

SAW diplexer

Automotive telematics TD-SCDMA bands 34 & 39

Series/type: B4384

Ordering code: B39202B4384P810

Date: March 07, 2016

Version: 2.0

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

SAW diplexer Automotive telematics TD-SCDMA bands 34 & 39

Series/type: B4384

Ordering code: B39202B4384P810

Date: March 07, 2016

Version: 2.0

© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

SAW diplexer 2017.5 / 1900.0

Data sheet

Table of contents

1 Application	3
2 Features.	
3 Package	
4 Pin configuration	
5 Matching circuit	<u>5</u>
6 Characteristics TD-SCDMA B34.	6
7 Characteristics TD-SCDMA B39	7
8 Maximum ratings	8
9 Transmission coefficient TD-SCDMA B34	
10 Reflection coefficients TD-SCDMA B34.	10
11 Transmission coefficient TD-SCDMA B39	11
12 Reflection coefficients TD-SCDMA B39.	12
13 Packing material	13
14 Marking	14
15 Soldering profile	16
16 Annotations	
17 Cautions and warnings	18
Important notes	19

SAW diplexer 2017.5 / 1900.0


Data sheet

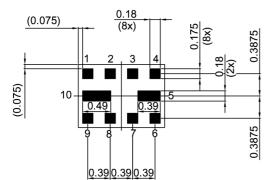
1 Application

- Low-loss 2in1 RF filter for TD-SCDMA band 34 and TD-SCDMA band 39 systems
- TD-SCDMA B34: 15MHz
- TD-SCDMA B39: 40MHz
- Low amplitude ripple

2 Features

- Package size 1.5±0.1 mm × 1.1±0.1 mm
- Package height 0.45 mm (max.)
- Package code QCS10W
- Approximate weight 3 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Filter surface passivated
- AEC-Q200 qualified component family (operable temperature range -40 °C to +85 °C)
- Electrostatic Sensitive Device (ESD)

Figure 1: Picture of component with example of product marking.

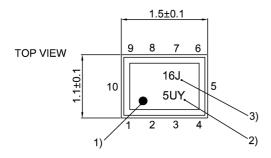


SAW diplexer 2017.5 / 1900.0

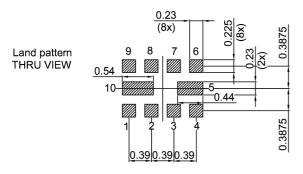
Data sheet

3 Package

BOTTOM VIEW


Pad and pitch tolerance ±0.05

4 Pin configuration


- 1 Input (B34 & B39)
- 6 Output (B34)
- 9 Output (B39)
- 2, 3, 4, 5, Ground 7, 8, 10

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

Landing pad tolerance -0.02

Figure 2: Drawing of package with package height A = 0.45 mm (max.). See Simplified drawings (p. 18).

SAW diplexer 2017.5 / 1900.0

Data sheet

5 Matching circuit

■ L_{p1} = 4.6 nH

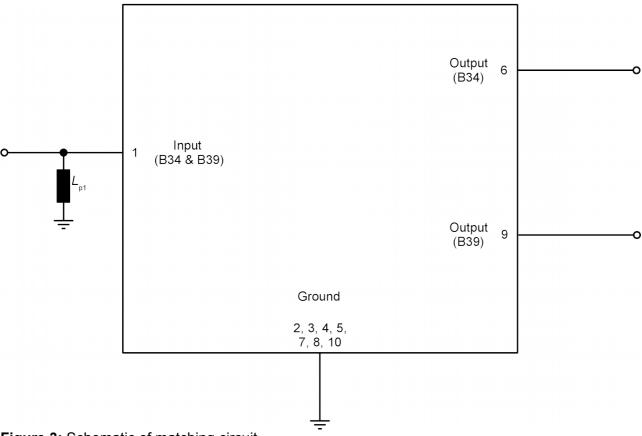


Figure 3: Schematic of matching circuit.

