4.1.1 Initialization of Arbitration

During reset all arbitration pins are tristate, except pin BREQ which is pulled inactive.
After reset the C166S V2 EBC always starts in ‘init mode’ where the external bus is
available but no arbitration is enabled. All arbitration pins are ignored in this state. Other
to the external bus connected C166S V2 EBCs assume to have the bus also, so
potential bus conflicts are not resolved. For a multimaster system the arbitration should
be initialized first before starting any bus access. The EBC can either be chosen as
arbitration master or as arbitration slave by programming the EBCMODO bit SLAVE. The
selected mode and the arbitration gets active by the first setting of the HLDEN bit inside
the CPUs PSW register. Afterwards a change of the slave/master mode is not possible

User Manual 6-169 V 1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

External Bus Controller

without resetting the device. Of course for arbitration the dedicated pins have to be
activated by setting EBCMODO0.ARBEN.

6.4.1.2 Arbitration Master Scheme

If the C166S V2 EBC is configured as arbitration master, it is default owner of the
external bus, controls the arbitration protocol and drives the bus also during idle phases
with no bus requests. To perform the arbitration handshake a HOLD input allows the
request of the external bus from the arbitration master. When the arbitration master
hands over the bus to the requester this is signaled by driving the hold acknowledge pin
HLDA low, which remains at this level until the arbitration slave frees the bus by releasing
its request on the HOLD input. If the arbitration master is not the owner of the bus it treats
the external bus interface as follows:

* Address and data bus(es) float to tristate L

e Command lines are pulled high by internal pull-up devices (RD, WR/WRL, BHE/WRH)
* Address latch control line ALE is pulled low by an internal pull-down device

e CSx outputs are pulled high by internal pull-up devices.

In this state the arbitration slave can take over the bus.

If the arbitration master requires the bus again, it can request the bus via the bus request
signal BREQ. As soon as the arbitration master regains the bus it releases the BREQ
signal and drives HLDA to high.

not fixed number of cycles (0 ... n)

HOLD ¢\ i

HLDA ? ? ? \

earllest change

BREQ i i i i A\

CSx,WRH : : : J : : Aull up
WRWRL, RD —— ; ; j ; o

ADD, DATA §>__E____*E__
BHE . . . : : ' high impédance

Figure 6-8 Releasing the Bus by the Arbitration Master

User Manual 6-170 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

Note: The figure above shows the first possibility for BREQ to get active. The C166S V2
will complete the currently running bus cycle before granting the external bus as
indicated by the broken lines.

Figure 6-9 Regaining the Bus by the Arbitration Master

HOLD § :/
HLDA i /

: ©no BRéQ request
T N o !

BREQ _i._.._.. LA____//
CSXWRH ~ ipitwp — =~
WR/WRL, RD :

ADD,BHE — highimpedancs” —<

Note: The falling BREQ edge shows the last chance for BREQ to trigger the indicated
regain-sequence. Even if BREQ is activated earlier the regain-sequence is
initiated by HOLD going high. Please note that HOLD may also be deactivated
without the C166S V2 requesting the bus.

6.4.1.3 Arbitration Slave Scheme

If the C166S V2 EBC is configured as arbitration slave it is by default not owner of the
external bus and has to request the bus first. As long as it has not finished all its queued
requests and the arbitration master is not requesting the bus the arbitration slave stays
owner of the bus. For the description of the signal handling of the handshake see
Chapter 6.4.1.2. For the arbitration slave the hold acknowledge pin HLDA is configured
as input.

6.4.1.4 Locking the Bus

If an application in a multimaster system requires a sequence of undisturbed bus access
it has the possibility (independently of being arbitration slave or master) to lock" the bus

) Itis not allowed to lock the bus by resetting the EBCMODO.ARBEN bit, as this can lead to bus conflicts.

User Manual 6-171 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

by setting the PSW bit HLDEN to ‘0’. In this case the looked C166S V2 EBC will not
answer to HOLD requests from other external bus master until HLDEN is set to ‘1’ again.
Of course a looked bus master not owning the bus can request the external bus. If a
master and a slave are requesting the external bus at the same time for several
accesses, they toggle the ownership after each access cycle if the bus is not locked.

6.4.2 Connecting Multimaster Systems

Two C166S V2s where one is configured as arbitration master and the other as
arbitration slave can be connected directly together as shown in Figure 6-10. As both
EBCs assume after reset to own the external bus, the ‘slave’ CPU has to be released
from reset and initialized first, before starting the ‘master’ CPU. The other way is to start
both systems at the same time but then both EBC must be configured and the
PSW.HLDEN bits set before the first external bus request.

HOLD «—\ /—N HOLD
N) HLDA

HLDA

C166S V2 in
Master Mode
C166S V2 in
Slave Mode

BREQ BREQ

Figure 6-10 Connecting two C166S V2s using Master/Slave Arbitration

When more than two C166S V2s or other compatible bus masters are connected
together additional interconnection/arbitration logic is required. In this case the slave/
master selection has to be done according to the introduced logic.

User Manual 6-172 V 1.7,2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

External Bus Controller

6.5 Fastest possible external access

The following four figures show the principal possible fastest access type for the EBC.

Figure 6-11 Fastest Read Cycle Demultiplexed Bus

1 b 1 e 1
CLK
|
|
ALE |
B — B
| |
ADDR, CS valjd
RD

|
|
|
|
[|

Figure 6-12 Fastest Write Cycle Demultiplexed Bus

1 b 1 e I
CLK
| | |
ALE |
- L
L | | |
ADDR, CS valid
| | |
- —
WR |
|

DATA out
—id)

User Manual 6-173 V 1.7,2001-01

N
(Infineon
technologies

User Manual
C166S V2

Figure 6-13 Fastest Read Cycle Multiplexed Bus

External Bus Controller

1 b 1 e 1 1
CLK

| | | |
ALE | |
| |
. | | | |

ADDR, CS " valid
| | | |
—_— | — 1
RD | |

| | | |
| Y | |
muxed Address out / DATA in —:<add val@—<d.vlélid>—:-

Figure 6-14 Fastest Write Cycle Multiplexed Bus

1 b 1 e 1
CLK
| | |
ALE :
|
|
ADDR, CS valid
| | |
['— fr—
WR |
|
muxed Address out / DATA out —ddr valigl valid

User Manual 6-174

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Set

7 Instruction Set

7.1 Short Instruction Summary

The following compressed cross-reference tables quickly identify specific instructions
and provide basic information about them Two ordering schemes are included:

The first table (two pages) is a compressed cross-reference table that quickly associates
specific hexadecimal opcodes with the corresponding mnemonics.

The second table lists instructions by their mnemonic and identifies the addressing
modes that may be used with the specific instructions and indicates the instruction length
for the selected addressing mode. This reference helps to optimize instruction
sequences in terms of code size and/or execution time.

Description Levels

In the following sections the instructions are compiled according to different criteria in
order to provide different levels of precision:

* Cross Reference Tables summarize all instructions in condensed tables

* The Instruction Set Summary groups the individual instructions into functional
groups

* The Opcode Table references the instructions by their hexadecimal opcode

User Manual 7-175 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

0x 1x 2x 3x 4x 5x 6Xx 7X

x0 | ADD ADDC SUB SUBC CMP XOR AND OR
x1 | ADDB ADDCB | SUBB SUBCB |CMPB XORB ANDB ORB
x2 |ADD ADDC SUB SUBC CMP XOR AND OR
x3 | ADDB ADDCB |SUBB SUBCB |CMPB XORB ANDB ORB
x4 | ADD ADDC SUB SUBC - XOR AND OR
x5 | ADDB ADDCB |SUBB SUBCB |- XORB ANDB ORB
x6 | ADD ADDC SUB SUBC CMP XOR AND OR
x7 | ADDB ADDCB | SUBB SUBCB |CMPB XORB ANDB ORB
x8 | ADD ADDC SUB SUBC CMP XOR AND OR
x9 | ADDB ADDCB |SUBB SUBCB |CMPB XORB ANDB ORB
xA |BFLDL |BFLDH |BCMP BMOVN |BMOV BOR BAND BXOR
xB | MUL MULU PRIOR |- DIV DIVU DIVL DIVLU
xC | ROL ROL ROR ROR SHL SHL SHR SHR
xD | JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR
xE |BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR
xF |BSET BSET BSET BSET BSET BSET BSET BSET
User Manual 7-176 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

8x 9x Ax Bx Cx Dx Ex Fx
x0 CMPI1 |CMPI2 |CMPD1 |[CMPD2 |MOVBZ |MOVBS | MOV MOV
x1 |NEG CPL NEGB |CPLB - AT/ MOVB | MOVB

EXTR
x2 CMPI1 |CMPI2 |CMPD1 |[CMPD2 |MOVBZ |MOVBS |PCALL |MOV
x3 | CoXXX |CoXXX |CoXXX |[Co Co CMQV |- MOVB
STORE |STORE
x4 MOV MOV MOvB |MOVB |MOV MOV MOVB |MOVB
x5 |ENWDT |- DIS EINIT MOVBZ | MOVBS |- -
WDT
x6 CMPI1 |CMPI2 |CMPD1 |CMPD2 |SCXT SCXT MOV MOV
x7 |IDLE PWRDN | SRV SRST - EXTP/S/ |MOVB |MOVB
WDT R
x8 | MOV MOV MOV MOV MOV MOV MOV -
x9 ‘MOVB |MOVB |MOVB |MOVB |MOVB |MOVB |MOVB |-
xA [JB JNB JBC JNBS CALLA |CALLS |JMPA JMPS
xB | - TRAP CALLI CALLR |RET RETS RETP RETI
xC | SBRK JMPI ASHR ASHR NOP EXTP/S/ |PUSH POP
R

xD | JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR
xE |BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR
xF | BSET BSET BSET BSET BSET BSET BSET BSET
User Manual 7177 V1.7, 2001-01

—
H User Manual
(Infineon C166S V2

Instruction Set

7.2 Instruction Set Summary

This section summarizes the instructions and lists them by functional class. This enables
quick identification of the right instruction(s) for a specific function.

The following notes apply to this summary:

Data Addressing Modes

Rw: — Word GPR (RO, R1, ..., R15)

Rb: — Byte GPR (RLO, RHO, ..., RL7, RH7)
IDX: — Address Pointer IDX (IDX0, IDX1)

Qx: — Address Offset Register QX (QX0, QX1)
QR: — Address Offset Register QR (QR0, QR1)
reg: — SFRorGPR

(in case of a byte operation on an SFR, only the low byte can be
accessed via ‘reqg’)

mem: — Direct word or byte memory location

[...]: — Indirect word or byte memory location
(Any word GPR can be used as indirect address pointer, except for the
arithmetic, logical and compare instructions, where only RO to R3 are

allowed)

bitaddr: — Direct bit in the bit-addressable memory area

bitoff: — Direct word in the bit-addressable memory area

#data: — Immediate constant
(The number of significant bits which can be specified by the user is
represented by the respective appendix ’X’)

#mask8: — Immediate 8-bit mask used for bit-field modifications

User Manual 7-178 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Set

Table 7-1 shows the various combinations of pointer post-modification for the
addressing modes of the CoXXX instructions. The symbols “[Rw,»+]” and “[IDX;*]” will be
used to refer to these addressing modes.

Table 7-1 Pointer Post-Modification Combinations for IDXi and Rwn
Symbol Mnemonic Address Pointer Operation
“[IDX;®]” stands for [IDX] (IDX;) < (IDX;) (no-operation)

[IDX;+] (IDX;) « (IDX;) +2 (i=0,1)
[IDX; -] (IDX;) « (IDX;) -2 (i=0,1)

[IDX;+QX;] | (IDX) « (IDX;) +(QX)) (i, | =0,1)

[IDX; - QXj] (IDXj) « (IDX;) - (QX)) (i, j =0,1)

“IRw,®]” stands for [Rwn] (Rwn) « (Rwn) (no-operation)
[Rwn+] (Rwn) « (Rwn) +2 (n=0-15)
[Rwn-] (Rwn) « (Rwn) -2 (n=0-15)

[Rwn+QRj] (Rwn) < (Rwn) + (QR) (n=0-15;j =0,1)

[Rwn - QRJ-] (Rwn) « (Rwn) - (QRJ-) (n=0-15; j =0,1)

Multiply and Divide Operations

The MDL and MDH registers are implicit source and/or destination operands of the
multiply and divide instructions.

Branch Target Addressing Modes
caddr: — Direct 16-bit jump target address (Updates the Instruction Pointer)

seq: — Direct 2-bit segment address
(Updates the Code Segment Pointer)

rel: — Signed 8-bit jump target word offset address relative to the Instruction
Pointer of the following instruction

#trap7:

Immediate 7-bit trap or interrupt number.

User Manual 7-179 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Extension Operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10: — Immediate 10-bit page address.

#seg8: — Immediate 8-bit segment address.

Branch Condition Codes

cc: Symbolically specifiable condition codes
cc_UC —Unconditional
cc Z —Zero
cc_NZ —Not Zero
cc_V —Overflow
cc_NV —No Overflow
cc_N —Negative
cc_NN —Not Negative
cc_C —Carry

cc_NC —No Carry

cc_EQ —Equal

cc_NE —Not Equal

cc_ULT -Unsigned Less Than

cc_ULE -Unsigned Less Than or Equal
cc_UGE -Unsigned Greater Than or Equal

cc_UGT -Unsigned Greater Than
cc_SLE —Signed Less Than or Equal

cc_SGE -Signed Greater Than or Equal

cc_SGT -Signed Greater Than

cc_NET —Not Equal and Not End-of-Table

cc_nusr0 —USR-bit 0 is cleared”
cc_nusri —USR-bit 1 is cleared”)
cc_usr0 —USR-bit 0 is set?
cc_usri —USR-bit 1 is set!

1) Only usable with the JMPA and CALLA instructions

User Manual 7-180

Instruction Set

V1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Mnemonic | Addressing ModesBytes Mnemonic | Addressing ModesBytes
ADD[B] Rwn Rwm I CPL[B] Rwn N2
ADDCIB] Rwn [Rwi] 2 NEGIB]
AND[B] Rwn [Rwi+] Di2l o Rwn 5
OR[B] Rwn #data3 D2l I pvL
SUBI[B] DIVLU
SUBCIB] reg #data16 4 DIVU
XORI[B] reg mem 4
mem reg 4 MBII:U Rwn Rwm 2
ASHR Rwn Rwm 2 CMPD1/2 | Rwn #datad 2
ROL / ROR | Rwn #datad 2 CMPI1/2 Rwn #data16 4
SHL / SHR Rwn mem 4
BAND bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm iz
BCMP Rwn [Rwi] RAP
BMOV Rwn [Rwi+] D2
BMOVN Rwn #data3 2
BOR/ reg #data16 2) |4
BXOR reg mem 4
BCLR bitaddrQ.q 2 CALLA cc caddr 4
BSET JMPA
BFLDH bitoffQ #mask8 #data8 | 4 CALLI cc [Rwn] 2
BFLDL JMPI
MOVIB] Rwn Rwm Dl2| |CALLS seg caddr 4
Rwn #datad 1) 2| |JMPS
Rwn Rwm] |) 2| [CALR [rel 2
w wm+
[Rwm] Rwn 1) |5 JMPR cg rel 2
[-Rwm] Rwn)12 JB bitaddrQ.q rel 4
[Rwn] Rwm] 2| [JBC
[Rwn+] Rwm] 2| |JNB
[Rwn] Rwm+] 2| [JNBS
PCALL reg caddr 4
reg #data1l6 2 4| [pop reg >
Rwn [Rwm+#d16] 1) |4 | | pUsH
[Rwm-+#d16] Rwn V14l | RETP
[Rwn] mem 4
mem [Rwn] 4 SCXT reg #data16 4
reg mem 4
reg mem 4
mem reg 4 PRIOR Rwn Rwm 2
MOVBS Rwn Rbm 2 TRAP #trap7 2
MOVBZ reg mem 4| ATOMIC | #irang2 2
mem reg 4 EXTR
EXTS Rwm #irang2 2 EXTP Rwm #irang2 2
EXTSR #seg #irang2 4 EXTPR #pag #irang2 4
NOP - 2 SRST/IDLE | - 4
RET PWRDN
RETI SRVWDT
RETS DISWDT
SBRK ENWDT
EINIT
R Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).
2) Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.
User Manual 7-181 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set Summary

Instruction Set

Mnemonic Description Bytes
Arithmetic Operations
ADD Rw, Rw Add direct word GPR to direct GPR
ADD Rw, [Rw] Add indirect word memory to direct GPR
ADD Rw, [Rw +] Add indirect word memory to direct GPR and post-
increment source pointer by 2
ADD Rw, #data3 Add immediate word data to direct GPR 2
ADD reg, #data16 Add immediate word data to direct register 4
ADD reg, mem Add direct word memory to direct register 4
ADD mem, reg Add direct word register to direct memory 4
ADDB Rb, Rb Add direct byte GPR to direct GPR 2
ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2
ADDB Rb, [Rw +] Add indirect byte memory to direct GPR and 2
post-increment source pointer by 1
ADDB Rb, #data3 Add immediate byte data to direct GPR 2
ADDB reg, #data8 Add immediate byte data to direct register 4
ADDB reg, mem Add direct byte memory to direct register 4
ADDB mem, reg Add direct byte register to direct memory 4
ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2
ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 2
ADDC Rw, [Rw +] Add indirect word memory to direct GPR with Carry and 2
post-increment source pointer by 2
ADDC Rw, #data3 Add immediate word data to direct GPR with Carry 2
ADDC reg, #data16 Add immediate word data to direct register with Carry 4
ADDC reg, mem Add direct word memory to direct register with Carry 4
ADDC mem, reg Add direct word register to direct memory with Carry 4
ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2
ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2
ADDCB Rb, [Rw +] Add indirect byte memory to direct GPR with Carry and 2
post-increment source pointer by 1
ADDCB Rb, #data3 Add immediate byte data to direct GPR with Carry
ADDCB reg, #data8 Add immediate byte data to direct register with Carry
ADDCB reg, mem Add direct byte memory to direct register with Carry
User Manual 7-182 V1.7,2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes
Arithmetic Operations (cont'd)
ADDCB mem, reg Add direct byte register to direct memory with Carry 4
SUB Rw, Rw Subtract direct word GPR from direct GPR 2
SuUB Rw, [Rw] Subtract indirect word memory from direct GPR 2
SuUB Rw, [Rw +] Subtract indirect word memory from direct GPR and 2
post-increment source pointer by 2
SUB Rw, #data3 Subtract immediate word data from direct GPR 2
SUB reg, #data16 Subtract immediate word data from direct register 4
SUB reg, mem Subtract direct word memory from direct register 4
SUB mem, reg Subtract direct word register from direct memory 4
SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2
SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2
SUBB Rb, [Rw +] Subtract indirect byte memory from direct GPR and 2
post-increment source pointer by 1
SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2
SUBB reg, #data8 Subtract immediate byte data from direct register 4
SUBB reg, mem Subtract direct byte memory from direct register 4
SUBB mem, reg Subtract direct byte register from direct memory 4
SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2
SUBC Rw, [Rw] Subtract indirect word memory from direct GPR with Carry |2
SUBC Rw, [Rw +] Subtract indirect word memory from direct GPR with 2
Carry and post-increment source pointer by 2
SUBC Rw, #data3 Subtract immediate word data from direct GPR with Carry |2
SUBC reg, #data16 Subtract immediate word data from direct register with
Carry
SUBC reg, mem Subtract direct word memory from direct register with Carry | 4
SUBC mem, reg Subtract direct word register from direct memory with Carry | 4
SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 2
SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry |2
SUBCB Rb, [Rw +] Subtract indirect byte memory from direct GPR with Carry |2
and post-increment source pointer by 1
SUBCB Rb, #data3 Subtract immediate byte data from direct GPR with Carry |2
SUBCB reg, #data8 Subtract immediate byte data from direct register with Carry | 4

