

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

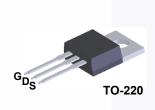
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

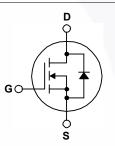
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

November 2013

FDP032N08B N-Channel PowerTrench[®] MOSFET 80 V, 211 A, 3.3 mΩ

Features


- $R_{DS(on)}$ = 2.85 m Ω (Typ.) @ V_{GS} = 10 V, I_{D} = 50 A
- Low FOM R_{DS(on)} * Q_G
- Low Reverse-Recovery Charge, Qrr
- Soft Reverse-Recovery Body Diode
- Enables High Efficiency in Synchronous Rectification
- · Fast Switching Speed
- 100% UIL Tested
- RoHS Compliant


Description

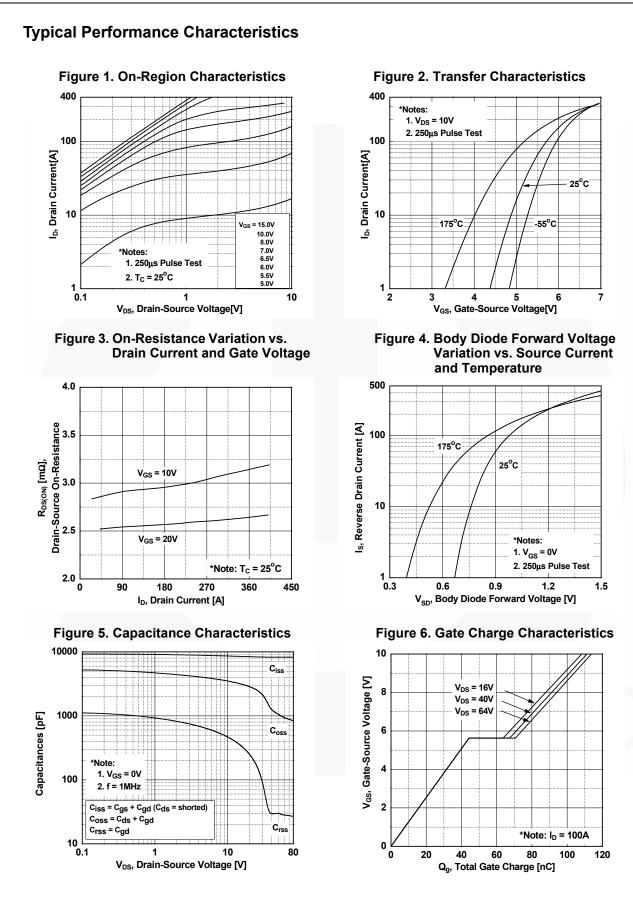
This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

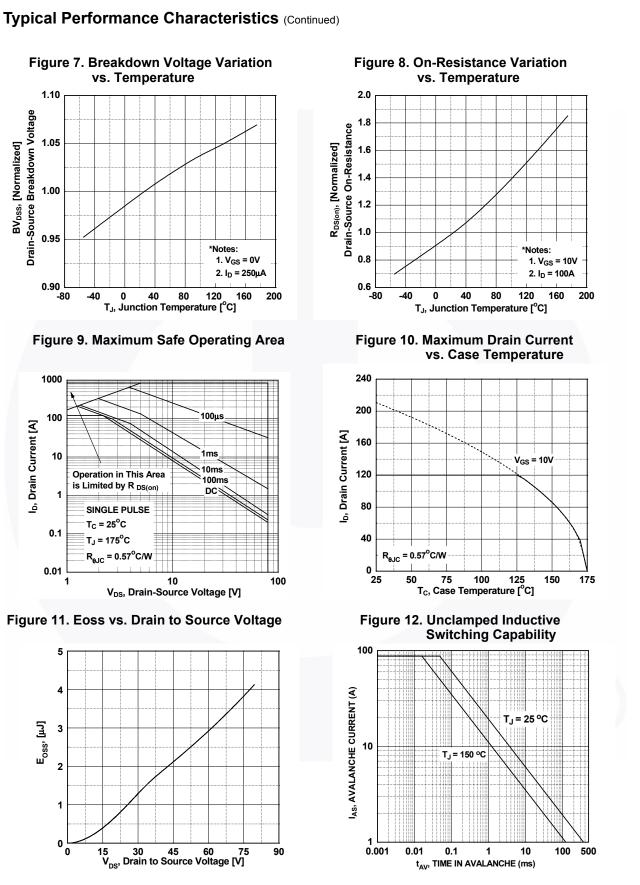
Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies
- Renewable System

