Spec No.: DS20-2015-0153Effective Date: 06/16/2015 Revision: - **LITE-ON DCC** **RELEASE** BNS-OD-FC001/A4 # **Through Hole Lamp** # LTL17KTGX3KS | Rev | <u>Description</u> | <u>By</u> | <u>Date</u> | | | | | |------|--|-----------|-------------|--|--|--|--| | P001 | Preliminary SPEC | Craig | 04/08/2015 | Above data for PD and Customer tracking only | | | | | | | | - | Upload SPEC | Lance | 06/02/2015 | ### 1. Description 3mm round lamp is a popular design with a smooth uniform view angle radiation pattern suitable in Full color signboard, Billboard sign, Message sign and bus sign. High luminous intensity output has a higher emitting efficiency to save power energy. Advanced epoxy technology has a good moisture resistance and UV protection to be used in package, and it can reduce the effect of long term exposure in outdoor environment. #### 1. 1. Features - High Luminous intensity output. - Low power consumption & High efficiency. - Superior resistance to moisture - Good UV inhibitor - Lead free & RoHS Compliant - Popular T-1 diameter, InGaN Green color 525nm Lamp, Water clear package - Typical viewing angle 30° #### 1.2. Applications - RGB full color signs - Billboard sign - Message sign - Bus sign ### 2. Outline Dimensions #### Notes: - 1. All dimensions are in millimeters (inches). - 2. Tolerance is ±0.25mm (.010") unless otherwise noted. - 3. Protruded resin under flange is 1.0mm (.04") max. - 4. Lead spacing is measured where the leads emerge from the package. - 5. Specifications are subject to change without notice. ### 3. Absolute Maximum Ratings at TA=25° € | Parameter | Maximum Rating | Unit | | |-------------------------------------|--------------------------|-------|--| | Power Dissipation | 105 | mW | | | Peak Forward Current | | | | | (Duty Cycle≦1/10, Pulse Width≦10ms) | 100 | mA | | | DC Forward Current | 30 | mA | | | Derating Linear From 50°C | 0.57 | mA/°C | | | Reverse Voltage | 5 | V | | | Operating Temperature Range | -30°C to + 85°C | | | | Storage Temperature Range | -40°C to + 100°C | | | | Lead Soldering Temperature | | | | | [2.0mm (.079") From Body] | 260°C for 5 Seconds Max. | | | ### 4. Electrical / Optical Characteristics at TA=25°C | Parameter | Symbol | Min. | Тур. | Max. | Unit | Test Condition | |--------------------------|--------|------|-------|------|------|------------------------------| | Luminous Intensity | IV | 7200 | 19000 | | mcd | IF = 20mA
Note 1,5 | | Viewing Angle | 201/2 | | 30 | | deg | Note 2,7 (Fig.6) | | Peak Emission Wavelength | λР | | 526 | | nm | Measurement
@Peak (Fig.1) | | Dominant Wavelength | λd | 524 | | 536 | nm | Note 4 | | Spectral Line Half-Width | Δλ | | 35 | | nm | | | Forward Voltage | VF | 2.5 | 2.8 | 3.4 | V | IF = 20mA | | Reverse Current | IR | | | 100 | μA | VR = 5V | #### **NOTE:** - 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. - $2. \theta 1/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - 3. Iv classification code is marked on each packing bag. - 4. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. - 5. Iv guarantee must be included with $\pm 15\%$ testing tolerance. - 6. Reverse voltage (VR) condition is applied for IR test only. The device is not designed for reverse operation. - 7. View angle measurement is ± 2 degree tolerance. ### 5. Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted) Fig.1 Relative Intensity VS. Wavelength 2.0 Relative Luminous Intensity Normalized at 20mA 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 20 40 60 80 100 120 Ambient Temperature TA(°C) Fig.5 Relative Luminous Intensity VS. Ambient Temperature Fig.2 Forward Current Derating Curve Fig.4 Relative Luminous Intensity vs. Forward Current Fig.6 Spatial Distribution ### 6. Packing Spec. 1000, 500 or 250 pcs per packing bag 8 packing bags per inner carton Total 8000 pcs per inner carton 8 Inner cartons per outer carton Total 64000 pcs per outer carton In every shipping lot, only the last pack will be non-full packing ### 7. Bin Table Specification | Luminous Intensity Iv (mcd) IF@20mA | | | | | | |-------------------------------------|-------|-------|--|--|--| | Bin Code | Min. | Max. | | | | | X | 7200 | 9300 | | | | | Υ | 9300 | 12000 | | | | | Z | 12000 | 16000 | | | | | 1 | 16000 | 21000 | | | | Note: Tolerance of each bin limit is ±15% | Dominant Wavelength Unit : nm @20mA | | | | | |-------------------------------------|-----|-----|--|--| | Bin Code | Min | Max | | | | G11 | 524 | 528 | | | | G12 | 528 | 532 | | | | G13 | 532 | 536 | | | Note: Tolerance of each bin limit is ±1nm #### 8. CAUTIONS #### 8.1. Application This LED lamp is good for application of indoor and outdoor sign, also ordinary electronic equipment. #### 8.2. Storage The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in desiccators with nitrogen ambient. #### 8.3. Cleaning Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary. #### 8.4. Lead Forming & Assembly During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens. Do not use the base of the lead frame as a fulcrum during forming. Lead forming must be done before soldering, at normal temperature. During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress. #### 8.5. Soldering When soldering, leave a minimum of 3mm clearance from the base of the lens to the soldering point. Dipping the lens into the solder must be avoided. Do not apply any external stress to the lead frame during soldering while the LED is at high temperature. #### **Recommended soldering conditions:** | | Soldering iron | 1 | Wave soldering | | | |-------------------------------|--|------------------------------------|--|--|--| | Temperature
Soldering time | 350°C Max. 3 seconds Max. (one time only) | Pre-heat Pre-heat time Solder wave | 100°C Max.
60 seconds Max.
260°C Max. | | | | Position | No closer than 2mm from the base of the epoxy bulb | Soldering time Dipping Position | 5 seconds Max. No lower than 2mm from the base of the epoxy bulb | | | Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR reflow is not suitable process for through hole type LED lamp product. #### 8.6. Drive Method An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below. #### Circuit model (A) #### Circuit model (B) - (A) Recommended circuit - (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs. # Through Hole Lamp #### 8.7. ESD (Electrostatic Discharge) #### Static Electricity or power surge will damage the LED. #### Suggestions to prevent ESD damage: - Use a conductive wrist band or anti- electrostatic glove when handling these LEDs - All devices, equipment, and machinery must be properly grounded - Work tables, storage racks, etc. should be properly grounded - Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing #### Suggested checking list: #### **Training and Certification** - 8.7.1.1. Everyone working in a static-safe area is ESD-certified? - 8.7.1.2. Training records kept and re-certification dates monitored? #### **Static-Safe Workstation & Work Areas** - 8.7.2.1. Static-safe workstation or work-areas have ESD signs? - 8.7.2.2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V? - 8.7.2.3. All ionizer activated, positioned towards the units? - 8.7.2.4. Each work surface mats grounding is good? #### **Personnel Grounding** - 8.7.3.1. Every person (including visitors) handling ESD sensitive (ESDS) items wear wrist strap, heel strap or conductive shoes with conductive flooring? - 8.7.3.1. If conductive footwear used, conductive flooring also present where operator stand or walk? - 8.7.3.2. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*? - 8.7.3.3. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs? - 8.7.3.4. All wrist strap or heel strap checkers calibration up to date? #### Note: *50V for Blue LED. #### **Device Handling** - 8.7.4.1. Every ESDS items identified by EIA-471 labels on item or packaging? - 8.7.4.2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation? - 8.7.4.3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items? - 8.7.4.4. All flexible conductive and dissipative package materials inspected before reuse or recycle? #### **Others** - 8.7.5.1. Audit result reported to entity ESD control coordinator? - 8.7.5.2. Corrective action from previous audits completed? - 8.7.5.3. Are audit records complete and on file? ### 9. Reliability Test | Classification | Test Item | Test Condition | Sample Size | Reference Standard | |-----------------------|---|--|-----------------------------------|--| | | Operation Life | Ta = 25°C
IF = 30mA
Test Time= 1000hrs | 45 PCS
(CL=90%;
LTPD=5%) | MIL-STD-750D:1026 (1995)
MIL-STD-883G:1005 (2006) | | | High Temperature
High Humidity
storage (THB) | Ta = 85°C
RH = 85%
Test Time= 1000hrs | 45 PCS
(CL=90%;
LTPD=5%) | MIL-STD-202G:103B (2002)
JEITA ED-4701:100 103 (2001) | | Endurance | Steady state
Operation Life of
High Humidity Heat | Ta = 85°C, RH= 85 %
IF = 15mA
Test Time= 500hrs | 76 PCS
(CL=90%;
LTPD=3%) | JESD22-A101C (2009) | | Test | Low Temperature
Operation Life of | Ta = -30°C
IF = 30mA
Test Time= 1000hrs | 45 PCS
(CL=90%;
LTPD=5%) | | | | High Temperature
Storage | Ta= 105 ± 5°C
Test Time= 1000hrs | 45 PCS
(CL=90%;
LTPD=5%) | MIL-STD-750D:1031 (1995)
MIL-STD-883G:1008 (2006)
JEITA ED-4701:200 201 (2001) | | | Low Temperature
Storage | Ta= -55 ± 5°C
Test Time= 1000hrs | 45 PCS
(CL=90%;
LTPD=5%) | JEITA ED-4701:200 202 (2001) | | | Temperature
Cycling | 100°C ~ 25°C ~ -40°C ~ 25°C
30mins 5mins 30mins 5mins
Test time: 200 Cycles | 76 PCS
(CL=90%;
LTPD=3%) | MIL-STD-750D:1051 (1995)
MIL-STD-883G:1010 (2006)
JEITA ED-4701:100 105 (2001)
JESD22-A104C (2005) | | | Thermal
Shock | 100 ± 5°C ~ -30°C ± 5°C
15mins 15mins
Test time: 200 Cycles | 76 PCS
(CL=90%;
LTPD=3%) | MIL-STD-750D:1056 (1995)
MIL-STD-883G:1011 (2006)
MIL-STD-202G:107G (2002)
JESD22-A106B (2004) | | Environmental
Test | Solder
Resistance | T.sol = 260 ± 5°C
Dwell Time= 10±1 seconds
3mm from the base of the epoxy bulb | 11 PCS
(CL=90%;
LTPD=18.9%) | MIL-STD-750D:2031(1995)
JEITA ED-4701: 300 302 (2001) | | | Solderability | T. sol = $245 \pm 5^{\circ}$ C
Dwell Time= 5 ± 0.5 seconds
(Lead Free Solder, Coverage $\geq 95\%$ of
the dipped surface) | 11 PCS
(CL=90%;
LTPD=18.9%) | MIL-STD-750D:2026 (1995)
MIL-STD-883G:2003 (2006)
MIL-STD-202G:208H (2002)
IPC/EIA J-STD-002 (2004) | | | Soldering Iron | T. sol = $350 \pm 5^{\circ}$ C
Dwell Time= 3.5 ± 0.5 seconds | 11 PCS
(CL=90%;
LTPD=18.9%) | MIL-STD-202G:208H (2002)
JEITA ED-4701:300 302 (2001) | ### 10. Others The appearance and specifications of the product may be modified for improvement, without prior notice. # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Lite-On: LTL17KTGX3KS Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научно-исследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331