User Manual

7-183 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes
Arithmetic Operations (cont'd)
SUBCB reg, mem Subtract direct byte memory from direct register with Carry | 4
SUBCB mem, reg Subtract direct byte register from direct memory with Carry | 4
MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 2
MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 2
DIV Rw Signed divide register MDL by direct GPR (16-/16-bit) 2
DIVL Rw Signed long divide register MD by direct GPR (32-/16-bit) |2
DIVLU Rw Unsigned long divide register MD by direct GPR 2
(32-/16-bit)
DIVU Rw Unsigned divide register MDL by direct GPR (16-/16-bit) 2
CPL Rw Complement direct word GPR 2
CPLB Rb Complement direct byte GPR 2
NEG Rw Negate direct word GPR 2
NEGB Rb Negate direct byte GPR 2
Logical Instructions
AND Rw, Rw Bitwise AND direct word GPR with direct GPR
AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR
AND Rw, [Rw +] Bitwise AND indirect word memory with direct GPR and
post-increment source pointer by 2
AND Rw, #data3 Bitwise AND immediate word data with direct GPR 2
AND reg, #data16 Bitwise AND immediate word data with direct register 4
AND reg, mem Bitwise AND direct word memory with direct register 4
AND mem, reg Bitwise AND direct word register with direct memory 4
ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2
ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 2
ANDB Rb, [Rw +] Bitwise AND indirect byte memory with direct GPR 2
and post-increment source pointer by 1
ANDB Rb, #data3 Bitwise AND immediate byte data with direct GPR 2
ANDB reg, #data8 Bitwise AND immediate byte data with direct register 4
ANDB reg, mem Bitwise AND direct byte memory with direct register 4
ANDB mem, reg Bitwise AND direct byte register with direct memory 4
User Manual 7-184 V1.7, 2001-01

o~

Infin

technol

eon

ogies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes
Logical Instructions (cont’d)
OR Rw, Rw Bitwise OR direct word GPR with direct GPR
OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR
OR Rw, [Rw +] Bitwise OR indirect word memory with direct GPR
and post-increment source pointer by 2
OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2
OR reg, #data16 Bitwise OR immediate word data with direct register 4
OR reg, mem Bitwise OR direct word memory with direct register 4
OR mem, reg Bitwise OR direct word register with direct memory 4
ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2
ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2
ORB Rb, [Rw +] Bitwise OR indirect byte memory with direct GPR and 2
post-increment source pointer by 1
ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2
ORB reg, #data8 Bitwise OR immediate byte data with direct register 4
ORB reg, mem Bitwise OR direct byte memory with direct register 4
ORB mem, reg Bitwise OR direct byte register with direct memory 4
XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2
XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 2
XOR Rw, [Rw +] Bitwise XOR indirect word memory with direct GPR and 2
post-increment source pointer by 2
XOR Rw, #data3 Bitwise XOR immediate word data with direct GPR 2
XOR reg, #data16 Bitwise XOR immediate word data with direct register 4
XOR reg, mem Bitwise XOR direct word memory with direct register 4
XOR mem, reg Bitwise XOR direct word register with direct memory 4
XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2
XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 2
XORB Rb, [Rw +] Bitwise XOR indirect byte memory with direct GPR and 2
post-increment source pointer by 1
XORB Rb, #data3 Bitwise XOR immediate byte data with direct GPR 2
XORB reg, #data8 Bitwise XOR immediate byte data with direct register 4
XORB reg, mem Bitwise XOR direct byte memory with direct register 4
XORB mem, reg Bitwise XOR direct byte register with direct memory 4
User Manual 7-185 V1.7,2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes

Boolean Bit Manipulation Operations

BCLR bitaddr Clear direct bit 2

BSET bitaddr Set direct bit 2

BMOV bitaddr, bitaddr | Move direct bit to direct bit 4

BMOVN bitaddr, bitaddr | Move negated direct bit to direct bit 4

BAND bitaddr, bitaddr AND direct bit with direct bit 4

BOR bitaddr, bitaddr | OR direct bit with direct bit 4

BXOR bitaddr, bitaddr XOR direct bit with direct bit 4

BCMP bitaddr, bitaddr Compare direct bit to direct bit 4

BFLDH bitoff, #mask8, Bitwise modify masked high byte of bit-addressable 4

#data8 direct word memory with immediate data
BFLDL bitoff, #mask8, Bitwise modify masked low byte of bit-addressable 4
#data8 direct word memory with immediate data

CMP Rw, Rw Compare direct word GPR to direct GPR

CMP Rw, [Rw] Compare indirect word memory to direct GPR

CMP Rw, [Rw +] Compare indirect word memory to direct GPR and
post-increment source pointer by 2

CMP Rw, #data3 Compare immediate word data to direct GPR 2

CMP reg, #data16 Compare immediate word data to direct register 4

CMP reg, mem Compare direct word memory to direct register 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2

CMPB Rb, [Rw +] Compare indirect byte memory to direct GPR and 2
post-increment source pointer by 1

CMPB Rb, #data3 Compare immediate byte data to direct GPR

CMPB reg, #data8 Compare immediate byte data to direct register

CMPB reg, mem Compare direct byte memory to direct register 4

Compare and Loop Control Instructions

CMPD1 Rw, #data4 Compare immediate word data to direct GPR and 2
decrement GPR by 1

CMPD1 Rw, #data16 Compare immediate word data to direct GPR and 4
decrement GPR by 1

User Manual 7-186 V1.7,2001-01

C166S V2

o
(Infinleon User Manual
technologies

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes

Compare and Loop Control Instructions (cont’d)

CMPD1 Rw, mem Compare direct word memory to direct GPR and 4
decrement GPR by 1

CMPD2 Rw, #data4 Compare immediate word data to direct GPR and 2
decrement GPR by 2

CMPD2 Rw, #data16 Compare immediate word data to direct GPR and 4
decrement GPR by 2

CMPD2 Rw, mem Compare direct word memory to direct GPR and 4
decrement GPR by 2

CMPI1 Rw, #data4 Compare immediate word data to direct GPR and 2
increment GPR by 1

CMPI1 Rw, #data16 Compare immediate word data to direct GPR and 4
increment GPR by 1

CMPI1 Rw, mem Compare direct word memory to direct GPR and 4
increment GPR by 1

CMPI2 Rw, #data4 Compare immediate word data to direct GPR and 2
increment GPR by 2

CMPI2 Rw, #data16 Compare immediate word data to direct GPR and 4
increment GPR by 2

CMPI2 Rw, mem Compare direct word memory to direct GPR and 4
increment GPR by 2

Prioritize Instruction

PRIOR Rw, Rw Determine number of shift cycles to normalize direct 2
word GPR and store result in direct word GPR

Shift and Rotate Instructions

SHL Rw, Rw Shift left direct word GPR; 2
number of shift cycles specified by direct GPR

SHL Rw, #data4 Shift left direct word GPR; 2
number of shift cycles specified by immediate data

SHR Rw, Rw Shift right direct word GPR; 2
number of shift cycles specified by direct GPR

User Manual 7-187 V1.7,2001-01

o~

Infin

technol

eon

ogies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes

Shift and Rotate Instructions (cont’d)

SHR Rw, #data4 Shift right direct word GPR,; 2
number of shift cycles specified by immediate data

ROL Rw, Rw Rotate left direct word GPR; 2
number of shift cycles specified by direct GPR

ROL Rw, #data4 Rotate left direct word GPR,; 2
number of shift cycles specified by immediate data

ROR Rw, Rw Rotate right direct word GPR,; 2
number of shift cycles specified by direct GPR

ROR Rw, #data4 Rotate right direct word GPR; 2
number of shift cycles specified by immediate data

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR; 2
number of shift cycles specified by direct GPR

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR; 2
number of shift cycles specified by immediate data

Data Movement

MOV Rw, Rw Move direct word GPR to direct GPR 2

MOV Rw, #data4 Move immediate word data to direct GPR 2

MOV reg, #data16 Move immediate word data to direct register 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and 2
post-increment source pointer by 2

MOV [Rw], Rw Move direct word GPR to indirect memory

MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move direct
word GPR to indirect memory

MOV [Rw], [Rw] Move indirect word memory to indirect memory

MOV [Rw +], [Rw] Move indirect word memory to indirect memory and
post-increment destination pointer by 2

MOV [Rw], [Rw +] Move indirect word memory to indirect memory and 2
post-increment source pointer by 2

MOV Rw, Move indirect word memory by base plus constant to 4

[Rw + #data16] |direct GPR
MOV [Rw + #data16], | Move direct word GPR to indirect memory by base plus 4
Rw constant
User Manual 7-188 V1.7,2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes

Data Movement (cont’d)

MOV [Rw], mem Move direct word memory to indirect memory 4

MOV mem, [Rw] Move indirect word memory to direct memory 4

MOV reg, mem Move direct word memory to direct register 4

MOV mem, reg Move direct word register to direct memory 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2

MOVB reg, #data8 Move immediate byte data to direct register 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2

MOVB Rb, [Rw +] Move indirect byte memory to direct GPR and 2
post-increment source pointer by 1

MOVB [Rw], Rb Move direct byte GPR to indirect memory

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move
direct byte GPR to indirect memory

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory

MOVB [Rw +], [Rw] Move indirect byte memory to indirect memory and
post-increment destination pointer by 1

MOVB [Rw], [Rw +] Move indirect byte memory to indirect memory and 2
post-increment source pointer by 1

MOVB Rb, Move indirect byte memory by base plus constant to 4

[Rw + #data16] |direct GPR
MOVB [Rw + #data16], | Move direct byte GPR to indirect memory by base plus 4
Rb constant

MOVB [Rw], mem Move direct byte memory to indirect memory 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 4

MOVB reg, mem Move direct byte memory to direct register 4

MOVB mem, reg Move direct byte register to direct memory 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to direct 2
word GPR

MOVBS reg, mem Move direct byte memory with sign extension to direct 4
word register

MOVBS mem, reg Move direct byte register with sign extension to direct 4
word memory

User Manual 7-189 V1.7,2001-01

o~

Infineon

technologies

User Manual
C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes

Data Movement (cont’'d)

MOVBZ Rw, Rb Move direct byte GPR with zero extension to direct 2
word GPR
MOVBZ reg, mem Move direct byte memory with zero extension to direct 4

word register

MOVBZ mem, reg Move direct byte register with zero extension to direct 4
word memory

Jump and Call Operations

JMPA cc, caddr Jump absolute if condition is met 4

JMPI cc, [Rw] Jump indirect if condition is met 2

JMPR cc, rel Jump relative if condition is met 2

JMPS seg, caddr Jump absolute to a code segment 4

JB bitaddr, rel Jump relative if direct bit is set 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4

JNB bitaddr, rel Jump relative if direct bit is not set 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4

CALLA cc, caddr Call absolute subroutine if condition is met 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 2

CALLR rel Call relative subroutine 2

CALLS seg, caddr Call absolute subroutine in any code segment 4

PCALL reg, caddr Push direct word register onto system stack and call 4
absolute subroutine

TRAP #trap7 Call interrupt service routine via immediate trap number 2

System Stack Operations

POP reg Pop direct word register from system stack

PUSH reg Push direct word register onto system stack

SCXT reg, #data16 Push direct word register onto system stack und update
register with immediate data

SCXT reg, mem Push direct word register onto system stack und update 4
register with direct memory

User Manual 7-190 V 1.7, 2001-01

o~

Infineon

technologies

User Manual

C166S V2

Instruction Set

Instruction Set Summary (cont'd)

Mnemonic Description Bytes
Return Operations
RET Return from intra-segment subroutine
RETS Return from inter-segment subroutine
RETP reg Return from intra-segment subroutine and pop direct
word register from system stack
RETI Return from interrupt service subroutine 2
System Control
SRST Software Reset 4
SBRK Software Break 2
IDLE Enter Idle Mode 4
PWRDN Enter Power Down Mode 4
(supposes NMI-pin being low)
SRVWDT Service Watchdog Timer 4
DISWDT Disable Watchdog Timer 4
ENWDT Enable Watchdog Timer 4
EINIT Signify End-of-Initialization on RSTOUT-pin 4
ATOMIC #irang2 Begin ATOMIC sequence 02
EXTR #irang2 Begin EXTended Register sequence 02
EXTP Rw, #irang2 Begin EXTended Page sequence D2
EXTP #pag10, #irang2 | Begin EXTended Page sequence 04
EXTPR Rw, #irang2 Begin EXTended Page and Register sequence 02
EXTPR #pag10, #irang2 | Begin EXTended Page and Register sequence 04
EXTS Rw, #irang2 Begin EXTended Segment sequence 02
EXTS #seg8, #irang2 | Begin EXTended Segment sequence R
EXTSR Rw, #irang2 Begin EXTended Segment and Register sequence 02
EXTSR #seg8, #irang2 | Begin EXTended Segment and Register sequence D la
Miscellaneous
NOP Null operation 2
User Manual 7-191 V1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Instruction Set

7.3 Instruction Opcodes

This section lists the C166S V2 CPU instructions by hexadecimal opcodes to help
identify specific instructions when reading executable code, ie. during the debugging
phase.

Notes for Opcode Lists

e These instructions are encoded by means of additional bits in the operand field of the
instruction

X0 — X74: Rw, #data3 or Rb, #data3
x84 — XBy: Rw, [Rw] or Rb, [Rw]
xCH — xFn: Rw, [Rw +] or Rb, [Rw +]

For these instructions, only the lowest four GPRs (RO to R3) can be used as indirect
address pointers.

* These instructions are encoded by means of additional bits in the operand field of the
instruction

00XX.XXXXg: EXTS or ATOMIC
01XX.XXXXg: EXTP
10XX.XXXXg: EXTSR or EXTR

11XX.XXXXg: EXTPR

Notes on the JMPR Instructions

The condition code to be tested for the JMPR instructions is specified by the opcode.
Two mnemonic representation alternatives exist for some of the condition codes.

Notes on the JMPA and CALLA Instructions

For JMPA+/- and CALLA+/- instructions, a static user programmable prediction scheme
is used. If bit 8 ('a’) of the instruction long word is cleared, then the branch is assumed
‘taken’. If it is set, then the branch is assumed ‘not taken’. The user controls bit 8 value
by entering '+ or ’-’ in the instruction mnemonics. This bit can be also set/cleared by the
Assembler for JMPA and CALLA instructions depending on the jump condition.

For JMPA instruction, a pre-fetch hint bit is used (the instruction bit 9 ’I'). This bit is
required by the fetch unit to deal efficiently with short backward loops. It must be set if O
< IP_jmpa - IP_target <= 32, where IP_jmpa is the address of the JMPA instruction and
IP_target is the target address of the JMPA. Otherwise, bit 9 must be cleared.

Notes on the BCLR and BSET Instructions

The position of the bit to be set or cleared is specified by the opcode. The operand
‘bitoff.n’ (n = 0 to 15) refers to a particular bit within a bit-addressable word.

User Manual 7-192 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Set

Notes on CoXXX instructions

All CoXXX instructions have a 3-bit wide extended control field ’rrr’ in the operand field
to control the MRW repeat counter. It is located within the CoXXX instructions at bit
positions [31:29].

— ‘000’ -> regular CoXXX instruction.

- ‘001" -> RESERVED

- ‘010 -> *~USRO0 CoXXX’ instruction.

- ‘011" -> “~USR1 CoXXX instruction.

- "1xx’ -> RESERVED.

Notes on CoXXX instructions using indirect addressing modes

These CoXXX instructions have extended control fields in the operand field to specify
the special indirect addressing mode.

Bitfield "X’ is 4-bits wide and is located within CoXXX instructions at bit positions [15:12].
Bit [15] specifies one of the two IDX address pointers; the bitfield [14:12] specifies the
operation concerning the IDX pointer.

Bit[15]:
~ 0 -> IDXO
— 1 -> IDX1

Bitfield[14:12]

- ‘000" -> RESERVED
— ‘001" -> no-operation
- ‘010" -> IDX +2

- ‘011" -> IDX -2

- 100" -> IDX + QX0
- 101" -> IDX - QX0
- 110" -> IDX + QX1
- 111" -> IDX - QX1

Bitfield ’qqq’ is 3-bits wide and is located within CoXXX instructions at bit positions
[26:24]. It specifies the operation concerning the Rw pointer.
Bitfield[26:24]

— ‘000 -> RESERVED

— ‘001" -> no-operation

- ‘010 -> Rw+2

- ‘011" -> Rw-2

- 100" -> Rw + QRO

- 101" -> Rw- QRO

- 110’ -> Rw + QR1

-’111" -> Rw-QR1

User Manual 7-193 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Notes on the Undefined Opcodes

Instruction Set

A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded

by the CPU.