B4384 **SAW** components

SAW diplexer 2017.5 / 1900.0

Data sheet

Characteristics TD-SCDMA B34

Temperature range for specification $T_{\scriptscriptstyle{\mathrm{SPEC}}}$ = -30 °C ... +85 °C $Z_{\rm B34 \, B39 \, IN} = 50 \, \Omega$ with par. 4.6 nH¹⁾ $Z_{\rm B34 \, OUT} = 50 \, \Omega$ B34 B39 input terminating impedance

B34 output terminating impedance $Z_{_{
m B39~OUT}}$ B39 output terminating impedance = 50 Ω

Characteristics TD-SCDMA B34				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @+25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{\tiny SPEC}} \end{array}$	
Center frequency			f _C	_	2017.5	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	2010 2025	MHz		_	1.7	2.3	dB
Amplitude ripple (p-p)			Δα				
	2010 2025	MHz		_	0.4	0.9	dB
Maximum VSWR			$VSWR_{max}$				
@ B34 B39 input port	2010 2025	MHz		_	1.4	1.9	
@ B34 output port	2010 2025	MHz		_	1.4	1.9	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	50 1000	MHz		35	38	_	dB
	1000 1850	MHz		30	34	_	dB
	1850 1930	MHz		33	38	_	dB
	1930 1950	MHz		30	35	_	dB
	1950 1980	MHz		7	18	_	dB
	2050 2075	MHz		2.8	10	_	dB
	2075 2100	MHz		27	33	_	dB
	2100 2800	MHz		33	38	_	dB
	2800 4100	MHz		35	40	_	dB
	4100 4900	MHz		29	36	_	dB
	4900 6000	MHz		23	30	_	dB

See Matching circuit (p. 5).

B4384 **SAW** components

SAW diplexer 2017.5 / 1900.0

Data sheet

Characteristics TD-SCDMA B39

Temperature range for specification $T_{\scriptscriptstyle{\mathrm{SPEC}}}$ = -30 °C ... +85 °C $Z_{\rm B34\,B39\,IN}^{\rm IS} = 50~\Omega$ with par. 4.6 nH¹⁾ $Z_{\rm B34\,OUT}^{\rm IS} = 50~\Omega$ B34 B39 input terminating impedance

B34 output terminating impedance $Z_{\rm B39\;OUT}$ B39 output terminating impedance = 50 Ω

Characteristics TD-SCDMA B39				$\begin{array}{c} \text{min.} \\ \text{for } T_{\text{SPEC}} \end{array}$	typ. @+25 °C	$\begin{array}{c} \text{max.} \\ \text{for } T_{\text{SPEC}} \end{array}$	
Center frequency			f _C	_	1900	_	MHz
Maximum insertion attenuation			$\boldsymbol{\alpha}_{\text{max}}$				
	1880 1920	MHz		_	1.9	2.4	dB
Amplitude ripple (p-p)			Δα				
	1880 1920	MHz		_	0.6	1.2	dB
Maximum VSWR			$VSWR_{max}$				
@ B34 B39 input port	1880 1920	MHz		_	1.6	2.0	
@ B39 output port	1880 1920	MHz		_	1.7	2.0	
Minimum attenuation			$\boldsymbol{\alpha}_{\text{min}}$				
	50 925	MHz		31	34	_	dB
	925 960	MHz		31	34	_	dB
	960 1805	MHz		25	29	_	dB
	1805 1840	MHz		27	35	_	dB
	1840 1850	MHz		26	34	_	dB
	1982 2005	MHz		28	32	_	dB
	2005 2800	MHz		28	33	_	dB
	2800 3700	MHz		32	38	_	dB
	3700 5400	MHz		20	27	_	dB
	5400 6000	MHz		16	24	_	dB

See Matching circuit (p. 5).