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FDP032N08B_F102	Unit
V _{DSS}	Drain to Source Voltage	80	V	
V _{GSS}	Gate to Source Voltage		±20	V
I _D		- Continuous (T _C = 25°C, Silicon Limited)	211*	
	Drain Current	- Continuous (T _C = 100 ^o C, Silicon Limited)	149*	A
		- Continuous (T _C = 25°C, Package Limited)	120	
I _{DM}	Drain Current	- Pulsed (Note 1)	844	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		649	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
P _D	Power Discipation	(T _C = 25 ^o C)	263	W
	Power Dissipation	- Derate Above 25°C	1.75	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C


* Package limitation current is 120A.


Thermal Characteristics

Symbol	Parameter FDP032N08B_		Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.57	°C/W
R _{0JA} Thermal Resistance, Junction to Ambient, Max. 62.5		0.00	

Part Number Top Mark Pack		Package	e Packing Method Reel Size		Тар	e Width	Qua	ntity	
		TO-220	Tube	N/A		N/A	50 units		
Electrica	I Chara	acteristics T_c =	25°C unless	otherwise noted.					
Symbol	Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristics	5							
BV _{DSS}	Drain to	Source Breakdown V	/oltage	I _D = 250 μA, V _{GS} = 0 V		80	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient		-	$I_D = 250 \ \mu$ A, Referenced to 25° C		-	0.04	-	V/ºC
DSS	Zero Ga	te Voltage Drain Curr	ent	$V_{DS} = 64 V, V_{GS} = 0 V$ $V_{DS} = 64 V, T_{C} = 150^{\circ}C$		-	-	1 500	μA
I _{GSS}	Gate to I	Body Leakage Currer	nt	$V_{\text{GS}} = \pm 20 \text{ V}, \text{ V}_{\text{DS}} = 0$		-	-	±100	nA
				VGS 120 V, VDS 0	•			100	10.0
On Charac				V - V 250 ···	•	0.5		4.5	V
V _{GS(th)}		reshold Voltage rain to Source On Res	istance	$V_{GS} = V_{DS}, I_D = 250 \mu$		2.5	-	4.5	V
R _{DS(on)}		Transconductance	sistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 100 \text{ A}$ $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 100 \text{ A}$		-	2.85	3.3	mΩ S
9 _{FS}			-	$v_{\rm DS} = 10 v, r_{\rm D} = 100 F$	`	-	168	-	5
Dynamic C							1		
C _{iss}	Input Ca	pacitance		V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz		-	8245	10965	pF
C _{oss}	Output C	Capacitance				-	1250	1660	pF
C _{rss}	Reverse	Transfer Capacitance	e			-	28	-	pF
C _{oss(er)}	Energy F	Energy Related Output Capacitance		V _{DS} = 40 V, V _{GS} = 0 V		-	2337	-	pF
Q _{g(tot)}	Total Ga	te Charge at 10V				-	111	144	nC
Q _{gs}	Gate to S	Source Gate Charge		$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 100 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)		-	44	-	nC
Q _{gd}	Gate to I	Drain "Miller" Charge				-	23	-	nC
V _{plateau}	Gate Pla	ateau Volatge				-	5.6	-	V
Q _{sync}	Total Ga	te Charge Sync.	Charge Sync. $V_{DS} = 0 V, I_D = 50 A$		-	98.2	-	nC	
Q _{oss}	Output Charge			V _{DS} = 40 V, V _{GS} = 0 V		-	114	-	nC
ESR	Equivale	ent Series Resistance	(G-S)	f = 1 MHz		-	2.3	-	Ω
Switching	Charact	eristics							
t _{d(on)}	Т	Delay Time					38	86	ns
t _r	Turn-On	Rise Time		$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 100 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 4.7 \Omega$		-	44	97	ns
t _{d(off)}	Turn-Off	Delay Time				-	71	152	ns
t _f	_	Fall Time		_	(Note 4)	-	31	72	ns
Drain-Sour	ce Diod	le Characteristic	s						
I _S		n Continuous Drain to		e Forward Current		-	-	211	Α
I _{SM}	Maximum Pulsed Drain to Source Diode					-	-	844	Α
V _{SD}	Drain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 100$		4	-	-	1.3	V		
t _{rr}		Recovery Time	Ŭ	$V_{GS} = 0 V, V_{DD} = 40 V$		-	75	-	ns
Q _{rr}		Recovery Charge		dl _F /dt = 100 A/μs	, 30,	-	102		nC
Notes:		, <u></u>							-