In the following table used symbols for instruction cycle times:

reg

bit

4+15

1-31

User Manual

1 cycle, if short register addressing uses GPR

2 cycles, else

1 cycle if at least one bit address is a GPR

2 cycles, else

1 to 2 cycle (see table for MAC instructions)

0 cycles, if branch is executed zerocycle

1 cycle, else

2 cycles, if CPUCON1.SGTDIS = 1

3 cycles, else

5 cycles, if CPUCON1.SGTDIS =1

6 cycles, else

4 visible cycles to calculate PSW for division,

plus 15 invisible cycle where the result is not available
1 to 31 cycles for 'multicycle’ NOP (opcode CC 000d:dddd)

7-194

V1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Hex- | Bytes/ | Mnemonic Operands Hex- |Bytes/ | Mnemonic Operands

code |Cycles code |Cycles

00 2/1 ADD Rw, Rw 20 2/1 SUB Rw, Rw

01 2/1 ADDB Rb, Rb 21 2/1 SUBB Rb, Rb

02 4/reg | ADD reg, mem 22 4/reg | SUB reg, mem

03 4/reg | ADDB reg, mem 23 4/reg | SUBB reg, mem

04 4/reg | ADD mem, reg 24 4/reg | SUB mem, reg

05 4/reg | ADDB mem, reg 25 4/reg | SUBB mem, reg

06 4/1 ADD reg, #data16 26 4/1 SUB reg, #data16

07 4/1 ADDB reg, #data8 27 4/1 SUBB reg, #data8

08 2/1 ADD Rw, [Rw +] or 28 2/1 SUB Rw, [Rw +] or
Rw, [Rw] or Rw, [Rw] or
Rw, #data3 Rw, #data3

09 2/1 ADDB Rb, [Rw +] or 29 2/1 SUBB Rb, [Rw +] or
Rb, [Rw] or Rb, [Rw] or
Rb, #data3 Rb, #data3

0A 4/1 BFLDL bitoff, #mask8, 2A | 4/bit | BCMP bitaddr, bitaddr
#data8

0B 2/1 MUL Rw, Rw 2B |21 PRIOR Rw, Rw

0oC 2/1 ROL Rw, Rw 2C |21 ROR Rw, Rw

oD 2/0-1 | JMPR cc_UC, rel 2D | 2/0-1 |JMPR cc_EQ, rel or

cc_Z, rel

OE 2/1 BCLR bitoff.0 2E |21 BCLR bitoff.2

OF 2/1 BSET bitoff.0 2F 2/1 BSET bitoff.2

10 2/1 ADDC Rw, Rw 30 2/1 SUBC Rw, Rw

11 2/1 ADDCB Rb, Rb 31 2/1 SUBCB Rb, Rb

12 4/reg | ADDC reg, mem 32 4/reg | SUBC reg, mem

13 4/reg | ADDCB reg, mem 33 4/reg | SUBCB reg, mem

14 4/reg | ADDC mem, reg 34 4/reg | SUBC mem, reg

15 4/reg | ADDCB mem, reg 35 4/reg | SUBCB mem, reg

16 4/1 ADDC reg, #data16 36 4/1 SUBC reg, #data16

17 4/1 ADDCB reg, #data8 37 4/1 SUBCB reg, #data8

18 2/1 ADDC Rw, [Rw +] or 38 2/1 SUBC Rw, [Rw +] or
Rw, [Rw] or Rw, [Rw] or
Rw, #data3 Rw, #data3

19 2/1 ADDCB Rb, [Rw +] or 39 2/1 SUBCB Rb, [Rw +] or
Rb, [Rw] or Rb, [Rw] or
Rb, #data3 Rb, #data3

1A 4/1 BFLDH bitoff, #mask8, 3A | 4/bit |BMOVN bitaddr, bitaddr
#data8

1B 2/1 MULU Rw, Rw 3B |-/ - -

1C 2/1 ROL Rw, #data4 3C 2/1 ROR Rw, #data4

1D 2/0-1 | JMPR cc_NET, rel 3D 2/0-1 | JMPR cc_NE, rel or

cc_NZ, rel

1E 2/1 BCLR bitoff.1 3E |2/1 BCLR bitoff.3

1F 2/1 BSET bitoff.1 3F 2/1 BSET bitoff.3

User Manual 7-195 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Hex- |Bytes/ | Mnemonic Operands Hex- | Bytes/ | Mnemonic Operands

code | Cycles code | Cycles

40 2/1 CMP Rw, Rw 60 2/1 AND Rw, Rw

41 21 CMPB Rb, Rb 61 2/1 ANDB Rb, Rb

42 4/reg | CMP reg, mem 62 4/reg | AND reg, mem

43 4/reg | CMPB reg, mem 63 4/reg | ANDB reg, mem

44 -/- - - 64 4/reg | AND mem, reg

45 ~/- - - 65 4/reg | ANDB mem, reg

46 4/1 CMP reg, #data16 66 4/1 AND reg, #data16

47 4/1 CMPB reg, #data8 67 4/1 ANDB reg, #data8

48 2/1 CMP Rw, [Rw +] or 68 2/1 AND Rw, [Rw +] or
Rw, [Rw] or Rw, [Rw] or
Rw, #data3 Rw, #data3

49 2/1 CMPB Rb, [Rw +] or 69 2/1 ANDB Rb, [Rw +] or
Rb, [Rw] or Rb, [Rw] or
Rb, #data3 Rb, #data3

4A 4/bit | BMOV bitaddr, bitaddr 6A 4/bit | BAND bitaddr, bitaddr

4B 2/4+15 | DIV Rw 6B 2/4+15 | DIVL Rw

4C 2/1 SHL Rw, Rw 6C 2/1 SHR Rw, Rw

4D 2/0-1 | JMPR cc_V, rel 6D 2/0-1 | JMPR cc_N, rel

4E 2/1 BCLR bitoff.4 6E 2/1 BCLR bitoff.6

4F 2/1 BSET bitoff.4 6F 2/1 BSET bitoff.6

50 2/1 XOR Rw, Rw 70 2/1 OR Rw, Rw

51 2/1 XORB Rb, Rb 71 2/1 ORB Rb, Rb

52 4/reg | XOR reg, mem 72 4/reg |OR reg, mem

53 4/reg | XORB reg, mem 73 4/reg | ORB reg, mem

54 4/reg | XOR mem, reg 74 4/reg |OR mem, reg

55 4/reg | XORB mem, reg 75 4/reg | ORB mem, reg

56 4/1 XOR reg, #data16 76 4/1 OR reg, #data16

57 4/1 XORB reg, #data8 77 4/1 ORB reg, #data8

58 2/1 XOR Rw, [Rw +] or 78 2/1 OR Rw, [Rw +] or
Rw, [Rw] or Rw, [Rw] or
Rw, #data3 Rw, #data3 "

59 2/1 XORB Rb, [Rw +] or 79 2/1 ORB Rb, [Rw +] or
Rb, [Rw] or Rb, [Rw] or
Rb, #data3 Rb, #data3

5A 4/bit | BOR bitaddr, bitaddr 7A 4/bit | BXOR bitaddr, bitaddr

5B 2/4+15 | DIVU Rw 7B 2/4+15 | DIVLU Rw

5C 2/1 SHL Rw, #data4 7C |21 SHR Rw, #data4

5D 2/0-1 | JMPR cc_NV, rel 7D 2/0-1 | JMPR cc_NN, rel

5E 2/1 BCLR bitoff.5 7E 2/1 BCLR bitoff.7

5F 2/1 BSET bitoff.5 7F 2/1 BSET bitoff.7

User Manual 7-196 V1.7,2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Hex- |Bytes/ | Mnemonic Operands Hex- | Bytes/ | Mnemonic Operands

code | Cycles code | Cycles

80 2/1 CMPIH Rw, #data4 A0 2/1 CMPD1 Rw, #data4

81 2/1 NEG Rw A1 2/1 NEGB Rb

82 4/1 CMPHH Rw, mem A2 4/1 CMPD1 Rw, mem

83 4/co | CoXXX XX A3 4/co | CoXXX XX

84 4/2 MOV [Rw], mem A4 4/2 MOVB [Rw], mem

85 a4/1 ENWDT A5 4/1 DISWDT

86 a/1 CMPIH Rw, #data16 A6 a/1 CMPD1 Rw, #data16

87 4/5 IDLE A7 4/1 SRVWDT

88 2/1 MOV [-Rw], Rw A8 21 MOV Rw, [Rw]

89 2/1 MOVB [-Rw], Rb A9 2/1 MOVB Rb, [Rw]

8A 4/1 JB bitaddr, rel AA 4/1 JBC bitaddr, rel

8B -/- - - AB 2/2 CALLI cc, [Rw]

8C 2/1 SBRK AC |2/1 ASHR Rw, Rw

8D 2/0-1 | JMPR cc_C, relor AD 2/0-1 | JMPR cc_SGT, rel
cc_ULT, rel

8E 2/1 BCLR bitoff.8 AE 2/1 BCLR bitoff.10

8F 2/1 BSET bitoff.8 AF 2/1 BSET bitoff.10

90 2/1 CMPI2 Rw, #data4 BO 2/1 CMPD2 Rw, #data4

91 2/1 CPL Rw B1 2/1 CPLB Rb

92 4/1 CMPI2 Rw, mem B2 4/1 CMPD2 Rw, mem

93 4/co | CoXXX XXX B3 a/1 CoSTORE [Rw*], COREG

94 4/2 MOV mem, [Rw] B4 4/2 MOVB mem, [Rw]

95 -/- - - B5 4/1 EINIT

96 4/1 CMPI2 Rw, #data16 B6 4/1 CMPD2 Rw, #data16

97 4/5 PWRDN B7 4/5 SRST

98 2/1 MOV Rw, [Rw+] B8 21 MOV [Rw], Rw

99 2/1 MOVB Rb, [Rw+] B9 2/1 MOVB [Rw], Rb

9A 4/1 JNB bitaddr, rel BA 4/1 JNBS bitaddr, rel

9B 2/2-3 | TRAP #trap7 BB 2/1 CALLR rel

9C 2/1 JMPI cc, [Rw] BC |21 ASHR Rw, #data4

aD 2/0-1 | JMPR cc_NC, rel or BD 2/0-1 | JMPR cc_SLE, rel
cc_UGE, rel

9E 2/1 BCLR bitoff.9 BE 2/1 BCLR bitoff.11

9F 2/1 BSET bitoff.9 BF 2/1 BSET bitoff.11

User Manual 7-197 V1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Instruction Set

Hex- |Bytes/ | Mnemonic Operands Hex- | Bytes/ | Mnemonic Operands
code | Cycles code | Cycles
Co 2/1 MOVBZ Rw, Rb EO 2/1 MOV Rw, #data4
C1 -/1 - - E1 2/1 MOVB Rb, #data4
Cc2 4/1 MOVBZ reg, mem E2 4/2 PCALL reg, caddr
C3 4/1 CoSTORE Rw, CoREG E3 -/- - -
C4 4/1 MOV [Rw+#data16], E4 4 MOVB [Rw+#data16],
Rw Rb
C5 4/1 MOvVBZ mem, reg E5 -/- - -
Cc6 4/2 SCXT reg, #data16 E6 |41 MOV reg, #data16
C7 -/- - - E7 4/1 MOVB reg, #data8
Ccs8 2/2 MOV [Rw], [Rw] E8 2/2 MOV [Rw], [Rw+]
C9 2/2 MOVB [Rw], [Rw] E9 2/2 MOVB [Rw], [Rw+]
CA 4/1 CALLA cc, addr EA |4/0-1 |JMPA cc, caddr
CB 2/1 RET EB |[2/2 RETP reg
CC 2/1-31 | NOP EC |21 PUSH reg
CDh 2/0-1 | JMPR cc_SLT, rel ED |2/0-1 |JMPR cc_UGT, rel
CE 2/1 BCLR bitoff.12 EE |21 BCLR bitoff.14
CF 2/1 BSET bitoff.12 EF |21 BSET bitoff.14
DO 2/1 MOVBS Rw, Rb FO 2/1 MOV Rw, Rw
D1 2/1 ATOMIC or | #irang2 F1 2/1 MOVB Rb, Rb
EXTR
D2 4/1 MOVBS reg, mem F2 4/1 MOV reg, mem
D3 4/2 CoMOV [IDX*], [Rw*] F3 41 MOVB reg, mem
D4 4/1 MOV Rw, F4 4/1 MOVB Rb,
[Rw + #data16] [Rw + #data16]
D5 4/1 MOVBS mem, reg F5 -/- - -
D6 4/2 SCXT reg, mem F6 4/1 MOV mem, reg
D7 4/1 EXTP(R), #pag10,#irang2 F7 4/1 MOVB mem, reg
EXTS(R) #seg8, #irang2
D8 2/2 MOV [Rw+], [Rw] F8 -/- - -
D9 2/2 MOVB [Rw+], [Rw] F9 -/- - -
DA 4/2 CALLS seg, caddr FA |4/0-1 |JMPS seg, caddr
DB 2/2 RETS FB |2/5-6 |RETI
DC 2/1 EXTP(R), Rw, #irang2 FC |21 POP reg
EXTS(R)
DD 2/0-1 | JMPR cc_SGE, rel FD 2/0-1 | JMPR cCc_ULE, rel
DE 2/1 BCLR bitoff.13 FE 2/1 BCLR bitoff.15
DF 2/1 BSET bitoff.13 FF 2/1 BSET bitoff.15

User Manual 7-198 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Hex-code | Extended| Cycles | Mnemonic Operands
Hex-code

83 00 1 CoMULu RWn, [RWm*]

83 01 2 CoMULu RWn, [RWm*], rnd

83 02 1 CoADD RWn, [RWm*]

83 08 1 CoMULu- RWn, [RWm*]

83 OA 1 CoSuUB RWn, [RWm*]

83 10 1 CoMACu RWn, [RWm*]

83 11 2 CoMACu RWn, [RWm*], rnd

83 12 1 CoSUBR RWn, [RWm*]

83 20 1 CoMACu- RWn, [RWm*]

83 22 1 CoLOAD RWn, [RWm*]

83 2A 1 CoLOAD- RWn, [RWm*]

83 30 1 CoMACRu RWn, [RWm™*]

83 31 2 CoMACRu RWn, [RWm*], rnd

83 3A 1 CoMAX RWn, [RWm*]

83 40 1 CoMULsu RWn, [RWm*]

83 41 2 CoMULsu RWn, [RWm*], rnd

83 42 1 CoADD2 RWn, [RWm*]

83 48 1 CoMULsu- RWn, [RWm*]

83 4A 1 CoSuB2 RWn, [RWm*]

83 50 1 CoMACsu RWn, [RWm*]

83 51 2 CoMACsu RWn, [RWm*], rnd

83 52 1 CoSUB2R RWn, [RWm*]

83 60 1 CoMACsu- RWn, [RWm*]

83 62 1 CoLOAD2 RWn, [RWm*]

83 6A 1 CoLOAD2- RWn, [RWm*]

83 70 1 CoMACRsu RWn, [RWm*]

83 71 2 CoMACRsu RWn, [RWm*], rnd

83 7A 1 CoMIN RWn, [RWm*]

83 80 1 CoMULus RWn, [RWm*]

83 81 2 CoMULus RWn, [RWm*], rnd

83 88 1 CoMULus- RWn, [RWm*]

83 8A 1 CoSHL [RWm*]

83 90 1 CoMACus RWn, [RWm*]

83 91 2 CoMACus RWn, [RWm*], rnd

83 9A 1 CoSHR [RWm*]

83 AO 1 CoMACus- RWn, [RWm™*]

83 AA 1 CoASHR [RWm*]

83 BO 1 CoMACRus RWn, [RWm*]

83 B1 2 CoMACRus RWn, [RWm*], rnd

83 BA 1 CoASHR [RWm*], rnd

83 CO 1 CoMUL RWn, [RWm*]

83 C1 2 CoMUL RWn, [RWm*], rnd

83 Cc2 1 CoCMP RWn, [RWm*]

83 C8 1 CoMUL- RWn, [RWm*]
User Manual 7-199 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Hex-code| Extended| Cycles | Mnemonic Operands
Hex-code

83 CA 1 CoABS RWn, [RWm*]

83 DO 1 CoMAC RWn, [RWm*]

83 D1 2 CoMAC RWn, [RWm*], rnd

83 EO 1 CoMAC- RWn, [RWm*]

83 FO 1 CoMACR RWn, [RWm*]

83 F1 2 CoMACR RWn, [RWm*], rnd

93 00 1 CoMULu [IDXi*], [RWm*]

93 01 2 CoMULu [IDXi*], [RWm*], rnd

93 02 1 CoADD [IDXi*], [RWm*]

93 08 1 CoMULu- [IDXi*], [RWm*]

93 0A 1 CoSUB [IDXi*], [RWm*]

93 10 1 CoMACu [IDXi*], [RWm*]

93 11 2 CoMACu [IDXi*], [RWm*], rnd

93 12 1 CoSUBR [IDXi*], [RWm*]

93 18 1 CoMACMu [IDXi*], [RWm*]

93 19 2 CoMACMu [IDXi*], [RWm*], rnd

93 20 1 CoMACu- [IDXi*], [RWm*]

93 22 1 CoLOAD [IDXi*], [RWm*]

93 28 1 CoMACMu- [IDXi*], [RWm*]

93 2A 1 CoLOAD- [IDXi*], [RWm*]

93 30 1 CoMACRu [IDXi*], [RWm*]

93 31 2 CoMACRu [IDXi*], [RWm*], rnd

93 38 1 CoMACMRu [IDXi*], [RWm*]

93 39 2 CoMACMRu [IDXi*], [RWm*], rnd

93 3A 1 CoMAX [IDXi*], [RWm*]

93 40 1 CoMULsu [IDXi*], [RWm*]

93 41 2 CoMULsu [IDXi*], [RWm*], rnd

93 42 1 CoADD2 [IDXi*], [RWm*]

93 48 1 CoMULsu- [IDXi*], [RWm*]

93 4A 1 CoSuUB2 [IDXi*], [RWm*]

93 50 1 CoMACsu [IDXi*], [RWm*]

93 51 2 CoMACsu [IDXi*], [RWm*], rnd

93 52 1 CoSUB2R [IDXi*], [RWm*]

93 58 1 CoMACMsu [IDXi*], [RWm*]

93 59 2 CoMACMsu [IDXi*], [RWm*], rnd

93 5A 1 CoNOP [IDXi*]

93 5A 1 CoNOP [IDXi*], [RWm*]

93 5A 1 CoNOP [RWm*]

93 60 1 CoMACsu- [IDXi*], [RWm*]

93 62 1 CoLOAD2 [IDXi*], [RWm*]

93 68 1 CoMACMsu- [IDXi*], [RWm*]

93 6A 1 CoLOAD2- [IDXi*], [RWm*]

93 70 1 CoMACRsu [IDXi*], [RWm*]

93 71 2 CoMACRsu [IDXi*], [RWm*], rnd

93 78 1 CoMACMRsu [IDXi*], [RWm*]
User Manual 7-200 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Hex-code| Extended| Cycles | Mnemonic Operands
Hex-code

93 79 2 CoMACMRsu [IDXi*], [RWm*], rnd
93 7A 1 CoMIN [IDXi*], [RWm*]
93 80 1 CoMULus [IDXi*], [RWm*]
93 81 2 CoMULus [IDXi*], [RWm*], rnd
93 88 1 CoMULus- [IDXi*], [RWm*]
93 90 1 CoMACus [IDXi*], [RWm*]
93 91 2 CoMACus [IDXi*], [RWm*], rnd
93 98 1 CoMACMus [IDXi*], [RWm*]
93 99 2 CoMACMus [IDXi*], [RWm*], rnd
93 A0 1 CoMACus- [IDXi*], [RWm*]
93 A8 1 CoMACMus- [IDXi*], [RWm*]
93 BO 1 CoMACRus [IDXi*], [RWm*]
93 B1 2 CoMACRus [IDXi*], [RWm*], rnd
93 B8 1 CoMACMRus [IDXi*], [RWm*]
93 B9 2 CoMACMRus [IDXi*], [RWm*], rnd
93 Co 1 CoMUL [IDXi*], [RWm*]
93 C1 2 CoMUL [IDXi*], [RWm*], rnd
93 Cc2 1 CoCMP [IDXi*], [RWm*]
93 C8 1 CoMUL- [IDXi*], [RWm*]
93 CA 1 CoABS [IDXi*], [RWm*]
93 DO 1 CoMAC [IDXi*], [RWm*]
93 D1 2 CoMAC [IDXi*], [RWm*], rnd
93 D8 1 CoMACM [IDXi*], [RWm*]
93 D9 2 CoMACM [IDXi*], [RWm*], rnd
93 EO 1 CoMAC- [IDXi*], [RWm*]
93 E8 1 CoMACM- [IDXi*], [RWm*]
93 FO 1 CoMACR [IDXi*], [RWm*]
93 F1 2 CoMACR [IDXi*], [RWm*], rnd
93 F8 1 CoMACMR [IDXi*], [RWm*]
93 F9 2 CoMACMR [IDXi*], [RWm*], rnd
A3 00 1 CoMULu RWn, RWm
A3 01 2 CoMULu RWn, RWm, rnd
A3 02 1 CoADD RWn, RWm
A3 08 1 CoMULu- RWn, RWm
A3 O0A 1 CoSuUB RWn, RWm
A3 10 1 CoMACu RWn, RWm
A3 11 2 CoMACu RWn, RWm, rnd
A3 12 1 CoSUBR RWn, RWm
A3 1A 1 CoABS
A3 20 1 CoMACu- RWn, RWm
A3 22 1 CoLOAD RWn, RWm
A3 2A 1 CoLOAD- RWn, RWm
A3 30 1 CoMACRu RWn, RWm
A3 31 2 CoMACRu RWn, RWm , rnd
A3 32 1 CoNEG

User Manual 7-201 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Instruction Set

Hex-code| Extended| Cycles | Mnemonic Operands
Hex-code

A3 3A 1 CoMAX RWn, RWm

A3 40 1 CoMULsu RWn, RWm

A3 41 2 CoMULsu RWn, RWm , rnd

A3 42 1 CoADD2 RWn, RWm

A3 48 1 CoMULsu- RWn, RWm

A3 4A 1 CoSuB2 RWn, RWm

A3 50 1 CoMACsu RWn, RWm

A3 51 2 CoMACsu RWn, RWm , rnd

A3 52 1 CoSUB2R RWn, RWm

A3 60 1 CoMACsu- RWn, RWm

A3 62 1 CoLOAD2 RWn, RWm

A3 6A 1 CoLOAD2- RWn, RWm

A3 70 1 CoMACRsu RWn, RWm

A3 71 2 CoMACRsu RWn, RWm , rnd

A3 72 1 CoNEG rnd

A3 7A 1 CoMIN RWn, RWm

A3 80 1 CoMULus RWn, RWm

A3 81 2 CoMULus RWn, RWm, rnd

A3 82 1 CoSHL #databs

A3 88 1 CoMULus- RWn, RWm

A3 8A 1 CoSHL RWn

A3 90 1 CoMACus RWn, RWm

A3 91 2 CoMACus RWn, RWm, rnd

A3 92 1 CoSHR #databs

A3 9A 1 CoSHR RWn

A3 AO 1 CoMACus- RWn, RWm

A3 A2 1 CoASHR #data5

A3 AA 1 CoASHR RWn

A3 BO 1 CoMACRus RWn, RWm

A3 B1 2 CoMACRus RWn, RWm, rnd

A3 B2 1 CoASHR #datab, rnd

A3 B2 1 CoRND

A3 BA 1 CoASHR RWn, rnd

A3 Co 1 CoMUL RWn, RWm

A3 C1 2 CoMUL RWn, RWm, rnd

A3 C2 1 CoCMP RWn, RWm

A3 C8 1 CoMUL- RWn, RWm

A3 CA 1 CoABS RWn, RWm

A3 DO 1 CoMAC RWn, RWm

A3 D1 2 CoMAC RWn, RWm, rnd

A3 EO 1 CoMAC- RWn, RWm

A3 FO 1 CoMACR RWn, RWm
User Manual 7-202 V1.7, 2001-01

.(.
(Infineon
technologies

User Manual

C166S V2

Instruction Set

Hex-code| Extended| Cycles | Mnemonic Operands
Hex-code
A3 F1 2 CoMACR RWn, RWm, rnd
B3 1 CoSTORE [RWn*], CoReg
C3 1 CoSTORE RWn, CoReg
D3 00 2 CoMOV [IDXi*], [RWm*]
User Manual 7-203 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Instruction Set

User Manual 7-204 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

8 Detailed Instruction Description

This section describes each instruction in detail. The instructions are listed
alphabetically, and the description contains the following elements.