 SAW components
 B4384

 SAW diplexer
 2017.5 / 1900.0

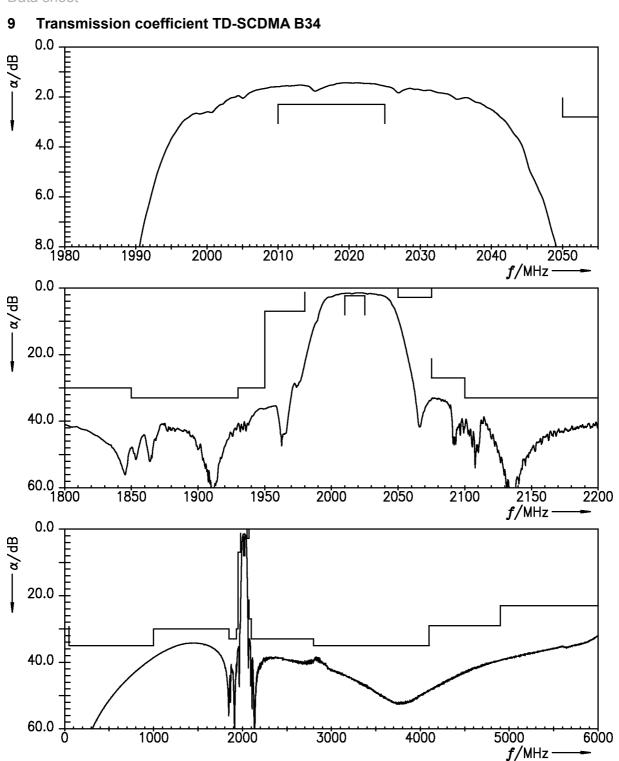
Data sheet

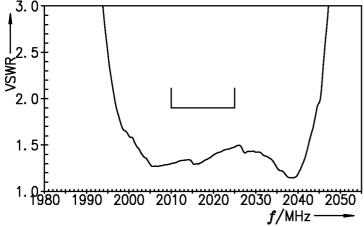
8 Maximum ratings

Operable temperature	T _{OP} = -40 °C +85 °C	
Storage temperature	T _{STG} = -40 °C +85 °C	
DC voltage	V _{DC} = 0 V	
Input power	P _{IN}	
@ B34 B39 input port: 1880 1920 MHz	10 dBm	Continuous wave for 100000 h @ 85 °C.
@ B34 B39 input port: 2010 2025 MHz	10 dBm	Continuous wave for 100000 h @ 85 °C.

SAW diplexer 2017.5 / 1900.0

Data sheet




Figure 4: Attenuation TD-SCDMA B34.

SAW diplexer 2017.5 / 1900.0

Data sheet

10 Reflection coefficients TD-SCDMA B34

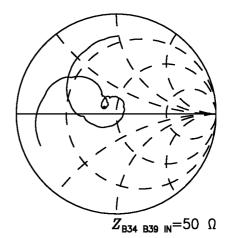
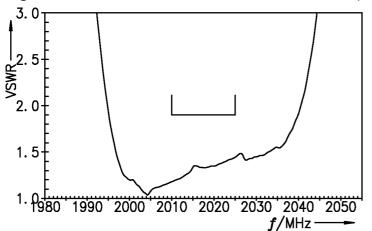



Figure 5: Reflection coefficient TD-SCDMA B34 at IN port.

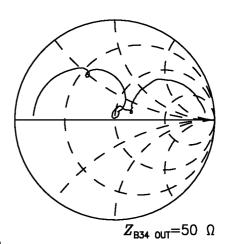


Figure 6: Reflection coefficient TD-SCDMA B34 at OUT port.

SAW diplexer 2017.5 / 1900.0

Data sheet

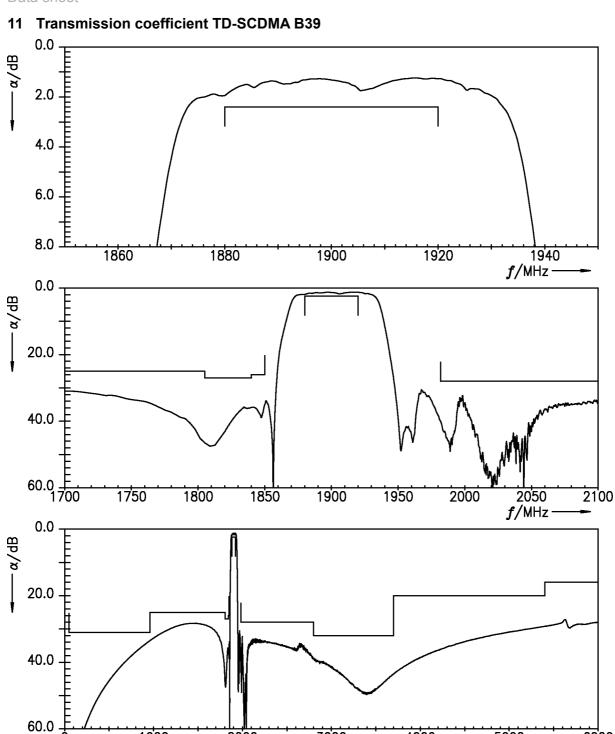


Figure 7: Attenuation TD-SCDMA B39.