FDP032N08B — N-Channel PowerTrench[®] MOSFET

FDP032N08B — N-Channel PowerTrench[®] MOSFET

©2012 Fairchild Semiconductor Corporation FDP032N08B Rev. C1

1.10

1.05

1.00

0.95

0.90

1000

100

10

1

0.1

0.01

1

5

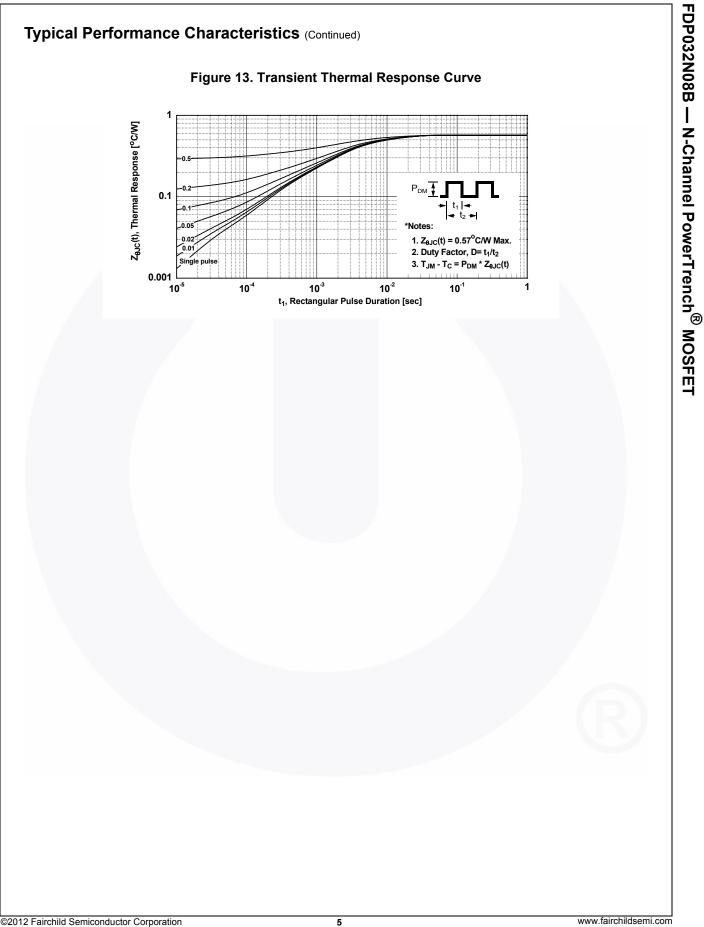
4

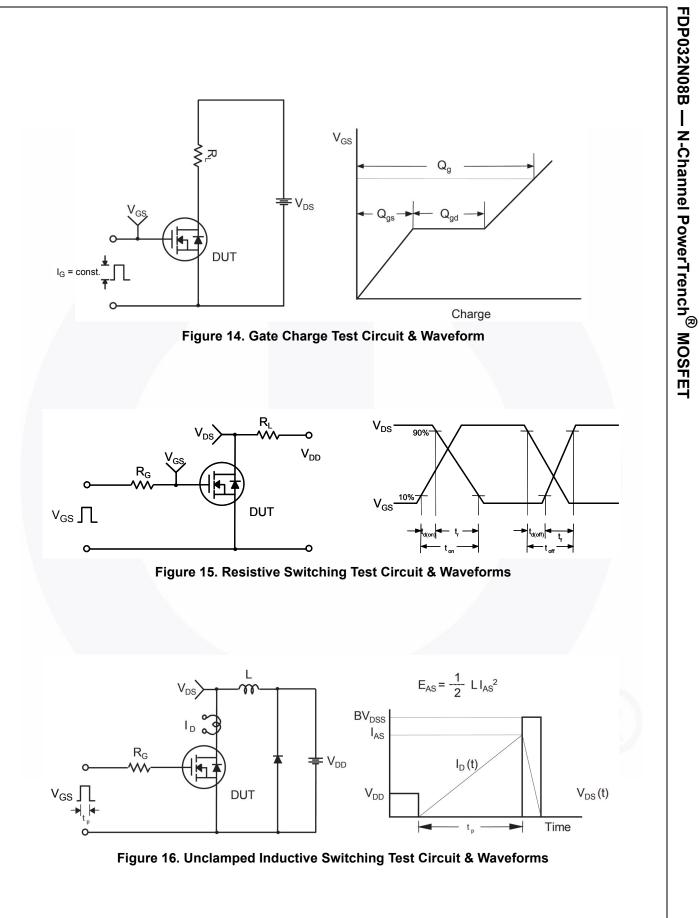
2

1

0 L 0

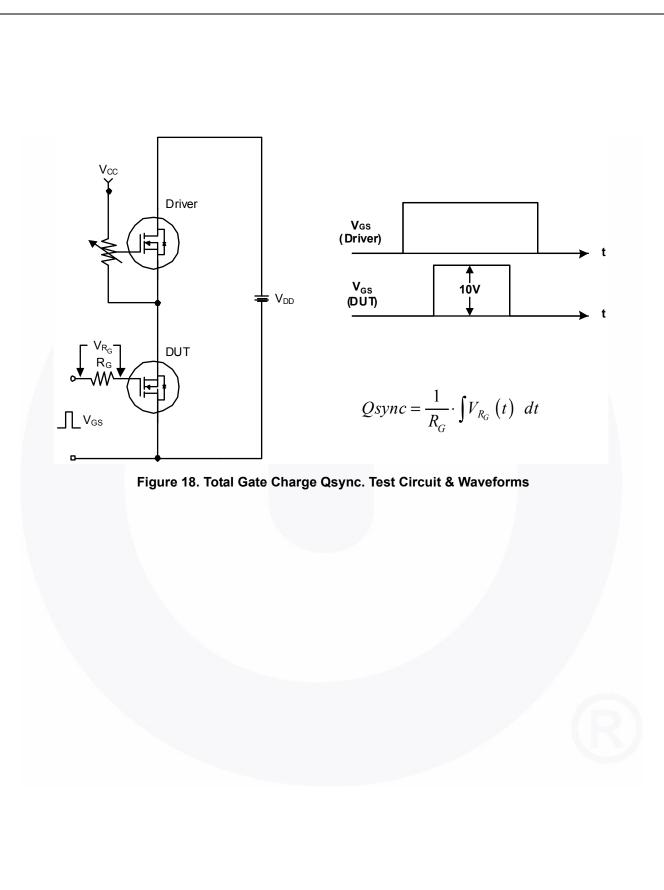
E_{oss}, [µJ] 3

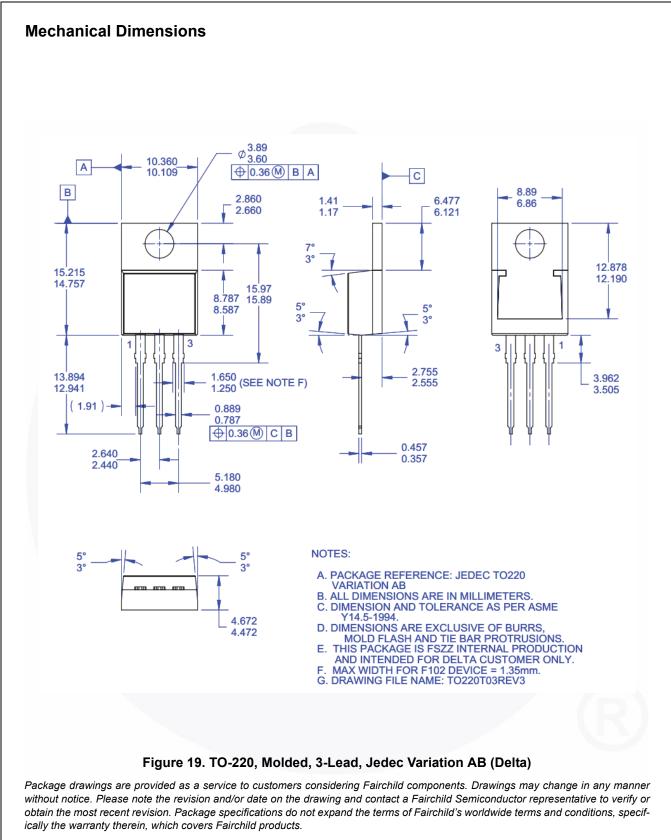

l_b, Drain Current [A]


-80

-40

Drain-Source Breakdown Voltage


BV_{DSS}, [Normalized]



DUT + v_{DS} a ۱_{SD} م L Driver R_G, Same Type as DUT L F ∨_{DD} $\prod V_{GS}$ • dv/dt controlled by R_{G} • I_{SD} controlled by pulse period Î Gate Pulse Width V_{GS} D = Gate Pulse Period 10V (Driver) I_{FM}, Body Diode Forward Current I _{SD} di/dt (DUT) I_{RM} Body Diode Reverse Current V_{DS} (DUT) Body