* Instruction Name: Specifies the mnemonic opcode of the instruction in oversized
bold lettering for easy reference. The mnemonics have been chosen with regard to the
particular operation performed by the instruction.

e Syntax: Specifies the mnemonic opcode and the required formal operands of the
instruction as used in the following subsection 'Operation'. There are instructions with
either none, one, two or three operands, which must be separated from each other by
commas:

MNEMONIC {op1 {,0p2 {,0p3}}}

The syntax for the actual operands of an instruction depends on the selected addressing
mode. All of the available addressing modes are summarized at the end of each single
instruction description. In contrast to the syntax for the instructions described in the
following material, the assembler provides much more flexibility in writing C166S V2
CPU programs (e.g. by generic instructions and by automatically selecting appropriate
addressing modes whenever possible). Thus, it eases the use of the instruction set.

e Operation: This part presents a logical description of the operation performed by an
instruction as a symbolic formula or a high level language construct.

The following symbols are used to represent data movement, arithmetic, or logical
operators.

Diadic operations: (opX) operator (opY)
(opY) is MOVED into (opX)
+ (opX) is ADDED to (opY)
- (opY) is SUBTRACTED from (opX)
* (opX) is MULTIPLIED by (opY)
/ (opX) is DIVIDED by (opY)
\4 (opX) is logically ANDed with (opY)
/ (opX) is logically ORed with (opY)
Y (opX) is logically EXCLUSIVELY ORed with (opY)
o} (opX) is COMPARED against (opY)
mod (opX) is divided MODULO (opY)
Il (opX) is CONCATENATED (opY)
Monadic operations: operator (opX)

User Manual 8-205 V 1.7, 2001-01

.(.
(Infineon
technologies

S'/

User Manual
C166S V2

(opX)

Detailed Instruction Description

is logically COMPLEMENTED

Parentheses indicate a method of addressing the used operand as follows:

opX
(opX)
(opX[n])
((opX))

Specifies the immediate constant value of opX
Specifies the contents of opX
Specifies the contents of bit n of opX

Specifies the contents of the contents of opX
(ie. opX is used as pointer to the actual operand)

The following operands notation will also be used in the operational description:

User Manual

CP
CSP
IP
MD

MDL, MDH

ACC

MAH, MAL

MAE

PSW

SP
CPUCON1
C

Vv

SGTDIS

count

tmp
0,1,2,...

Context Pointer
Code Segment Pointer
Instruction Pointer

Multiply/Divide register
(32 bits wide, consists of MDH and MDL)

Multiply/Divide Low and High registers
(each 16 bit wide)

Accumulator
(40 bits wide, consists of MAE, MAH and MDL)

Accumulator Low and High registers
(each 16 bits wide)

Accumulator extension register (one byte wide)
Program Status Word

System Stack Pointer

CPU Configuration register

Carry condition flag in the PSW register

Overflow condition flag in the PSW register
Segmentation Disable bit in the SYSCON register

Temporary variable for an intermediate storage of
the number of shift or rotate cycles which remain
to complete the shift or rotate operation

Temporary variable for an intermediate result

Constant values due to the data format
of the specified operation

8-206 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Data Types: This part specifies the particular data type according to the instruction.
Basically, the following data types are possible:

BIT, BYTE, WORD, DOUBLEWORD, ACC = 40-bit signed value

Only CoXXX instructions and instructions which extend byte data to word data can
change the data type. Note that the data types mentioned in this subsection do not cover
accesses to indirect address pointers or to the system stack. These accesses are always
performed with word data. Moreover, no data type is specified for System Control
Instructions and for those branch instructions which do not access any explicitly
addressed data.

* Description: This part provides a brief description of the action that is executed by
the respective instruction.

e Condition Code: The Condition code indicates that the respective instruction is
executed if the specified condition exists, and is skipped if it does not. The table below
summarizes the sixteen possible condition codes that can be used within Call and
Branch instructions. The table shows the abbreviations, the test that is executed for a
specific condition, and a 4/5-bit number associated with condition code.

Condition Test Description Condition | Condition
Code Code Code
Mnemonic Number | Number
cc c d
cc_UC 1=1 Unconditional O OH

cc_Z Z=1 Zero 24 44
cc_NZ Z=0 Not zero 3H 6H

cc_V V=1 Overflow 4y 8H
cc_NV V=0 No overflow 54 Ay

cc_N N=1 Negative 6H Ch
cc_NN N=0 Not negative 7H Ex

cc_C C=1 Carry 8H 10
cc_NC C=0 No carry 94 124
cc_EQ Z=1 Equal 2K 44
cc_NE Z=0 Not equal 3H 6H
cc_ULT C=1 Unsigned less than 8H 10y
cc_ULE (ZvC) =1 Unsigned less than or equal | Fy 1EH
cc_UGE C=0 Unsigned greater than or equal | 9y 124
cc_UGT (ZvC)=0 Unsigned greater than Ex 1CH

User Manual 8-207 V 1.7, 2001-01

.(.
(Infineon
technologies

User Manual
C166S V2

Detailed Instruction Description

Condition Test Description Condition | Condition
Code Code Code
Mnemonic Number | Number
cc c d
cc_SLT (NeV) =1 Signed less than CH 18y
cc_SLE (Zv(Ne®V)) = 1 | Signed less than or equal By 164
cc_SGE (NeV) =0 Signed greater than or equal | Dy 1AH
cc_SGT (Zv(N®V)) = 0 | Signed greater than Ay 14y
cc_NET (ZvE)=0 Not equal AND not end of table | 1 02y
cc_nusr0" |usr0=0 usr0 is cleared 14
cc_nusr1!) usr1 =0 usr1 is cleared 3H
cc_usr0) | usr0 =1 usr0 is set 54
cc_usri) usr1 =1 usr1 is set 74

1) Only usable with the JMA and CALLA instructions.

» Condition Flags: This part reflects the state of the N, C, V, Z, and E flags in the PSW
register which is the state after execution of the corresponding instruction, except if
the PSW register itself was specified as the destination operand of that instruction

(see Note).

The resulting state of the flags is represented by symbols as follows:

%1

1] Il 1]
— o —

m N N < < O 0O =2 2
1l 1l
o == O = OO

I
—

m
Il
o

User Manual

MSB of the result is not set

Carry occurred during operation

No Carry occurred during operation

Arithmetic Overflow occurred during operation

No Arithmetic Overflow occurred during operation

Result equals zero

Result does not equal zero

The flag is set due to the following standard rules for the corresponding flag:
MSB of the result is set

Source operand represents the lowest negative number
(either 8000h for word data or 80h for byte data)

Source operand does not represent the lowest negative
number for the specified data type

8-208

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

'S’ The flag is set due to rules which deviate from the described standard.
For more details see instruction pages (below) or the ALU status flags
description.

- The flag is not affected by the operation.

0’ The flag is cleared by the operation.

'NOR’ The flag contains the logical NORing of the two specified bit operands.
’AND’ The flag contains the logical ANDing of the two specified bit operands.
'OR’ The flag contains the logical ORing of the two specified bit operands.
'’XOR’ The flag contains the logical XORing of the two specified bit operands.
‘B’ The flag contains the original value of the specified bit operand.

B’ The flag contains the complemented value of the specified bit operand.

Note: If the PSW register was specified as the destination operand of an instruction, the
condition flags can not be interpreted as just described, because the PSW register
is modified depending on the data format of the instruction as follows:

For word operations, the PSW register is overwritten with the word result. For byte
operations, the non-addressed byte is cleared and the addressed byte is
overwritten. For bit or bit-field operations on the PSW register, only the specified
bits are modified. Supposed that the condition flags were not selected as
destination bits, they stay unchanged. This means that they keep the state after
execution of the previous instruction.

In any case, if the PSW was the destination operand of an instruction, the PSW
flags do NOT represent the condition flags of this instruction as usual.

* Addressing Modes: This part specifies which combinations of different addressing
modes are available for the required operands. The selected addressing mode
combination is usually specified by the opcode of the corresponding instruction.
However, there are some arithmetic and logical instructions for which the addressing
mode combination is not specified by the (identical) opcodes but by particular bits
within the operand field.

The addressing mode entries are made up of three elements:
Mnemonic Shows accepted operands for the respective instruction.

Format This part specifies the format of the instructions as it is represented in the
assembler listing. Figure 8-1 shows the relation between the instruction format
representation of the assembler and the corresponding internal organization of such an
instruction format (N = nibble = 4 bits).

The following symbols are used to describe the instruction formats:
00y through FFy: Instruction Opcodes

User Manual 8-209 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

LA

rr
rrr
RR

WWWW:IW

Y4
H#
XX
@@
MM MM :
HH# ##
a

I

Detailed Instruction Description

: Constant Values

: Each of the 4 characters immediately following a colon represents a single bit
: 2-bit short GPR address (Rwi)

: Code segment number

: 2-bit immediate constant (#irang2)

: 3-bit immediate constant (#data3)

: 5-bit immediate constant (#data5)

: 4-bit condition code specification (cc)

: 5-bit condition code specification (xcc)

: 4-bit short GPR address (Rwn or Rbn)

: 4-bit short GPR address (Rwm or Rbm)

: 4-bit position of the source bit within the word specified by QQ

: 3-bit addressing mode specifier for CoXXX instructions

: 4-bit position of the destination bit within the word specified by ZZ
: 4-bit immediate constant (#data4)

: 7-bit trap number (#trap7)

: 8-bit word address of the source bit (bitoff)

: 8-bit relative target address word offset (rel)

: 3-bit repeat control for CoXXX instructions

: 8-bit word address reg

5-bit word address CoREG

: 4-bit addressing mode specifier for CoXXX instructions

: 8-bit word address of the destination bit (bitoff)

: 8-bit immediate constant (#data8)

: 8-bit immediate constant (represented by #data16, byte xx is not significant)

: 8-bit immediate constant (#mask8)

16-bit address (mem or caddr; low byte, high byte)

: 16-bit immediate constant (#data16; low byte, high byte)
: 1-bit branch assumption bit

: 1-bit short backward loop bit

User Manual 8-210 V 1.7, 2001-01

o
(Infineon User Manual
fechno|0690ies C166$ V2

Detailed Instruction Description

Number of Bytes All C166S V2 CPU instructions are either 2 or 4 bytes. According to
the instruction size, all instructions can be classified as either single word or double word
instructions.

Representationinthe N2N1 N4N3 N6N5 N8N7
Assembler Listing: — -/
High Byte 2nd word

? Lc;w Byte 2nd word
High Byte 1st word
Low Byte 1st word

Internal Organization: MSB < Bits in ascending order LSB

N8 |N7 |[N6 [N5 |N4 | N3 [N2 |Ni

Figure 8-1 Instruction Format Representation

The following pages contain a detailed description of each normal arithmetic, logic,
branch or system instruction in alphabetical order followed by a list of the dedicated DSP
instructions:

User Manual 8-211 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

8.1 Normal Instruction Set

ADD Integer Addition ADD
Group Arithmetic Instructions

Syntax ADD op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 — WORD

Operation
(op1) < (op1) + (op2)

Description
Performs a 2s complement binary addition of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\Y Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the word data
type. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
ADD Rw,, , #data3 08 n:O### 2
ADD Rw, , Rw, 00 nm 2
ADD Rw,, , [Rw;+] 08 n:11ii 2
ADD Rw,, , [Rw;] 08 n:10ii 2
ADD mem , reg 04 RR MM MM 4
ADD reg , #data16 06 RR ## ## 4
ADD reg, mem 02 RR MM MM 4

User Manual 8-212 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ADDB Integer Addition ADDB
Group Arithmetic Instructions

Syntax ADDB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) < (op1) + (op2)

Description

Performs a 2s complement binary addition of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags

Encoding

Mnemonic

ADDB
ADDB
ADDB
ADDB
ADDB
ADDB
ADDB

User Manual

N

N

Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Set if result equals zero. Cleared otherwise.

Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.

Set if a carry is generated from the most significant bit of the byte data
type. Cleared otherwise.

Set if the most significant bit of the result is set. Cleared otherwise.

Format Bytes
Rb, , #data3 09 n:O### 2
Rb,, , Rb, 01 nm 2
Rb,, , [Rw;+] 09 n:11ii 2
Rb,, , [Rwj] 09 n:10ii 2
mem , reg 05 RR MM MM 4
reg , #data8 07 RR ## xx 4
reg, mem 03 RR MM MM 4
8-213 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ADDC Integer Addition with Carry ADDC
Group Arithmetic Instructions

Syntax ADDC op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) « (op1) + (0p2) + (C)

Description

Performs a 2s complement binary addition of the source operand specified by op2, the
destination operand specified by op1 and the previously generated carry bit. The sum is
then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags
E y4 Vv C N
* S * * *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero and previous Z flag was set. Cleared otherwise.
Vv Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the word data
type. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
ADDC Rw,, , #data3 18 n:O### 2
ADDC Rw,, , Rw, 10 nm 2
ADDC Rw,, , [Rw;+] 18 n:11ii 2
ADDC Rw,, , [Rw;] 18 n:10ii 2
ADDC mem , reg 14 RR MM MM 4
ADDC reg , #data16 16 RR ## ## 4
ADDC reg, mem 12 RR MM MM 4

User Manual 8-214 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ADDCB Integer Addition with Carry ADDCB
Group Arithmetic Instructions

Syntax ADDCB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) « (op1) + (0p2) + (C)

Description

Performs a 2s complement binary addition of the source operand specified by op2, the
destination operand specified by op1 and the previously generated carry bit. The sum is
then stored in op1. This instruction can be used to perform multiple precision arithmetic.

CPU Flags
E y4 Vv C N
* S * * *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero and previous Z flag was set. Cleared otherwise.
Vv Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the byte data
type. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
ADDCB Rb,, , #data3 19 n:O### 2
ADDCB Rb, , Rby, 11 nm 2
ADDCB Rb,, , [Rw;+] 19 n:11ii 2
ADDCB Rb,, , [Rw;] 19 n:10ii 2
ADDCB mem , reg 15 RR MM MM 4
ADDCB reg , #data8 17 RR ## xx 4
ADDCB reg, mem 13 RR MM MM 4

User Manual 8-215 V 1.7, 2001-01

.(.
(Infineon
technologies

AND
Group

Syntax

Source Operand(s)

Destination Operand(s)

Operation

(op1) « (op1) A (op2)

Description

User Manual
C166S V2

Detailed Instruction Description

Logical AND AND

Logical Instructions

AND op1, op2

op1 — WORD

op1, op2 - WORD

Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags
E
Z
Vv
C
N
Encoding
Mnemonic
AND
AND
AND
AND
AND
AND
AND

User Manual

Vv C N

*

0 0

Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Set if result equals zero. Cleared otherwise.

Always cleared.
Always cleared.

Set if the most significant bit of the result is set. Cleared otherwise.

Rw,, , #data3
Rw,, , Rw,
Rw,, , [Rw;+]
I:{Wn J [RWi]
mem , reg
reg , #data16
reg, mem

Format Bytes
68 n:0###

60 nm

68 n:11ii

68 n:10ii

64 RR MM MM
66 RR ## ##
62 RR MM MM

A A BB DNDDNDDNDODN

8-216 V1.7, 2001-01

pa—
(Infineon User Manual
rechno|0690ies C166$ V2
Detailed Instruction Description
ANDB Logical AND ANDB
Group Logical Instructions
Syntax ANDB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE
Operation

(op1) « (op1) A (op2)
Description

Performs a bitwise logical AND of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * 0 0 *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
V4 Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
ANDB Rb,, , #data3 69 n:O### 2
ANDB Rb, , Rb, 61 nm 2
ANDB Rb,, , [Rw;+] 69 n:11ii 2
ANDB Rb,, , [Rw]] 69 n:10ii 2
ANDB mem , reg 65 RR MM MM 4
ANDB reg , #data8 67 RR ## xx 4
ANDB reg, mem 63 RR MM MM 4
User Manual 8-217 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ASHR Arithmetic Shift Right ASHR
Group Shift and Rotate Instructions

Syntax ASHR op1, op2

Source Operand(s) op1 — WORD

op2 — shift counter
Destination Operand(s) op1 — WORD

Operation
(count) (op2)
(V) «
(C) « 0
DO WHILE ((count) = 0)
(V) < (C) v (V)
(C) < (op1[0])
(op1[n]) « (op1[n+1]) [n=0...14]
(count) « (count) - 1
END WHILE

Description

Arithmetically shifts the destination word operand op1 right by the number of times as
specified by the source operand op2. To preserve the sign of the original operand op1,
the most significant bits of the result are filled with zeros if the original most significant
bit was a 0 or with ones if the original most significant bit was a 1. The Overflow flag is
used as a Rounding flag. The least significant bit is shifted into the Carry. Only shift
values between 0 and 15 are allowed. When using a GPR as the count control, only the
least significant 4 bits are used.

CPU Flags
E y4 v C N
0 * * * *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\Y Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.
Cleared in case of a shift count equal O.
C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-218 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
ASHR Rw,, , #data4 BC #n 2
ASHR Rw,, , Rw, AC nm 2

User Manual 8-219 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ATOMIC Begin ATOMIC Sequence ATOMIC
Group System Control Instructions

Syntax ATOMIC op1

Source Operand(s) op1 — 2-bit instruction counter

Destination Operand(s) none

Operation

(count) « (op1) [1 <opl1<4]

Disable interrupts and Class A traps

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

Enable interrupts and traps

Description

Causes standard and PEC interrupts and class A hardware traps to be disabled for a
specified number of instructions. The ATOMIC instruction becomes immediately active.
No NOPs are required for normal ATOMIC execution. Depending on the value of op1,
the period of validity of the ATOMIC sequence extends over the sequence of the next
one to four instructions being executed after the ATOMIC instruction. All instructions
requiring multiple cycles or hold states to be executed are regarded as one instruction
in this sense. Any instruction type can be used with the ATOMIC instruction.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
ATOMIC #irang2 D1 :00##-0 2

User Manual 8-220 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BAND Bit Logical AND BAND
Group Boolean Bit Manipulation Instructions

Syntax BAND op1, op2

Source Operand(s) opi, op2 — BIT

Destination Operand(s) op1 — BIT

Operation
(op1) < (op1) A (0p2)

Description
Performs a single bit logical AND of the source bit specified by op2 and the destination
bit specified by op1. The result is then stored in op1.