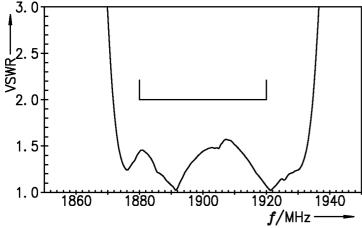
1000

3000

4000

5000

f/MHz


6000

SAW diplexer 2017.5 / 1900.0

Data sheet

12 Reflection coefficients TD-SCDMA B39

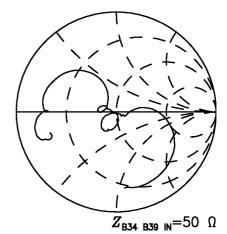
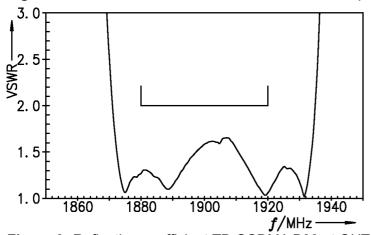



Figure 8: Reflection coefficient TD-SCDMA B39 at IN port.

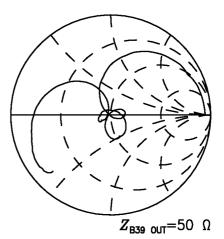
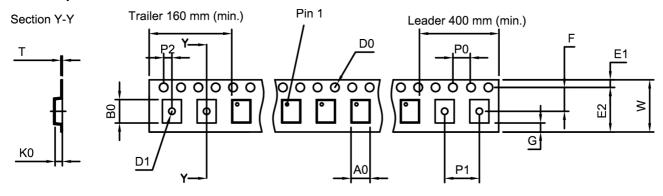


Figure 9: Reflection coefficient TD-SCDMA B39 at OUT port.



SAW diplexer 2017.5 / 1900.0

Data sheet

13 Packing material

13.1 Tape

User direction of unreeling

Figure 10: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀ 1.27 _{±0.05} mm	
$B_0 \mid 1.67_{\pm 0.05} \text{ mm}$ F 3.5 $\pm 0.05 \text{ mm}$	
D ₀ 1.5+0.1/-0 mm G 0.75 mm (min.)	
$D_1 = 0.5_{\pm 0.1/-0} \text{ mm}$ $K_0 = 0.55_{\pm 0.05} \text{ mm}$	
E ₁ 1.75 _{±0.1} mm P ₀ 4.0 _{±0.1} mm	

P₁ 4.0_{±0.1} mm
P₂ 2.0_{±0.05} mm
T 0.25_{±0.03} mm
W 8.0_{+0.3/-0.1} mm

Table 1: Tape dimensions.

13.2 Reel with diameter of 180 mm

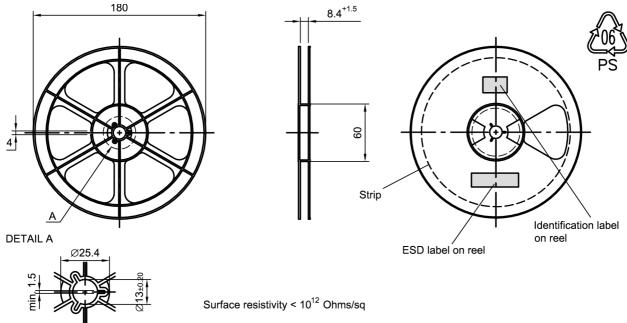


Figure 11: Drawing of reel (first-angle projection) with diameter of 180 mm.