Diode Recovery dv/dt V_{SD} V_{DD} Body Diode Forward Voltage Drop Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

FDP032N08B — N-Channel PowerTrench[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-0I3

FDP032N08B — N-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

	all such liauchiaiks.		
AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] *	FRFET®	O ®	SYSTEM ®*
BitSiC™	Global Power Resource SM	PowerTrench [®]	GENERAL
Build it Now™	GreenBridge™	PowerXS™	TinyBoost [®]
CorePLUS™	Green FPS™	Programmable Active Droop™	TinyBuck [®]
CorePOWER™	Green FPS™ e-Series™	QFET [®]	TinyCalc™
CROSSVOLT™	Gmax™	QS™	TinyLogic®
CTL™	GTO™	Quiet Series™	TINYOPTO™
Current Transfer Logic™ DEUXPEED [®]	IntelliMAX™ ISOPLANAR™	RapidConfigure ™	TinyPower™
DeoxPEeD ⁻ Dual Cool™	Marking Small Speakers Sound Lo		TinyPWM™
EcoSPARK [®]	and Better™	Saving our world, 1mW/W/kW at a time™	TinyWire™
EfficentMax™	MegaBuck™	SignalWise™	TranSiC™
ESBC™	MICROCOUPLER™	SmartMax™	TriFault Detect™
	MicroFET™	SMART START™	TRUECURRENT®*
F [°]	MicroPak™	Solutions for Your Success™	µSerDes™
Fairchild [®]	MicroPak2™	SPM®	μ
Fairchild Semiconductor [®]	MillerDrive™	STEALTH™	/ SerDes
FACT Quiet Series™	MotionMax™	SuperFET®	
FACT®	mWSaver®	SuperSOT™-3	Ultra FRFET™ UniFET™
FAST®	OptoHiT™	SuperSOT™-6	VCX™
FastvCore™	OPTOLOGIC [®]	SuperSOT™-8	VisualMax™
FETBench™	OPTOPLANAR®	SupreMOS [®]	VoltagePlus™
FPS™		SyncFET™	XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDP032N08B — N-Channel PowerTrench[®] MOSFE⁻

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDP032N08B_F102

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331