CPU Flags
E y4 \' C N
0 NOR OR AND XOR
E Always cleared.
Y4 Contains the logical NOR of the two specified bits.
\Y Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.
Encoding
Mnemonic Format Bytes
BAND bitaddrz , , bitaddrq 4 6A QQ ZZ gz 4

User Manual 8-221 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BCLR Bit Clear BCLR
Group Boolean Bit Manipulation Instructions

Syntax BCLR op1i

Source Operand(s) none

Destination Operand(s) op1 — BIT

Operation
(op1) « 0

Description
Clears the bit specified by op1. This instruction is primarily used for peripheral and
system control.

CPU Flags
E y4 Vv C N
0 B 0 0 B
E Always cleared.
V4 Contains the logical negation of the previous state of the specified bit.
\Y Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.
Encoding
Mnemonic Format Bytes
BCLR bitaddrq qE QQ 2

User Manual 8-222 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BCMP Bit to Bit Compare BCMP
Group Boolean Bit Manipulation Instructions

Syntax BCMP op1, op2

Source Operand(s) opi, op2 — BIT

Destination Operand(s) none

Operation
(op1) & (op2)

Description
Performs a single bit comparison of the source bit specified by op1 and the source bit
specified by op2. No result is written by this instruction. Only the flags are updated.

CPU Flags
E y4 Vv C N
0 NOR OR AND XOR
E Always cleared.
Y4 Contains the logical NOR of the two specified bits.
\Y Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.
Encoding
Mnemonic Format Bytes
BCMP bitaddrz , , bitaddrq 4 2AQQ ZZ gz 4

User Manual 8-223 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BFLDH Bit Field High Byte BFLDH
Group Boolean Bit Manipulation Instructions

Syntax BFLDH op1, op2, op3

Source Operand(s) op1 — WORD

op2, op3 —» BYTE
Destination Operand(s) op1 — WORD

Operation
(count) « 0
DO WHILE ((count) <8)
IF (op2[(count)] = 1)
(op1[(count) + 8]) « op3[(count)]
ENDIF
(count) « (count) + 1
END WHILE

Description

Replaces those bits in the high byte of the destination word operand op1 which are
selected by an '1’ in the mask specified by op2 with the bits at the corresponding
positions in "op3".

CPU Flags
E y4 \" C N
0 * 0 0 *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
BFLDH bitoffq , #mask8 , #data8 1A QQ ## @ @ 4

User Manual 8-224 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BFLDL Bit Field Low Byte BFLDL
Group Boolean Bit Manipulation Instructions

Syntax BFLDL op1, op2, op3

Source Operand(s) op1 — WORD

op2, op3 —» BYTE
Destination Operand(s) op1 — WORD

Operation
(count) « 0
DO WHILE ((count) <8)
IF op2[(count)] = 1
(op1[(count)]) « op3[(count)]
ENDIF
(count) « (count) + 1
END WHILE

Description

Replaces those bits in the low byte of the destination word operand op1 which are
selected by an "1’ in the mask specified by op2 with the bits at the corresponding
positions in "op3".

CPU Flags
E y4 \' C N
0 * 0 0 *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
Vv Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
BFLDL bitoffq , #mask8 , #data8 O0A QQ @ @ ## 4

User Manual 8-225 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BMOV Bit to Bit Move BMOV
Group Boolean Bit Manipulation Instructions

Syntax BMOV op1, op2

Source Operand(s) op2 — BIT

Destination Operand(s) op1 — BIT

Operation
(op1) < (op2)

Description
Moves a single bit from the source operand specified by op2 into the destination
operand specified by op1. The source bit is examined and the flags are updated
accordingly.

CPU Flags
E y4 v C N
0 B 0 0 B
E Always cleared.
Z Contains the logical negation of the source bit.
\' Always cleared.
C Always cleared.
N Contains the state of the source bit.
Encoding
Mnemonic Format Bytes
BMOV bitaddrz , , bitaddrq 4 4AQQ ZZ gz 4

User Manual 8-226 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BMOVN Bit to Bit Move and Negate BMOVN
Group Boolean Bit Manipulation Instructions

Syntax BMOVN op1, op2

Source Operand(s) op2 — BIT

Destination Operand(s) op1 — BIT

Operation
(op1) « —(op2)

Description

Moves the complement of a single bit from the source operand specified by op2 into the
destination operand specified by op1. The source bit is examined and the flags are
updated accordingly.

CPU Flags
E y4 v C N
0 B 0 0 B
E Always cleared.
Z Contains the logical negation of the source bit.
\' Always cleared.
C Always cleared.
N Contains the state of the source bit.
Encoding
Mnemonic Format Bytes
BMOVN bitaddrz , , bitaddrq 4 3AQQ ZZqz 4

User Manual 8-227 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BOR Bit Logical OR BOR
Group Boolean Bit Manipulation Instructions

Syntax BOR op1, op2

Source Operand(s) opi, op2 — BIT

Destination Operand(s) op1 — BIT

Operation
(op1) < (op1) v (op2)

Description
Performs a single bit logical OR of the source bit specified by op2 and the destination
bit specified by op1. The result is then stored in op1.

CPU Flags
E y4 \' C N
0 NOR OR AND XOR
E Always cleared.
Y4 Contains the logical NOR of the two specified bits.
\Y Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.
Encoding
Mnemonic Format Bytes
BOR bitaddrz , , bitaddrq 4 5AQQ ZZ gz 4

User Manual 8-228 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BSET Bit Set BSET
Group Boolean Bit Manipulation Instructions

Syntax BSET op1

Source Operand(s) none

Destination Operand(s) op1 — BIT

Operation
(op1) « 1

Description
Sets the bit specified by op1.

CPU Flags
E y4 v C N
0 B 0 0 B
E Always cleared.
Z Contains the logical negation of the previous state of the specified bit.
\' Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.
Encoding
Mnemonic Format Bytes
BSET bitaddrq gF QQ 2

User Manual 8-229 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

BXOR Bit Logical XOR BXOR
Group Boolean Bit Manipulation Instructions

Syntax BXOR op1, op2

Source Operand(s) opi, op2 — BIT

Destination Operand(s) op1 — BIT

Operation
(op1) < (op1) @ (op2)

Description
Performs a single bit logical EXCLUSIVE OR of the source bit specified by op2 and the
destination bit specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
0 NOR OR AND XOR
E Always cleared.
Y4 Contains the logical NOR of the two specified bits.
\Y Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.
Encoding
Mnemonic Format Bytes
BXOR bitaddrz , , bitaddrq 4 7AQQ ZZ gz 4

User Manual 8-230 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CALLA Call Subroutine Absolute CALLA
Group Call Instructions
Syntax CALLA op1i, op2

Alternative Syntax CALLA+ op1, op2
CALLA- op1, op2

Source Operand(s) op1 — extended condition code
op2 — 16-bit address offset

Destination Operand(s) none

Operation
IF (op1) THEN
(SP) « (SP) -2
((SP)) « (IP)
(IP) « op2
ELSE
next instruction
END IF

Description

If the condition specified by op1 is met, a branch to the absolute memory location
specified by the second operand op2 is taken. The value of the instruction pointer IP is
placed into the system stack. Because the IP always points to the instruction following
the branch instruction, the value stored in the system stack represents the return
address of the calling routine. A static prediction scheme is used: if the bit ’a’ of the
instruction long word is cleared then CALLA is assumed ’taken’ and if this bit is set to 1,
CALLA is assumed 'not taken’. CALLA+ and CALLA- instructions are converted into
CALLA assumed ’taken’ (prediction bit cleared) and 'not taken’ (prediction bit set)
respectively. For regular CALLA instructions, the assembler assumes them ’taken’.

CPU Flags
E Z Vv C N
E Not affected.
Z Not affected.
Vv Not affected.
C Not affected.

User Manual 8-231 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

N Not affected.

Encoding
Mnemonic Format Bytes
CALLA xcc , caddr CA d00a MM MM 4

User Manual 8-232 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CALLI Call Subroutine Indirect CALLI
Group Call Instructions

Syntax CALLI op1, op2

Source Operand(s) op1 — condition code

op2 — 16-bit address offset
Destination Operand(s) none

Operation
IF (op1) THEN
(SP) « (SP) -2
((SP)) « (IP)
(IP) « op2
ELSE
next instruction
END IF

Description

If the condition specified by op1 is met, a branch to the location specified indirectly by
the second operand op2 is taken. The value of the instruction pointer IP is placed onto
the system stack. Because the IP always points to the instruction following the branch
instruction, the value stored in the system stack represents the return address of the
calling routine. If the condition is not met, no action is taken and the next instruction is
executed normally.

CPU Flags
E y4 v C N

E Not affected.

Z Not affected.

\' Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
CALLI cc, [Rw,] AB cn 2

User Manual 8-233 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CALLR Call Subroutine Relative CALLR
Group Call Instructions

Syntax CALLR op1

Source Operand(s) op1 — 8-bit signed displacement

Destination Operand(s) none

Operation
(SP) « (SP) -2
((SP)) « (IP)
(IP) « (IP) + 2*sign_extend(op1)

Description

A branch is taken to the location specified by the instruction pointer IP plus the relative
displacement op1. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the instruction pointer
(IP) is placed into the system stack. Because the IP always points to the instruction
following the branch instruction, the value stored in the system stack represents the
return address of the calling routine. The value of the IP used in the target address
calculation is the address of the instruction following the CALLR instruction.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
CALLR rel BB rr 2

User Manual 8-234 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CALLS Call Inter-Segment Subroutine CALLS
Group Call Instructions

Syntax CALLS op1, op2

Source Operand(s) op1 — segment number

op2 — 16-bit address offset
Destination Operand(s) none

Operation
(SP) « (SP) -2
((SP)) « (CSP)
(SP) « (SP) -
((SP)) « (IP)
IF (CPUCON1.SGTDIS = 0) THEN
(CSP) « opt
END IF
(IP) « op2

Description

A branch is taken to the absolute location specified by op2 within the segment specified
by op1. The previous value of the CSP is placed into the system stack to ensure correct
return to the calling segment. The value of the instruction pointer (IP) is also placed into
the system stack. Because the IP always points to the instruction following the branch
instruction, the value stored on the system stack represents the return address to the
calling routine.

CPU Flags
E Z Vv C N

E Not affected.

Z Not affected.

Vv Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
CALLS seg , caddr DA SS MM MM 4

User Manual 8-235 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMP Integer Compare CMP
Group Boolean Bit Manipulation Instructions

Syntax CMP op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) none

Operation
(op1) & (op2)

Description

The source operand specified by op1 is compared to the source operand specified by
op2 by performing a 2s complement binary subtraction of op2 from op1. The flags are
set according to the rules of subtraction. The operands remain unchanged.

CPU Flags
E y4 Vv C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMP Rw,, , #data3 48 n:0### 2
CMP Rw, , Rw, 40 nm 2
CMP Rw,, , [Rw;+] 48 n:11ii 2
CMP Rw,, , [Rw;] 48 n:10ii 2
CMP reg , #data16 46 RR ## ## 4
CMP reg, mem 42 RR MM MM 4

User Manual 8-236 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMPB Integer Compare CMPB
Group Boolean Bit Manipulation Instructions

Syntax CMPB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) none

Operation
(op1) & (op2)

Description

The source operand specified by op1 is compared to the source operand specified by
op2 by performing a 2s complement binary subtraction of op2 from op1. The flags are
set according to the rules of subtraction. The operands remain unchanged.

CPU Flags
E y4 Vv C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMPB Rb,, , #data3 49 n:O### 2
CMPB Rb, , Rby, 41 nm 2
CMPB Rb,, , [Rw;+] 49 n:11ii 2
CMPB Rb,, , [Rwj] 49 n:10ii 2
CMPB reg , #data8 47 RR ## xx 4
CMPB reg , mem 43 RR MM MM 4

User Manual 8-237 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMPD1 Integer Compare and Decrement by 1 CMPD1
Group Compare and Loop Control Instructions

Syntax CMPD1 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) & (0p2)
(op1) « (op1) -1

Description

This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
decremented by one. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags
E y4 v C N
x x x S x
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMPD1 Rw,, , #data16 A6 Fn #i# ## 4
CMPD1 Rw, , #data4 A0 #n 2
CMPD1 Rw, , mem A2 Fn MM MM 4

User Manual 8-238 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMPD2 Integer Compare and Decrement by 2 CMPD2
Group Compare and Loop Control Instructions

Syntax CMPD2 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) & (0p2)
(op1) « (op1) -2

Description

This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
decremented by two. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags
E y4 v C N
x x x S x
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMPD2 Rw,, , #data16 B6 Fn ## ## 4
CMPD2 Rw, , #data4 BO #n 2
CMPD2 Rw, , mem B2 Fn MM MM 4

User Manual 8-239 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMPIA Integer Compare and Increment by 1 CMPIA
Group Compare and Loop Control Instructions

Syntax CMPI1 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) & (0p2)
(op1) « (op1) +1

Description

This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
incremented by one. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags
E y4 v C N
x x x S x
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMPI1 Rw,, , #data16 86 Fn ## ## 4
CMPIH Rw,, , #data4 80 #n 2
CMPIH Rw, , mem 82 Fn MM MM 4

User Manual 8-240 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CMPI2 Integer Compare and Increment by 2 CMPI2
Group Compare and Loop Control Instructions

Syntax CMPI2 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) < (op2)
(op1) « (op1) +2

Description

This instruction is used to enhance the performance and flexibility of loops. The source
operand specified by op1 is compared to the source operand specified by op2 by
performing a 2s complement binary subtraction of op2 from op1. Operand op1 may
specify ONLY GPR registers. Once the subtraction has completed, the operand op1 is
incremented by two. Using the set flags, a branch instruction can then be used in
conjunction with this instruction to form common high level language FOR loops of any
range.

CPU Flags
E y4 v C N
x x x S x
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CMPI2 Rw,, , #data16 96 Fn ## ## 4
CMPI2 Rw,, , #data4 90 #n 2
CMPI2 Rw, , mem 92 Fn MM MM 4

User Manual 8-241 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CPL Integer One’s Complement CPL
Group Arithmetic Instructions

Syntax CPL op1

Source Operand(s) op1 — WORD

Destination Operand(s) op1 - WORD

Operation
(op1) < —(op1)

Description
Performs a 1s complement of the source operand specified by op1. The result is stored
back into op1.

CPU Flags
E y4 Vv C N
* * O O *
E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CPL Rw,, 91 n0 2

User Manual 8-242 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CPLB Integer One’s Complement CPLB
Group Arithmetic Instructions

Syntax CPLB op1

Source Operand(s) opl —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) < —(op1)

Description
Performs a 1s complement of the source operand specified by op1. The result is stored
back into op1.

CPU Flags
E y4 Vv C N
* * O O *
E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CPLB Rb, B1n0 2

User Manual 8-243 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

DISWDT Disable Watchdog Timer DISWDT
Group System Control Instructions

Syntax DISWDT

Source Operand(s) none

Destination Operand(s) none

Operation
Disable the watchdog timer

Description

This instruction disables the Watchdog Timer. If the WDTCTL bit is cleared, the
DISWDT instruction can be executed at any time between the Reset and the first
execution of either EINIT or SRVWDT. After execution of either an EINIT or a
SRVWDT, the DISWDT instruction will have no effect. If the WDTCTL bit is set, the
DISWDT instruction can always be executed regardless of the execution of EINIT or
SRVWDT. To ensure that this instruction is not accidentally executed, it is implemented
as a protected instruction.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
DISWDT A5 5A A5 A5 4

User Manual 8-244 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

DIV 16-by-16 Signed Division DIV
Group Arithmetic Instructions
Syntax DIV op1
Source Operand(s) op1 — WORD
MDL — WORD

Destination Operand(s) MD — DOUBLEWORD

Operation
(MDL) « (MDL) / (op1)
(MDH) « (MDL) mod (op1)

Description

Performs a signed 16-bit by 16-bit division of the low order word stored in the MD
register by the source word operand op1. The signed quotient is then stored in the low
order word of the MD register (MDL) and the remainder is stored in the high order word
of the MD register (MDH).

CPU Flags
E y4 \" C N
0 x x 0 *

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

Vv Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type (only in case of 8000/FFFEy), or if the
divisor op1 was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding
Mnemonic Format Bytes
DIV Rw,, 4B nn 2

User Manual 8-245 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

DIVL 32-by-16 Signed Division DIVL
Group Arithmetic Instructions

Syntax DIVL op1

Source Operand(s) op1 — WORD

MD — DOUBLEWORD
Destination Operand(s) MD — DOUBLEWORD

Operation
(MDL) « (MD) / (op1)
(MDH) « (MD) mod (op1)

Description

Performs an extended signed 32-bit by 16-bit division of the two words stored in the MD
register by the source word operand op1. The signed quotient is then stored in the low
order word of the MD register (MDL) and the remainder is stored in the high order word
of the MD register (MDH).

CPU Flags
E y4 v C N
0 x x 0 x

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

Vv Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type, or if the divisor op1 was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding
Mnemonic Format Bytes
DIVL Rw,, 6B nn 2

User Manual 8-246 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

DIVLU 32-by-16 Unsigned Division DIVLU
Group Arithmetic Instructions

Syntax DIVLU op1

Source Operand(s) op1 — WORD

MD — DOUBLEWORD
Destination Operand(s) MD — DOUBLEWORD

Operation
(MDL) « (MD) / op1
(MDH) « (MD) mod (op1)

Description

Performs an extended unsigned 32-bit by 16-bit division of the two words stored in the
MD register by the source word operand op1. The unsigned quotient is then stored in
the low order word of the MD register (MDL) and the remainder is stored in the high
order word of the MD register (MDH).

CPU Flags
E y4 v C N
0 x x 0 x

E Always cleared.

Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.

Vv Set if an arithmetic overflow occurred, i.e. the quotient cannot be
represented in a word data type, or if the divisor op1 was zero. Cleared
otherwise.

C Always cleared.

N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.

Encoding
Mnemonic Format Bytes
DIVLU Rw,, 7B nn 2

User Manual 8-247 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

DIVU 16-by-16 Unsigned Division DIVU
Group Arithmetic Instructions
Syntax DIVU op1
Source Operand(s) op1 — WORD
MDL — WORD

Destination Operand(s) MD — DOUBLEWORD

Operation
(MDL) « (MDL) / (op1)
(MDH) « (MDL) mod (op1)

Description

Performs an unsigned 16-bit by 16-bit division of the low order word stored in the MD

register by the source word operand op1. The unsigned quotient is then stored in the

low order word of the MD register (MDL) and the remainder is stored in the high order
word of the MD register (MDH).