SAW diplexer 2017.5 / 1900.0

Data sheet

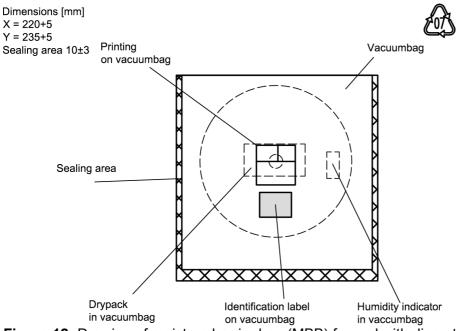


Figure 12: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

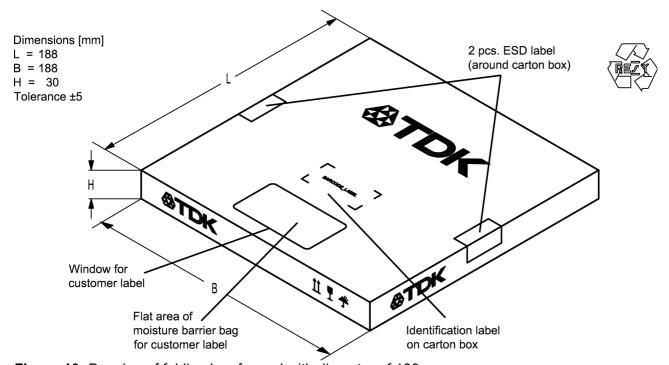


Figure 13: Drawing of folding box for reel with diameter of 180 mm.

14 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

SAW diplexer 2017.5 / 1900.0

Data sheet

The 4 digit type number of the ordering code, e.g., B3xxxxB1234xxxx, is encoded by a special BASE32 code into a 3 digit marking.

Example of decoding type number marking on device in decimal code.

16J => 1234 1 x 32^2 + 6 x 32^1 + 18 (=J) x 32^0 = 1234

The BASE32 code for product type B4384 is 490.

■ Lot number:

The last 5 digits of the lot number, e.g., are encoded based on a special BASE47 code into a 3 digit marking.

Example of decoding lot number marking on device in decimal code.

5UY => 12345 5 x 47² + 27 (=U) x 47¹ + 31 (=Y) x 47⁰ = 12345

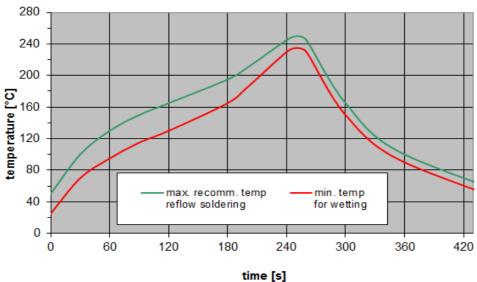
Adopted BASE32 code for type number			
Decimal	Base32	Decimal	Base32
value	code	value	code
0	0	16	G
1	1	17	Н
2	2	18	J
3	3	19	K
4	4	20	M
5	5	21	N
6	6	22	Р
7	7	23	Q
8	8	24	R
9	9	25	S
10	Α	26	Т
11	В	27	V
12	С	28	W
13	D	29	Х
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number			
Decimal	Base47	Decimal	Base47
value	code	value	code
0	0	24	R
1	1	25	S
2	2	26	Т
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	Х
7	7	31	Y
8	8	32	Z
9	9	33	b
10	Α	34	d
11	В	35	f
12	С	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	V
17	Н	41	\
18	J	42	?
19	K	43	{
20	L	44	}
21	М	45	<
22	Ν	46	>
23	Р		

Table 2: Lists for encoding and decoding of marking.

 SAW components
 B4384

 SAW diplexer
 2017.5 / 1900.0


Data sheet

15 Soldering profile

The recommended soldering process is in accordance with IEC $60068-2-58-3^{rd}$ edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
T > 220 °C	30 s to 70 s
T > 230 °C	min. 10 s
T > 245 °C	max. 20 s
<i>T</i> ≥ 255 °C	-
peak temperature T _{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	≤ 3 K/s
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 14: Recommended reflow profile for convection and infrared soldering – lead-free solder.

SAW diplexer 2017.5 / 1900.0

Data sheet

16 Annotations

16.1 Matching coils

See TDK inductor pdf-catalog http://www.tdk.co.jp/tefe02/coil.htm#aname1 and Data Library for circuit simulation http://www.tdk.co.jp/etvcl/index.htm.

16.2 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

16.3 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

SAW diplexer 2017.5 / 1900.0

Data sheet

17 Cautions and warnings

17.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

17.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

17.3 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

17.4 Simplified drawings

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Dimensions do not include burrs.

Projection method

Unless otherwise specified first-angle projection is applied.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
 - The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qualcomm RF360: B39202B4384P810

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331