CPU Flags
E y4 v C N
O * * O *
E Always cleared.
Z Set if quotient, stored in the MDL register, equals zero. Cleared
otherwise. Undefined if the V flag is set.
\Y Set if the divisor op1 was zero.
C Always cleared.
N Set if the most significant bit of the quotient, stored in the MDL register, is
set. Cleared otherwise. Undefined if the V flag is set.
Encoding
Mnemonic Format Bytes
DIVU Rw,, 5B nn 2

User Manual 8-248 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EINIT End of Initialization EINIT
Group System Control Instructions

Syntax EINIT

Source Operand(s) none

Destination Operand(s) none

Operation
End of Initialization

Description

After a reset, the reset output pin RSTOUT is pulled low. It remains low until the EINIT
instruction has been executed at which time it goes high. This enables the software to
signal the external circuitry that it has successfully initialized the microcontroller. After
EINIT execution, registers can be locked until reset. The DISWDT instruction executed
after the first EINIT instruction has effect only if the WDTCTL bit was cleared before the
EINIT instruction. To ensure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
EINIT B5 4A B5 B5 4

User Manual 8-249 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ENWDT Enable Watchdog Timer ENWDT
Group System Control Instructions

Syntax ENWDT

Source Operand(s) none

Destination Operand(s) none

Operation
Enable Watchdog Timer

Description

If the WDTCTL bit of the CPUCONT1 register is cleared, this instruction has no effect. If
the WDTCTL bit is set, this instruction enables the Watchdog Timer. Specifically, it
allows the Watchdog Timer to be re-enabled after it has been previously disabled by a
DISWDT instruction. To ensure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

CPU Flags
E Z Vv C N

E Not affected.

4 Not affected.

Vv Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
ENWDT 85 7A 85 85 4

User Manual 8-250 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EXTP Begin EXTended Page Sequence EXTP
Group System Control Instructions

Syntax EXTP op1, op2

Source Operand(s) op1 — 10-bit page number

op2 — 2-bit instruction counter
Destination Operand(s) none

Operation

(count) « (op2) [1 < op2 < 4]

Disable interrupts and Class A traps

Data_Page « (op1)

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

Data_Page « (DPPXx)

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing
modes for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTP instruction becomes
active immediately such that no additional NOPs are required. For any long ('mem’) or
indirect ([...]) address in the EXTP instruction sequence, the 10-bit page number
(address bits A23-A14) is not determined by the contents of a DPP register, but by the
value of op1 itself. The 14-bit page offset (address bits A13-A0) is derived from the long
or indirect address as usual. The value of op2 defines the length of the affected
instruction sequence.

CPU Flags
E Z \' C N
E Not affected.
Z Not affected.
\Y Not affected.
C Not affected.
N Not affected.

User Manual 8-251 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
EXTP #pag , #irang2 D7 :01##-0 pp 0:00pp 4
EXTP Rw,, , #irang2 DC :01##-m 2

User Manual 8-252 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EXTPR Begin EXTended Page and Register Sequence EXTPR

Group System Control Instructions
Syntax EXTPR op1, op2
Source Operand(s) op1 — 10-bit page number

op2 — 2-bit instruction counter
Destination Operand(s) none

Operation

(count) « (op2) [1 < op2 < 4]

Disable interrupts and Class A traps

Data_Page « (op1)

SFR_range « Extended

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

Data_Page « (DPPx)

SFR_range « Standard

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing
modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’
addressing modes being made to the Extended SFR space for a specified number of
instructions. During their execution, both standard and PEC interrupts and class A
hardware traps are locked. For any long (‘'mem’) or indirect ([...]) address in the EXTP
instruction sequence, the 10-bit page number (address bits A23-A14) is not determined
by the contents of a DPP register, but by the value of op1 itself. The 14-bit page offset
(address bits A13-A0) is derived from the long or indirect address as usual. The value
of op2 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.
Z Not affected.
\Y Not affected.

User Manual 8-253 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

C Not affected.
N Not affected.

Encoding

Mnemonic Format Bytes
EXTPR #pag , #irang2 D7 :11##-0 pp 0:00pp 4
EXTPR Rw,, , #irang2 DC :11##-m 2

User Manual 8-254 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EXTR Begin EXTended Register Sequence EXTR
Group System Control Instructions

Syntax EXTR op1

Source Operand(s) op1 — 2-bit instruction counter

Destination Operand(s) none

Operation

(count) « (op1) [1 < op1<4]

Disable interrupts and Class A traps

SFR_range « Extended

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

SFR_range « Standard

Enable interrupts and traps

Description

Causes all SFR or SFR bit accesses via the 'reg’, ’bitoff’ or ‘bitaddr’ addressing modes
being made to the Extended SFR space for a specified number of instructions. During
their execution, both standard and PEC interrupts and class A hardware traps are
locked. The value of op1 defines the length of the affected instruction sequence.

CPU Flags
E y4 v C N

E Not affected.

Z Not affected.

\' Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
EXTR #irang2 D1 :10##-0 2

User Manual 8-255 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EXTS Begin EXTended Segment Sequence EXTS
Group System Control Instructions

Syntax EXTS op1, op2

Source Operand(s) op1 — segment number

op2 — 2-bit instruction counter
Destination Operand(s) none

Operation

(count) « (op2) [1 <op2 < 4]

Disable interrupts and Class A traps

Data_Segment « (op1)

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

Data_Page « (DPPXx)

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing
modes for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTS instruction becomes
immediately active such that no additional NOPs are required. For any long ('mem’) or
indirect ([...]) address in an EXTS instruction sequence, the value of op1 determines the
8-bit segment (address bits A23-A16) valid for the corresponding data access. The long
or indirect address itself represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the affected instruction sequence.

CPU Flags

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Z2 O0O<< NmMm

User Manual 8-256 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
EXTS #seg , #irang2 D7 :00##-0 ss 00 4
EXTS Rw,, , #irang2 DC :00##-m 2

User Manual 8-257 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

EXTSR Begin EXTended Segment and Register Sequence EXTSR

Group System Control Instructions
Syntax EXTSR op1, op2
Source Operand(s) op1 — segment number

op2 — 2-bit instruction counter
Destination Operand(s) none

Operation

(count) « (op2) [1 < op2 < 4]

Disable interrupts and Class A traps

Data_Segment « (op1)

SFR_range « Extended

DO WHILE ((count) # 0 AND Class_B_Trap_Condition # TRUE)
Next Instruction
(count) « (count) - 1

END WHILE

(count) « 0

Data_Page « (DPPx)

SFR_range « Standard

Enable interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing
modes and causes all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’
addressing modes being made to the Extended SFR space for a specified number of
instructions. During their execution, both standard and PEC interrupts and class A
hardware traps are locked. The EXTSR instruction becomes immediately active such
that no additional NOPs are required. For any long ‘'mem’) or indirect ([...]) address in
an EXTSR instruction sequence, the value of op1 determines the 8-bit segment
(address bits A23-A16) valid for the corresponding data access. The long or indirect
address itself represents the 16-bit segment offset (address bits A15-A0). The value of
op2 defines the length of the affected instruction sequence.

CPU Flags

E Not affected.
Z Not affected.

User Manual 8-258 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

V Not affected.
C Not affected.
N Not affected.

Encoding

Mnemonic Format Bytes
EXTSR #seg , #irang2 D7 :10##-0 ss 00 4
EXTSR Rw,, , #irang2 DC :10##-m 2

User Manual 8-259 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

IDLE Enter Idle Mode IDLE
Group System Control Instructions

Syntax IDLE

Source Operand(s) none

Destination Operand(s) none

Operation
Enter Idle Mode

Description

This instruction causes the part to enter the idle mode. In this mode, the CPU is
powered down while the peripherals remain running. It remains powered down until a
peripheral interrupt or external interrupt occurs. To ensure that this instruction is not
accidentally executed, it is implemented as a protected instruction.

CPU Flags
E Z \) C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
IDLE 87 78 87 87 4

User Manual 8-260 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JB Relative Jump if Bit Set JB
Group Jump Instructions

Syntax JB op1, op2

Source Operand(s) opl — BIT

op2 — 8-bit signed displacement
Destination Operand(s) none

Operation
IF ((op1) = 1) THEN
(IP) « (IP) + 2*sign_extend(op2)
ELSE
Next Instruction
END IF

Description

If the bit specified by op1 is set, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The displacement is a 2s
complement number which is sign extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JB instruction. If the specified bit is cleared, program execution
continues normally with the instruction following the JB instruction.

CPU Flags
E Z Vv C N

E Not affected.

Z Not affected.

\Y Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
JB bitader_q , rel 8A QQrrqg0 4

User Manual 8-261 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JBC Relative Jump if Bit Set and Clear Bit JBC
Group Jump Instructions

Syntax JBC op1, op2

Source Operand(s) opl — BIT

op2 — 8-bit signed displacement
Destination Operand(s) none

Operation
IF ((op1) = 1) THEN
(op1) <0
(IP) « (IP) + 2*sign_extend(op2)
ELSE
Next Instruction
END IF

Description

If the bit specified by op1 is set, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is
cleared, allowing implementation of semaphore operations. The displacement is a 2s
complement number which is sign extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JBC instruction. If the specified bit was clear, program
execution continues normally with the instruction following the JBC instruction.

Note: Flags are updated by this instruction even if the branch is not executed. An explicit
write operation to the PSW register supersedes the condition flag values which are
implicitly generated by the CPU.

CPU Flags
E y4 v C N
0 B 0 0 B
E Always cleared.
Z Contains the logical negation of the previous state of the specified bit.
\' Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

User Manual 8-262 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding
Mnemonic Format Bytes
JBC bitaddrg q , rel AAQQrrq0 4

User Manual 8-263 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JMPA Absolute Conditional Jump JMPA
Group Jump Instructions
Syntax JMPA op1, op2

Alternative Syntax JMPA+ op1, op2
JMPA- op1, op2

Source Operand(s) op1 — extended condition code
op2 — 16-bit address offset

Destination Operand(s) none

Operation
IF ((op1) = 1) THEN
(IP) « op2
ELSE
Next Instruction
END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by
op2 is taken. If the condition is not met, no action is taken, and the instruction following
the JMPA instruction is executed normally. A static prediction scheme is used: if the
prediction bit ’a’ of the instruction long word is cleared then JMPA is assumed 'taken’
and if this bit is set to 1 JMPA is assumed 'not taken’. JMPA+ and JMPA- instructions
are converted into JMPA assumed ’taken’ (bit ’a’ cleared) and ’'not taken’ (bit ’a’ set)
respectively. For regular JMPA instructions, the assembler applies the following rule:
cc_z is predicted 'not taken’ meanwhile all other conditions are predicted 'taken’. A
prefetch hint bit is also used. This bit is the instruction long word bit I’ and is required by
the fetch unit to deal efficiently with short backward loops. It must be set only if

(0 < IP_jmpa - IP_target < 32), cleared otherwise. IP_jmpa is the address of the JMPA
instruction and IP_target is the target address of JMPA.

CPU Flags

E Not affected.
Z Not affected.
\Y Not affected.

User Manual 8-264 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

C Not affected.
N Not affected.

Encoding
Mnemonic Format Bytes
JMPA xcc , caddr EA dOla MM MM 4

User Manual 8-265 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JMPI Indirect Conditional Jump JMPI
Group Jump Instructions

Syntax JMPI op1, op2

Source Operand(s) op1 — condition code

op2 — 16-bit address offset
Destination Operand(s) none

Operation
IF ((op1) = 1) THEN
(IP) < (op2)
ELSE
Next Instruction
END IF

Description

If the condition specified by op1 is met, a branch to the absolute address specified by
op2 is taken. If the condition is not met, no action is taken, and program execution
continues normally with the instruction following the JMPI instruction.

CPU Flags
E y4 \' C N

E Not affected.

Z Not affected.

\Y Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
JMPI cc, [Rw,] 9Ccn 2

User Manual 8-266 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JMPR Relative Conditional Jump JMPR
Group Jump Instructions

Syntax JMPR op1, op2

Source Operand(s) op1 — condition code

op2 — 8-bit signed displacement
Destination Operand(s) none

Operation
IF ((op1) = 1) THEN
(IP) « (IP) + 2*sign_extend(op2)
ELSE
Next Instruction
END IF

Description

If the extended condition specified by op1 is met, program execution continues at the
location of the instruction pointer, IP, plus the specified displacement, op2. The
displacement is a 2s complement number which is sign-extended and counts the
relative distance in words. The value of the IP used in the target address calculation is
the address of the instruction following the JMPR instruction. If the specified condition is
not met, program execution continues normally with the instruction following the JMPR
instruction.

CPU Flags
E Z Vv C N

E Not affected.

Z Not affected.

Vv Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
JMPR cc, rel cDrr 2

User Manual 8-267 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JMPS Absolute Inter-Segment Jump JMPS
Group Jump Instructions

Syntax JMPS op1i, op2

Source Operand(s) op1 — segment number

op2 — 16-bit address offset
Destination Operand(s) none

Operation
IF (CPUCON1.SGTDIS = 0) THEN
(CSP) « opt
END IF
(IP) « op2

Description
Branches unconditionally to the absolute address specified by op2 within the segment
specified by op1.

CPU Flags
E y4 v C N

E Not affected.

Z Not affected.

Vv Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
JMPS seg, caddr FA SS MM MM 4

User Manual 8-268 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JNB Relative Jump if Bit Clear JNB
Group Jump Instructions

Syntax JNB op1i, op2

Source Operand(s) opl — BIT

op2 — 8-bit signed displacement
Destination Operand(s) none

Operation
IF ((op1) = 0) THEN
(IP) « (IP) + 2*sign_extend(op2)
ELSE
Next Instruction
END IF

Description

If the bit specified by op1 is clear, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The displacement is a 2s
complement number which is sign-extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JNB instruction. If the specified bit is set, program execution
continues normally with the instruction following the JNB instruction.

CPU Flags
E Z Vv C N

E Not affected.

Z Not affected.

\Y Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
JNB bitader_q , rel 9A QQrrq0 4

User Manual 8-269 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

JNBS Relative Jump if Bit Clear and Set Bit JNBS
Group Jump Instructions

Syntax JNBS op1, op2

Source Operand(s) opl — BIT

op2 — 8-bit signed displacement
Destination Operand(s) none

Operation
IF ((op1) = 0) THEN
(op1) « 1
(IP) « (IP) + 2*sign_extend(op2)
ELSE
Next Instruction
END IF

Description

If the bit specified by op1 is clear, program execution continues at the location of the
instruction pointer IP, plus the specified displacement op2. The bit specified by op1 is
set, allowing implementation of semaphore operations. The displacement is a 2s
complement number which is sign-extended and counts the relative distance in words.
The value of the IP used in the target address calculation is the address of the
instruction following the JNBS instruction. If the specified bit was set, program
execution continues normally with the instruction following the JNBS instruction.

Note: Flags are updated by this instruction even if the branch is not executed. An explicit
write operation to the PSW register supersedes the condition flag values which are
implicitly generated by the CPU.

CPU Flags
E y4 v C N
0 B 0 0 B
E Always cleared.
Z Contains the logical negation of the previous state of the specified bit.
\' Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

User Manual 8-270 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding
Mnemonic Format Bytes
JNBS bitaddrq , rel BAQQrrq0 4

User Manual 8-271 V 1.7, 2001-01

.(.
(Infineon
technologies

MOV
Group

Syntax

Source Operand(s)

Destination Operand(s)

Operation

User Manual

C166S V2

Detailed Instruction Description

Move Data

Data Movement Instructions

MOV op1, op2

(op1) « (op2)

Description

op2 — WORD

op1 — WORD

MOV

Moves the contents of the source operand specified by op2 to the location specified by
the destination operand op1. The contents of the moved data are examined, and the
flags are updated accordingly.

CPU Flags

2 0O<

Encoding

Mnemonic
MOV
MOV
MOV
MOV
MOV
MOV
MOV

User Manual

*

Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Set if the value of the source operand op2 equals zero. Cleared

otherwise.
Not affected.
Not affected.

Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Rw,, , #data4

Rw, , Rwq,

Rw,, , [Rw+#data16]
Rw, , [Rwp+]

Rw,, , [Rw]

[-Rw,] , Rwy,
[Rw,,+#data16] , Rw,

Format

EO #n

FO nm

D4 nm ## ##
98 nm

A8 nm

88 nm

C4 nm ## ##

8-272

V1.7, 2001-01

.(.
Infineon
technologies

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

User Manual

User Manual
C166S V2

[Rw,,], Rw,,
[Rwp+] , [Rwpy]
[Rwy], [Rwp+]
[Rwp] , [RWp,]
[Rw,] , mem
mem , [Rw,]
mem , reg

reg , #data16
reg, mem

Detailed Instruction Description

B8 nm

D8 nm

E8 nm

C8 nm

84 On MM MM
94 On MM MM
F6 RR MM MM
E6 RR ## ##
F2 RR MM MM

8-273

B S N~ - \© I O B \C Y \ O)

V1.7, 2001-01

.(.
(Infineon
technologies

MOVB
Group

Syntax

Source Operand(s)

Destination Operand(s)

Operation

User Manual

C166S V2

Detailed Instruction Description

Move Data

Data Movement Instructions

MOVB op1, op2

(op1) « (op2)

Description

op2 — BYTE

op1 — BYTE

MOVB

Moves the contents of the source operand specified by op2 to the location specified by
the destination operand op1. The contents of the moved data are examined, and the
flags are updated accordingly.

CPU Flags

2 0O<

Encoding

Mnemonic
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB

User Manual

*

Set if the value of op2 represents the lowest possible negative number.

Cleared otherwise. Used to signal the end of a table.

Set if the value of the source operand op2 equals zero. Cleared

otherwise.
Not affected.
Not affected.

Set if the most significant bit of the source operand op2 is set. Cleared

otherwise.

Rb,, , #data4

Rb, , Rby,

Rb, , [Rw,, + #data16]
Rb,, , [Rwp+]

Rby, , [Rwp]

[-Rwp,] , Rb,

[Rw,, + #data16] , Rb,,

Format

E1 #n

F1 nm

F4 nm ## ##
99 nm

A9 nm

89 nm

E4 nm ## ##

8-274

V1.7, 2001-01

.(.
Infineon
technologies

MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB

User Manual

User Manual
C166S V2

[Rwq,], Rb,
[Rwp+], [Rwp]
[Rwy], [Rwp+]
[Rwn] , [RWp,]
[Rw,] , mem
mem , [Rw,]
mem , reg

reg , #data8
reg, mem

Detailed Instruction Description

B9 nm

D9 nm

E9 nm

C9 nm

A4 On MM MM
B4 On MM MM
F7 RR MM MM
E7 RR ## xx
F3 RR MM MM

8-275

N \C T\ I \O I \b]

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

MOVBS Move Byte Sign Extend MOVBS
Group Data Movement Instructions

Syntax MOVBS op1, op2

Source Operand(s) op2 — BYTE

Destination Operand(s) op1 - WORD

Operation
(low byte op1) « (op2)
IF ((op2[7]) = 1) THEN
(high byte op1) « FFH
ELSE
(high byte op1) « 00H
END IF

Description

Moves and sign-extends the contents of the source byte operand specified by op2 to
the word location specified by the destination operand op1. The contents of the moved
data are examined, and the flags are updated accordingly.

CPU Flags
E y4 Vv C N
0 * _ _ *
E Always cleared.
Z Set if the value of the source byte operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared
otherwise.

Encoding
Mnemonic Format Bytes
MOVBS Rw,, , Rb, DO mn 2
MOVBS mem , reg D5 RR MM MM 4
MOVBS reg , mem D2 RR MM MM 4

User Manual 8-276 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

MOVBZ Move Byte Zero Extend MOVBZ
Group Data Movement Instructions

Syntax MOVBZ op1, op2

Source Operand(s) op2 — BYTE

Destination Operand(s) op1 - WORD

Operation
(low byte op1) « (op2)
(high byte op1) « 00H

Description

Moves and zero-extends the contents of the source byte operand specified by op2 to
the word location specified by the destination operand op1. The contents of the moved
data are examined, and the flags are updated accordingly.

CPU Flags
E y4 Vv C N
0 * - - 0
E Always cleared.
Z Set if the value of the source byte operand op2 equals zero. Cleared
otherwise.

V Not affected.
C Not affected.

N Always cleared.
Encoding
Mnemonic Format Bytes
MOVBZ Rw, , Rb, COmn 2
MOVBZ mem , reg C5 RR MM MM 4
MOVBZ reg , mem C2 RR MM MM 4

User Manual 8-277 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

MUL Signed Multiplication MUL
Group Arithmetic Instructions

Syntax MUL op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) MD — DOUBLEWORD

Operation
(MD) « (op1) * (0p2)

Description

Performs a 16-bit by 16-bit signed multiplication using the two words specified by
operands op1 and op2 respectively. The signed 32-bit result is placed in the MD
register.

CPU Flags
E y4 Vv C N
O * * O *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
Vv This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
MUL Rw,, , Rw, 0B nm 2

User Manual 8-278 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

MULU Unsigned Multiplication MULU
Group Arithmetic Instructions

Syntax MULU op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) MD — DOUBLEWORD

Operation
(MD) « (op1) * (0p2)

Description

Performs a 16-bit by 16-bit unsigned multiplication using the two words specified by
operands op1 and op2 respectively. The unsigned 32-bit result is placed in the MD
register.

CPU Flags
E y4 Vv C N
O * * O *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
Vv This bit is set if the result cannot be represented in a word data type.
Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
MULU Rw,, , Rw, 1B nm 2

User Manual 8-279 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

NEG Integer Two’s Complement NEG
Group Arithmetic Instructions

Syntax NEG op1

Source Operand(s) op1 — WORD

Destination Operand(s) op1 - WORD

Operation
(op1) <~ 0 - (op1)

Description
Performs a binary 2s complement of the source operand specified by op1. The result is
then stored in op1.

CPU Flags
E y4 Vv C N
E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\Y Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
NEG Rwp, 81 n0 2

User Manual 8-280 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

NEGB Integer Two’s Complement NEGB
Group Arithmetic Instructions

Syntax NEGB op1

Source Operand(s) opl —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) <~ 0 - (op1)

Description
Performs a binary 2s complement of the source operand specified by op1. The result is
then stored in op1.

CPU Flags
E y4 Vv C N
E Set if the value of op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\Y Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the byte data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
NEGB Rb,, A1 n0 2

User Manual 8-281 V 1.7, 2001-01

o—

((Infineon e 1668 V2
Detailed Instruction Description

NOP No Operation NOP

Group Null operation

Syntax NOP

Source Operand(s) none

Destination Operand(s) none

Operation
No Operation

Description

This instruction causes a null operation to be performed. A null operation causes no

change in the status of the flags.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
NOP CC 00 2
User Manual 8-282 V 1.7, 2001-01

.(.
(Infineon
technologies

OR
Group

Syntax

Source Operand(s)

Destination Operand(s)

Operation

(op1) « (op1) v (0p2)

Description

User Manual
C166S V2

Detailed Instruction Description

Logical OR OR

Logical Instructions

OR op1, op2

op1 — WORD

op1, op2 - WORD

Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags
E
Z
\Y
C
N
Encoding
Mnemonic
OR
OR
OR
OR
OR
OR
OR
User Manual

Vv C N

*

0 0

Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Set if result equals zero. Cleared otherwise.

Always cleared.
Always cleared.

Set if the most significant bit of the result is set. Cleared otherwise.

Rw,, , #data3
Rw,, , Rw,
Rw,, , [Rw;+]
I:{Wn J [RWi]
mem , reg
reg , #data16
reg, mem

Format Bytes
78 n:0###

70 nm

78 n:11ii

78 n:10ii

74 RR MM MM
76 RR ## ##
72 RR MM MM

A A BB DNDDNDDNDODN

8-283 V1.7, 2001-01

pa—
Infineon User Manual
Qges/ C1 663 V2
Detailed Instruction Description
ORB Logical OR ORB
Group Logical Instructions
Syntax ORB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE
Operation

(op1) « (op1) v (op2)
Description

Performs a bitwise logical OR of the source operand specified by op2 and the
destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * 0 0 *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
V4 Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
ORB Rb,, , #data3 79 n:0### 2
ORB Rb, , Rby, 71 nm 2
ORB Rb,, , [Rw;+] 79 n:11ii 2
ORB Rb,, , [Rw]] 79 n:10ii 2
ORB mem , reg 75 RR MM MM 4
ORB reg , #data8 77 RR ## xx 4
ORB reg , mem 73 RR MM MM 4
User Manual 8-284 V1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

PCALL Push Word and Call Subroutine Absolute PCALL
Group Call Instructions

Syntax PCALL op1, op2

Source Operand(s) op1 — WORD

op2 — 16-bit address offset
Destination Operand(s) none

Operation
(tmp) « (op1)

(SP) « (SP) -2

((SP)) « (tmp)

(SP) « (SP) -2

((SP)) « (IP)

(IP) « op2

Description

Pushes the word specified by operand op1 and the value of the instruction pointer, IP,
onto the system stack, and branches to the absolute memory location specified by the
second operand op2. Because IP always points to the instruction following the branch
instruction, the value stored on the system stack represents the return address of the
calling routine.

CPU Flags
E y4 v C N

E Set if the value of the pushed operand op1 represents the lowest
possible negative number. Cleared otherwise. Used to signal the end of a
table.

Z Set if the value of the pushed operand op1 equals zero. Cleared
otherwise.

Vv Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand op1 is set. Cleared

otherwise.

User Manual 8-285 V 1.7, 2001-01

o
Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding
Mnemonic Format Bytes
PCALL reg , caddr E2 RR MM MM 4

User Manual 8-286 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

POP Pop Word from System Stack POP
Group System Stack Instructions

Syntax POP op1

Source Operand(s) none

Destination Operand(s) op1 - WORD

Operation
(tmp) < ((SP))
(SP) « (SP) + 2
(op1) « (tmp)

Description
Pops one word from the system stack specified by the Stack Pointer into the operand
specified by op1. The Stack Pointer is then incremented by two.

CPU Flags
E y4 v C N
E Set if the value of the popped word represents the lowest possible
negative number. Cleared otherwise. Used to signal the end of a table.
Z Set if the value of the popped word equals zero. Cleared otherwise.
\Y Not affected.
C Not affected.
N Set if the most significant bit of the popped word is set. Cleared
otherwise.
Encoding
Mnemonic Format Bytes
POP reg FC RR 2

User Manual 8-287 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

PRIOR Prioritize Register PRIOR
Group Prioritize Instruction

Syntax PRIOR op1, op2

Source Operand(s) op2 - WORD

Destination Operand(s) op1 - WORD

Operation

(tmp) « (op2)

(count) « 0

DO WHILE (((tmp[15]) # 1) AND ((op2) #0)))
(tmp[n]) « (tmp[n-1]) [n=15...1]
(count) « (count) + 1

END WHILE

(op1) « (count)

Description

This instruction stores a count value in the word operand specified by op1. This count
value indicates the number of single bit shifts required to normalize the word operand
op2 so that its most significant bit is equal to one. If the source operand op2 equals
zero, a zero is written to operand op1 and the zero flag is set. Otherwise, the zero flag is
cleared.

CPU Flags
E y4 Vv C N
0 * 0 0 0
E Always cleared.
Z Set if the value of the source operand op2 equals zero. Cleared
otherwise.
\Y Always cleared.
C Always cleared.
N Always cleared.
Encoding
Mnemonic Format Bytes
PRIOR Rw,, , Rw, 2B nm 2

User Manual 8-288 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

PUSH Push Word on System Stack PUSH
Group System Stack Instructions

Syntax PUSH op1

Source Operand(s) op1 — WORD

Destination Operand(s) none

Operation
(tmp) < (op1)
(SP) « (SP) - 2
((SP)) « (tmp)

Description
Moves the word specified by operand op1 to the location in the system stack specified
by the Stack Pointer, after the Stack Pointer has been decremented by two.

CPU Flags
E y4 Vv C N
E Set if the value of the pushed operand op1 represents the lowest
possible negative number. Cleared otherwise. Used to signal the end of a
table.
Z Set if the value of the pushed operand op1 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.
N Set if the most significant bit of the pushed operand op1 is set. Cleared
otherwise.
Encoding
Mnemonic Format Bytes
PUSH reg EC RR 2

User Manual 8-289 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

PWRDN Enter Power Down Mode PWRDN
Group System Control Instructions

Syntax PWRDN

Source Operand(s) none

Destination Operand(s) none

Operation
Enter Power Down Mode

Description

This instruction causes the device to enter the power down mode. In this mode, all
peripherals and the CPU are powered down until the device is externally reset. To
ensure that this instruction is not accidentally executed, it is implemented as a
protected instruction. To further control the action of this instruction, the PWRDN
instruction is only enabled when the non-maskable interrupt pin (NMI) is in the low
state. Otherwise, this instruction has no effect.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

\' Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
PWRDN 97 68 97 97 4

User Manual 8-290 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

RET Return from Subroutine RET
Group Return Instructions

Syntax RET

Source Operand(s) none

Destination Operand(s) none

Operation
(IP) « ((SP))
(SP) « (SP) + 2

Description
Returns from a subroutine. The IP is popped from the system stack.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
RET CB 00 2

User Manual 8-291 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

RETI Return from Interrupt Subroutine RETI
Group Return Instructions

Syntax RETI

Source Operand(s) none

Destination Operand(s) none

Operation

(IP) « ((SP))

(SP) « (SP) + 2

IF (CPUCON1.SGTDIS = 0) THEN
(CSP) « ((SP))
(SP) « (SP) + 2

END IF

(PSW) « ((SP))

(SP) « (SP) + 2

Description

Returns from an interrupt routine. The IP, CSP, and PSW are popped off the system
stack. The CSP is only popped if segmentation is enabled. This is indicated by the
SGTDIS bit in the CPUCONT1 register.

CPU Flags
E y4 Vv C N

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

Vv Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.
Encoding
Mnemonic Format Bytes
RETI FB 88 2

User Manual 8-292 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

RETP Return from Subroutine and Pop Word RETP
Group Return Instructions

Syntax RETP op1

Source Operand(s) none

Destination Operand(s) op1 - WORD

Operation

(IP) < ((SP))
(SP) « (SP) + 2
(tmp) « ((SP))
(SP) « (SP) + 2
(op1) « (tmp)

Description
Returns from a subroutine. First the IP is popped from the system stack and then the
next word is popped from the system stack into the operand specified by op1.

CPU Flags
E y4 v C N
E Set if the value of the popped word represents the lowest possible
negative number. Cleared otherwise. Used to signal the end of a table.
V4 Set if the value of the popped word equals zero. Cleared otherwise.
Vv Not affected.
C Not affected.
N Set if the most significant bit of the popped word is set. Cleared
otherwise.
Encoding
Mnemonic Format Bytes
RETP reg EB RR 2

User Manual 8-293 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

RETS Return from Inter-Segment Subroutine RETS
Group Return Instructions

Syntax RETS

Source Operand(s) none

Destination Operand(s) none

Operation
(IP) « ((SP))
(SP) « (SP) + 2
IF (CPUCON1.SGTDIS = 0) THEN
(CSP) « ((SP))
END IF
(SP) « (SP) + 2

Description
Returns from an inter-segment subroutine. The IP and CSP are popped from the
system stack.

CPU Flags
E Z \' C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
RETS DB 00 2

User Manual 8-294 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ROL Rotate Left ROL
Group Shift and Rotate Instructions

Syntax ROL op1, op2

Source Operand(s) op1 — WORD

op2 — shift counter
Destination Operand(s) op1 — WORD

Operation

(count) « (op2)

(C)«0

DO WHILE ((count) = 0)
(C) « (op1[15])
(op1[n]) « (op1[n-1]) [n=15...1]
(op1[0]) « (C)
(count) « (count) - 1

END WHILE

Description

Rotates the destination word operand op1 the number of times as specified by the
source operand op2. Bit 15 is rotated into Bit 0 and into the Carry. Only shift values
between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant four bits are used.

CPU Flags
E y4 \" C N
0 * 0 S *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\Y Always cleared.
C The carry flag is set according to the last most significant bit shifted out of
op1. Cleared for a shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-295 V 1.7, 2001-01

o
Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
ROL Rw,, , #data4 1C #n 2
ROL Rw,, , Rw, 0C nm 2

User Manual 8-296 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

ROR Rotate Right ROR
Group Shift and Rotate Instructions

Syntax ROR op1, op2

Source Operand(s) op1 — WORD

op2 — shift counter
Destination Operand(s) op1 — WORD

Operation

(count) « (op2)

(C)«0

(V)< 0

DO WHILE ((count) = 0)
(V) « (V) v (C)
(C) < (op1[0])
(op1[n]) « (op1[n+1]) [n=0...14]
(op1[15]) « (C)
(count) « (count) - 1

END WHILE

Description

Rotates the destination word operand op1 right by the number of times as specified by
the source operand op2. Bit 0 is rotated into Bit 15 and into the Carry. Only shift values
between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant four bits are used.

CPU Flags
E y4 \" C N
0 * S S *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\Y Set if in any cycle of the rotate operation a 1 is shifted out of the carry
flag. Cleared for a rotate count of zero.
C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-297 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
ROR Rw,, , #data4 3C #n 2
ROR Rw, , Rwp, 2C nm 2

User Manual 8-298 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SBRK Software Break SBRK
Group System Control Instructions

Syntax SBRK

Source Operand(s) none

Destination Operand(s) none

Operation
Software Break

Description

If the SBRK instruction is enabled by the One Chip Emulator (OCE), then the break
mode is activated. If SBRK is not enabled by the OCE, then the hardware trap "soft
break" (Class A, Vector 8) is activated. For more details about this instruction, see the
OCE specifications.

CPU Flags
E Z \) C N

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
SBRK 8C 00 2

User Manual 8-299 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SCXT Switch Context SCXT
Group System Stack Instructions

Syntax SCXT op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(tmp1) < (op1)
(tmp2) « (op2)
(SP) « (SP) - 2
((SP)) « (tmp1)
(op1) « (tmp2)

Description

Switches contexts of any register. Switching context is a push and load operation. The
contents of the register specified by the first operand op1, are pushed onto the stack.
That register is then loaded with the value specified by the second operand, op2.

CPU Flags
E y4 Vv C N

E Not affected.

Z Not affected.

Vv Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
SCXT reg , #data16 C6 RR ## ## 4
SCXT reg, mem D6 RR MM MM 4

User Manual 8-300 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SHL Shift Left SHL
Group Shift and Rotate Instructions

Syntax SHL op1, op2

Source Operand(s) op1 — WORD

op2 — shift counter
Destination Operand(s) op1 — WORD

Operation

(count) « (op2)

(C)«0

DO WHILE ((count) = 0)
(C) « (op1[15])
(op1[n]) « (op1[n-1]) [n=15...1]
(op1[0]) « O
(count) « (count) - 1

END WHILE

Description

Shifts the destination word operand op1 the number of times as specified by the source
operand op2. The least significant bits of the result are filled with zeros accordingly. The
most significant bit is shifted into the Carry. Only shift values between 0 and 15 are
allowed. When using a GPR as the count control, only the least significant four bits are
used.

CPU Flags
E y4 \' C N
0 * 0 S *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C The carry flag is set according to the last most significant bit shifted out of
op1. Cleared for a shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-301 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
SHL Rw,, , #data4 5C #n 2
SHL Rw,, , Rw, 4C nm 2

User Manual 8-302 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SHR Shift Right SHR
Group Shift and Rotate Instructions

Syntax SHR op1, op2

Source Operand(s) op1 — WORD

op2 — shift counter
Destination Operand(s) op1 — WORD

Operation

(count) « (op2)

(C)«0

(V)< 0

DO WHILE ((count) #0)
(V) < (C) v (V)
(C) « (op1[0])
(op1[n]) « (op1[n+1]) [n=0...14]
(op1[15]) « O
(count) « (count) - 1

END WHILE

Description

Shifts the destination word operand op1 right by the number of times as specified by the
source operand op2. The most significant bits of the result are filled with zeros
accordingly. Since the bits shifted out effectively represent the remainder, the Overflow
flag is used instead as a Rounding flag. A shift right is a division by a power of two. The
overflow flag with the carry flag allows determination of whether the fractional part of the
division result is greater than, less than, or equal to one half (0.5 in decimal base). This
allows rounding of the division result accordingly. Only shift values between 0 and 15
are allowed. When using a GPR as the count control, only the least significant four bits
are used.

CPU Flags
E y4 \" C N
0 * S S *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.

\Y Set if in any cycle of the shift operation a 1 is shifted out of the carry flag.
Cleared in case of a shift count equal 0.

User Manual 8-303 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

C The carry flag is set according to the last least significant bit shifted out of
op1. Cleared for a shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
SHR Rw,, , #data4 7C #n 2
SHR Rw,, , Rw, 6C nm 2

User Manual 8-304 V 1.7, 2001-01

o~
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SRST Software Reset SRST
Group System Control Instructions

Syntax SRST

Source Operand(s) none

Destination Operand(s) none

Operation
Software Reset

Description

This instruction is used to perform a software reset. A software reset has the same
effect on the microcontroller as an externally applied hardware reset. To ensure that
this instruction is not accidentally executed, it is implemented as a protected instruction.

CPU Flags
E y4 v C N
0 0 0 0 0
E Always cleared.
Z Always cleared.
\' Always cleared.
C Always cleared.
N Always cleared.
Encoding
Mnemonic Format Bytes
SRST B7 48 B7 B7 4

User Manual 8-305 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SRVWDT Service Watchdog Timer SRVWDT
Group System Control Instructions

Syntax SRVWDT

Source Operand(s) none

Destination Operand(s) none

Operation
Service Watchdog Timer

Description

This instruction reloads the high order byte of the Watchdog Timer with a preset value
and clears the low byte. After this instruction has been executed and if the WDTCTL bit
of the CPUCONT1 register is cleared, the Watchdog Timer cannot be disabled
regardless of the execution of SRVWDT. If the WDTCTL bit is set, the Watchdog Timer
can still be disabled. To ensure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

CPU Flags
E Z \'} C N

E Not affected.

Z Not affected.

\' Not affected.

C Not affected.

N Not affected.
Encoding
Mnemonic Format Bytes
SRVWDT A7 58 A7 A7 4

User Manual 8-306 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SUB Integer Subtraction SUB
Group Arithmetic Instructions

Syntax SUB op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) < (op1) - (0p2)

Description
Performs a 2s complement binary subtraction of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\Y Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
SUB Rw,, , #data3 28 n:O### 2
SuB Rw,, , Rw, 20 nm 2
SUB Rw,, , [Rw;+] 28 n:11ii 2
SUB Rw,, , [Rw;] 28 n:10ii 2
SUB mem , reg 24 RR MM MM 4
SUB reg , #data16 26 RR ## ## 4
SUB reg, mem 22 RR MM MM 4

User Manual 8-307 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SUBB Integer Subtraction SUBB
Group Arithmetic Instructions

Syntax SUBB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) < (op1) - (0p2)

Description
Performs a 2s complement binary subtraction of the source operand specified by op2
and the destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\Y Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
SUBB Rb,, , #data3 29 n:O### 2
SUBB Rb, , Rb, 21 nm 2
SUBB Rb,, , [Rw;+] 29 n:11ii 2
SUBB Rb,, , [Rw;] 29 n:10ii 2
SUBB mem , reg 25 RR MM MM 4
SUBB reg , #data8 27 RR ## xx 4
SUBB reg, mem 23 RR MM MM 4

User Manual 8-308 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SUBC Integer Subtraction with Carry SUBC
Group Arithmetic Instructions

Syntax SUBC op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) « (op1) - (op2) - (C)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2
and the previously generated carry bit from the destination operand specified by op1.
The result is then stored in op1. This instruction can be used to perform multiple
precision arithmetic.

CPU Flags
E y4 v C N
* S * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
V4 Set if result equals zero and previous Z flag was set. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
SUBC Rw,, , #data3 38 n:0### 2
SUBC Rw,, , Rw, 30 nm 2
SUBC Rw, , [Rw;+] 38 n:11ii 2
SUBC Rw,, , [Rw;] 38 n:10ii 2
SuUBC mem , reg 34 RR MM MM 4
SUBC reg , #data16 36 RR ## ## 4
SuUBC reg, mem 32 RR MM MM 4

User Manual 8-309 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

SUBCB Integer Subtraction with Carry SUBCB
Group Arithmetic Instructions

Syntax SUBCB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) « (op1) - (op2) - (C)

Description

Performs a 2s complement binary subtraction of the source operand specified by op2
and the previously generated carry bit from the destination operand specified by op1.
The result is then stored in op1. This instruction can be used to perform multiple
precision arithmetic.

CPU Flags
E y4 v C N
* S * S *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
V4 Set if result equals zero and the previous Z flag was set. Cleared
otherwise.
\Y Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the word data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
SUBCB Rb,, , #data3 39 n:O### 2
SUBCB Rb, , Rb, 31 nm 2
SUBCB Rb,, , [Rw;+] 39 n:11ii 2
SUBCB Rb,, , [Rwj] 39 n:10ii 2
SUBCB mem , reg 35 RR MM MM 4
SUBCB reg , #data8 37 RR ## xx 4
SUBCB reg, mem 33 RR MM MM 4

User Manual 8-310 V 1.7, 2001-01

o—

((Infineon e 1665 V2
Detailed Instruction Description

TRAP Software Trap TRAP

Group Call Instructions

Syntax TRAP op1

Source Operand(s) op1 — 7-bit trap number

Destination Operand(s) none

Operation

(SP) < (SP) - 2

((SP) « (PSW)

IF (CPUCON1.SGTDIS = 0) THEN
(SP) < (SP) - 2
((SP)) « (CSP)

END IF

(CSP) « (VSEG)

(SP) < (SP) - 2

((SP)) « (IP)

(IP) < ((op1) * 4) <<CPUCON1.SCINT

Description
Invokes a trap or interrupt routine based on the specified operand op1. The invoked
routine is determined by branching to the specified vector table entry point. This routine
has no indication of whether it was called by software or hardware. System state is
preserved identically to hardware interrupt entry except that the CPU priority level is not
affected. The RETI, Return from Interrupt instruction is used to resume execution after
the completion of the trap or interrupt routine. The CSP is pushed if the segmentation is
enabled. This is indicated by the SGTDIS bit of the CPUCONT1 register.

CPU Flags
E Z Vv C N
E Not affected.
Z Not affected.
\Y Not affected.
C Not affected.
N Not affected.

User Manual 8-311

V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding
Mnemonic Format Bytes
TRAP #trap7 9B t:ttt0 2

User Manual 8-312 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

XOR Logical Exclusive OR XOR
Group Logical Instructions

Syntax XOR op1i, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) op1 - WORD

Operation
(op1) < (op1) @ (op2)

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * 0 0 *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
XOR Rw,, , #data3 58 n:0### 2
XOR Rw, , Rw, 50 nm 2
XOR Rw,, , [Rw;+] 58 n:11ii 2
XOR Rw,, , [Rw;] 58 n:10ii 2
XOR mem , reg 54 RR MM MM 4
XOR reg , #data16 56 RR ## ## 4
XOR reg, mem 52 RR MM MM 4

User Manual 8-313 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

XORB Logical Exclusive OR XORB
Group Logical Instructions

Syntax XORB op1, op2

Source Operand(s) opi, op2 —» BYTE

Destination Operand(s) op1 — BYTE

Operation
(op1) < (op1) @ (op2)

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and
the destination operand specified by op1. The result is then stored in op1.

CPU Flags
E y4 Vv C N
* * 0 0 *
E Set if the value of op2 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\' Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
XORB Rb,, , #data3 59 n:0### 2
XORB Rb, , Rby, 51 nm 2
XORB Rb,, , [Rw;+] 59 n:11ii 2
XORB Rb,, , [Rw]] 59 n:10ii 2
XORB mem , reg 55 RR MM MM 4
XORB reg , #data8 57 RR ## xx 4
XORB reg, mem 53 RR MM MM 4

User Manual 8-314 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

8.2 DSP Instruction Set

User Manual 8-315 V 1.7, 2001-01

.(.
(Infineon
technologies

CoABS
Group

Syntax

Source Operand(s)

User Manual
C166S V2

Detailed Instruction Description
Absolute Value CoABS
Arithmetic Instructions
CoABS

ACC — 40-bit signed value

Destination Operand(s) ACC — 40-bit signed value

Operation

(ACC) « Abs(ACC)

Description

Computes the absolute value of the 40-bit ACC contents.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
* * * * O * * yes
MV Setif the ACC contents was 80 0000 0000H. Cleared otherwise.
MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.
ME Setif the MAE is used. Cleared otherwise.
MSV Set if the ACC contents was 80 0000 0000H. Not affected otherwise.
MC Always cleared.
MZ Setif result equals zero. Cleared otherwise.
MN Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic Format Bytes
CoABS A3 00 1A rrr0:0000 4
User Manual 8-316 V1.7,2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoABS Absolute Value CoABS
Group Arithmetic Instructions

Syntax CoABS op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
(ACC) « Abs((op2) Il (op1))

Description

Computes the absolute value of a 40-bit source operand and loads the result in the
40-bit ACC register. The 40-bit operand is a sign-extended result of the concatenation
of the two source operands op1 (LSW) and op2 (MSW).

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
0 * * - O * * yes

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoABS Rw, , Rwq, A3 nm CA rrr0:0000 4
CoABS Rw,, , [Rwy*] 83 nm CA rrr0:0qqq 4
CoABS [IDXi*], [Rwp*] 93 Xm CA rrr0:0qqq 4

User Manual 8-317 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoADD Add CoADD
Group Arithmetic Instructions

Syntax CoADD op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation

(tmp) « (op2) Il (op1)
(ACC) « (ACC) + (tmp)

Description

Adds a 40-bit operand to the 40-bit ACC register contents and stores the result in the
ACC register. The 40-bit operand is a sign-extended result of the concatenation of the
two source operands op1 (LSW) and op2 (MSW).

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
* * * * * * * yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoADD Rw,, , Rw, A3 nm 02 rrr0:0000 4
CoADD Rw,, , [Rwy*] 83 nm 02 rrr0:0qqq 4
CoADD [IDXi*], [Rwp*] 93 Xm 02 rrr0:0qqq 4

User Manual 8-318 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoADD2 Add CoADD2
Group Arithmetic Instructions

Syntax CoADD2 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation

(tmp) <~ 2 * ((op2) Il (op1))
(ACC) « (ACC) + (tmp)

Description

Adds a 40-bit operand to the 40-bit ACC register contents and stores the result in the
ACC register. The 40-bit operand is a sign-extended result of the concatenation of the
two source operands op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied
by two before being added to ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
* * * * * * * yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoADD2 Rw,, , Rw, A3 nm 42 rrr0:0000 4
CoADD2 Rw, , [Rw,"] 83 nm 42 rrr0:0qqq 4
CoADD2 [IDXi*], [Rwp*] 93 Xm 42 rrr0:0qqq 4

User Manual 8-319 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoASHR Accumulator Arithmetic Shift Right with Round COASHR

Group Shift Instructions
Syntax CoASHR op1, rnd

Source Operand(s) op1 — shift counter
Destination Operand(s) ACC — 40-bit signed value

Operation

(count) « (op1)

(C)«0

DO WHILE (count) #0
(ACC[n]) « (ACC[n+1]) [n=0...38]
(count) « (count) -1

END WHILE

(ACC) « (ACC) + 0000 8000h

(MAL) « 0

Description

Arithmetically shifts the ACC register right by the number of times as specified by the
operand op1. Then, the result is 2s complement rounded before being stored in the
40-bit ACC register. To preserve the sign of the ACC register, the most significant bits
of the result are filled with sign 0 if the original most significant bit was a 0 or with sign 1
if the original most significant bit was 1. Only shift values from 0 to 16 (inclusive) are
allowed. op1 can be either a 5-bit unsigned immediate data (the shift range is from 0 to
16 in this case) or the four least significant bits (the shift range is from 0 to 15 in that
case) of any register directly or indirectly addressed operand.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic overflow occurred. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Set if the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated when rounding. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-320 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
CoASHR #data5 , rnd A3 00 B2 rrrit:# 4
CoASHR Rw, , rnd A3 nn BA rrr0:0000 4
CoASHR [Rwy,*], rnd 83 mm BA rrr0:0qqq 4

User Manual 8-321 V 1.7, 2001-01

.(.
(Infineon
technologies

CoASHR

Group

Syntax

Source Operand(s)

User Manual
C166S V2

Detailed Instruction Description

Accumulator Arithmetic Shift Right CoASHR

Shift Instructions
CoASHR op1

op1 — shift counter

Destination Operand(s) ACC — 40-bit signed value

Operation

Description

(count) « (op1)

(C) < 0

DO WHILE (count) #0

(ACC[n]) « (ACC[n+1]) [n=0...38]
(count) « (count) -1

END WHILE

Arithmetically shifts the ACC register right by the number of times as specified by the

operand op1. To preserve the sign of the ACC register, the most significant bits of the

result are filled with sign 0 if the original most significant bit was a 0 or with sign 1 if the
original most significant bit was 1. Only shift values from 0 to 16 (inclusive) are allowed.
op1 can be either a 5-bit unsigned immediate data (the shift range is from 0 to 16 in this
case) or the four least significant bits (the shift range is from 0 to 15 in that case) of any
register directly or indirectly addressed operand. The MS bit of the MCW register does

not affect the resuilt.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
0 - * - 0 * * no
MV Always cleared.
MSL Not affected.
ME Setif the MAE is used. Cleared otherwise.
MSV Not affected.
MC Always cleared.
MZ Setif result equals zero. Cleared otherwise.
MN Set if the most significant bit of the result is set. Cleared otherwise.
User Manual 8-322 V1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
CoASHR #data5 A3 00 A2 rrrit:# 4
CoASHR Rwy, A3 nn AA rrr0:0000 4
CoASHR [Rwp,*] 83 mm AA rrr0:0qqq 4

User Manual 8-323 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoCMP Compare CoCMP
Group Compare Instructions

Syntax CoCMP op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) none

Operation
tmp « (op2) Il (op1)
(ACC) & (tmp)

Description

Subtracts a 40-bit signed operand from the 40-bit ACC contents and updates the N, Z
and C flags of the MSW register leaving the ACC register unchanged. The 40-bit
operand is a sign-extended result of the concatenation of the two source operands op1
(LSW) and op2 (MSW). The MS bit of the MCW register does not affect the result.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
* - - - * * * no

MV Set if the ACC contents are strictly less than the 40-bit operand. Cleared
otherwise.

MSL Not affected.

ME Not affected.

MSV Not affected.

MC Setif a borrow is generated. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoCMP Rw, , Rwq, A3 nm C2 rrr0:0000 4
CoCMP Rw,, , [Rwy*] 83 nm C2 rrr0:0qqq 4
CoCMP [IDXi*], [Rwp*] 93 Xm C2 rrr0:0qqq 4

User Manual 8-324 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoLOAD Load Accumulator CoLOAD
Group Arithmetic Instructions

Syntax CoLOAD op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation

(tmp) « (op2) Il (op1)
(ACC) « 0 + (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand
is the sign-extended result of the concatenation of the two source operands op1 (LSW)
and op2 (MSW).

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
0 - 0 - 0 * * no

MV Always cleared.

MSL Not affected.

ME Always cleared.

MSV Not affected.

MC Always cleared.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoLOAD Rw,, , Rw, A3 nm 22 rrr0:0000 4
CoLOAD Rw,, , [Rwy*] 83 nm 22 rrr0:0qqq 4
CoLOAD [IDXi*], [Rwp*] 93 Xm 22 rrr0:0qqq 4

User Manual 8-325 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoLOAD- Load Accumulator CoLOAD-
Group Arithmetic Instructions

Syntax CoLOAD- op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation

(tmp) « (op2) Il (op1)
(ACC) « 0 - (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand
is a sign-extended result of the concatenation of the two source operands op1 (LSW)
and op2 (MSW). The 40-bit source operand is 2s complemented, before being stored in
the ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
O * * - * * * yes

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Not affected.

MC Setif a borrow is generated. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoLOAD- Rw,, , Rw, A3 nm 2A rrr0:0000 4
CoLOAD- Rw,, , [Rwy*] 83 nm 2A rrr0:0qqq 4
CoLOAD- [IDXi*], [Rwp*] 93 Xm 2A rrr0:0qqq 4

User Manual 8-326 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoLOAD2 Load Accumulator CoLOAD2
Group Arithmetic Instructions

Syntax CoLOAD2 op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation

(tmp) <~ 2 * ((op2) Il (op1))
(ACC) « 0 + (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand
is a sign-extended results of the concatenation of the two source operands op1 (LSW)
and op2 (MSW). The 40-bit operand is also multiplied by two, before being stored in the
ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
O * * - O * * yes

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Not affected.

MC Always cleared.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoLOAD2 Rw,, , Rw, A3 nm 62 rrr0:0000 4
CoLOAD2 Rw,, , [Rwy*] 83 nm 62 rrr0:0qqq 4
CoLOAD2 [IDXi*], [Rwy*] 93 Xm 62 rrr0:0qqq 4

User Manual 8-327 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoLOAD2- Load Accumulator CoLOAD2-
Group Arithmetic Instructions
Syntax CoLOAD2- op1, op2
Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
(tmp) «<- 2 * ((op2) Il (op1))
(ACC) « 0 - (tmp)

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand
is a sign-extended result of the concatenation of the two source operands op1 (LSW)
and op2 (MSW). The 40-bit operand is also multiplied by two and negated, before being
stored in the ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.
O * * - * * * yes

MV Always cleared.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Not affected.

MC Setif a borrow is generated. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic Format Bytes
CoLOAD2- Rw,, , Rw, A3 nm 6A rrr0:0000 4
CoLOAD2- Rw,, , [Rwy*] 83 nm 6A rrr0:0qqq 4
CoLOAD2- [IDXi*], [Rwp*] 93 Xm 6A rrr0:0qqq 4

User Manual 8-328 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMAC Multiply-Accumulate with Round CoMAC
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2, rnd

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < ((op1) * (0p2)) <<1
(ACC) « (ACC) + (tmp) + 00 0000 8000h
ELSE
(tmp) « (op1) * (op2)
(ACC) « (ACC) + (tmp) + 00 0000 8000h
END IF
(MAL) < 0
Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed
32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted,;
then, it is added to the 40-bit ACC register contents. Finally, the result is 2s complement
rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated. Cleared otherwise.

MZ Setif result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-329 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
CoMAC Rw, , Rw,,, rd A3 nm D1 rrr0:0000 4
CoMAC Rw, , [Rw,*], rnd 83 nm D1 rrr0:0qqq 4
CoMAC [IDXi*], [Rwy*], rd 93 Xm D1 rrr0:0qqq 4

User Manual 8-330 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMAC Multiply-Accumulate CoMAC
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < ((op1) * (0p2)) <<1
(ACC) « (ACC) + (tmp)
ELSE
(tmp) « (op1) * (op2)
(ACC) « (ACC) + (tmp)
END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed
32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;
then, it is added to the 40-bit ACC register contents before being stored in the 40-bit
ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-331 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
CoMAC Rw,, , Rw, A3 nm DO rrr0:0000 4
CoMAC Rw, , [Rwy"] 83 nm DO rrr0:0qqq 4
CoMAC [IDXi*], [Rwp*] 93 Xm DO rrr0:09qq 4

User Manual 8-332 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMAC- Multiply-Accumulate CoMAC-
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC- op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < ((op1) * (0p2)) <<1
(ACC) « (ACC) - (tmp)
ELSE
(tmp) « (op1) * (op2)
(ACC) « (ACC) - (tmp)
END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed
32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;
then, it is subtracted from the 40-bit ACC register contents before being stored in the
40-bit ACC register.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic underflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic underflow occurred. Not affected otherwise.
MC Setif a borrow is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-333 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding

Mnemonic Format Bytes
CoMAC- Rw,, , Rw, A3 nm EO rrr0:0000 4
CoMAC- Rw, , [Rwy"] 83 nm EO rrr0:0qqq 4
CoMAC- [IDXi*], [Rwp*] 93 Xm EO rrr0:0qqq 4

User Manual 8-334 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMACM Multiply-Accumulate & Move & Round CoMACM
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM op1, op2, rnd

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < (((op1)) * ((0p2))) <<1
(ACC) « (ACC) + (tmp) + 00 0000 8000h
ELSE
(tmp) « ((op1))*((op2))
(ACC) « (ACC) + (tmp) + 00 0000 8000h
END IF
(MAL) « 0

((IDXi(-"))) « ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed
32-bit product is first sign-extended; then, if the MP flag is set, it is one-bit left shifted;
and next, it is added to the 40-bit ACC register contents. Finally, the result is 2s
complement rounded before being stored in the 40-bit ACC register. The MAL register
is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data
pointed to by IDXi overwrites another data located in memory (DPRAM). The address
of the overwritten data depends on the operation executed on IDXi.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.
MC Setif a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

User Manual 8-335 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

MN Set if the most significant bit of the result is set. Cleared otherwise.

Encoding
Mnemonic Format Bytes
CoMACM [IDXi*], [Rwy*], rnd 93 Xm D9 rrr0:0qqq 4

User Manual 8-336 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMACM Multiply-Accumulate & Move CoMACM
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < (((op1)) * ((0p2))) <<1
(ACC) « (ACC) + (tmp)
ELSE

(tmp) « ((op1)) * ((op2))
(ACC) «— (ACC) + (tmp)
END IF
((IDXi(-"))) « ((IDXi))

Description

Multiplies the two signed 16-bit source operands op1 and op2. The resulting signed
32-bit product is first sign-extended; then if the MP flag is set, it is one-bit left shifted,;
and next it is added to the 40-bit ACC register contents before being stored in the 40-bit
ACC register. In parallel to the arithmetic operation and to the two parallel reads, the
data pointed to by IDXi overwrites another data located in memory (DPRAM). The
address of the overwritten data depends on the operation executed on IDXi.

MAC Flags
Mv MSL ME MSV MC Mz MN Sat.

yes

MV Set if an arithmetic overflow occurred, i.e. the result cannot be
represented in the 40-bit data type. Cleared otherwise.

MSL Set if the contents of ACC is automatically saturated. Not affected
otherwise.

ME Setif the MAE is used. Cleared otherwise.

MSV Set if an arithmetic overflow occurred. Not affected otherwise.

MC Setif a carry is generated. Cleared otherwise.

MZ Set if result equals zero. Cleared otherwise.

MN Set if the most significant bit of the result is set. Cleared otherwise.

User Manual 8-337 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

Encoding
Mnemonic Format Bytes
CoMACM [IDXi*], [Rwp*] 93 Xm D8 rrr0:0qqq 4

User Manual 8-338 V 1.7, 2001-01

o
(Infineon User Manual
technologies C166$ V2

Detailed Instruction Description

CoMACM- Multiply-Accumulate & Move CoMACM-
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM- op1, op2

Source Operand(s) op1, op2 - WORD

Destination Operand(s) ACC — 40-bit signed value

Operation
IF (MP =1) THEN
(tmp) < (((op1)) * ((0p2))) <<1
(ACC) « (ACC) - (tmp)
ELSE

(tmp) « ((op1)) *