

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

The SST39LF010. SST39LF020. SST39LF040 and SST39VF010. SST39VF020. SST39VF040 are 128K x8, 256K x8 and 5124K x8 CMOS Multi-Purpose Flash (MPF) manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39LF010/020/040 devices write (Program or Erase) with a 3.0-3.6V power supply. The SST39VF010/020/040 devices write with a 2.7-3.6V power supply. The devices conform to JEDEC standard pinouts for x8 memories.

Features

- Organized as 128K x8 / 256K x8 / 512K x8
- Single Voltage Read and Write Operations
 - -3.0-3.6V for SST39LF010/020/040 -2.7-3.6V for SST39VF010/020/040
- Superior Reliability
 - Endurance: 100,000 Cycles (typical) - Greater than 100 years Data Retention
- Low Power Consumption (typical values at 14 MHz)
 - Active Current: 5 mA (typical) Standby Current: 1 µÀ (typicál)
- Sector-Erase Capability
 - Uniform 4 KByte sectors
- Fast Read Access Time:
 - 45 ns for SST39LF010/020/040
 - 55 ns for SST39LF020/040
 - -70 ns for SST39VF010/020/040
- Latched Address and Data

• Fast Erase and Byte-Program:

- Sector-Erase Time: 18 ms (typical)
- Chip-Erase Time: 70 ms (typical)
 Byte-Program Time: 14 µs (typical)
- Chip Rewrite Time:
 - 2 seconds (typical) for SST39LF/VF010 4 seconds (typical) for SST39LF/VF020 8 seconds (typical) for SST39LF/VF040
- Automatic Write Timing
 - Internal V_{PP} Generation
- End-of-Write Detection

 - Toggle BitData# Polling
- CMOS I/O Compatibility
- JEDEC Standard
 - Flash EEPROM Pinouts and command sets
- Packages Available
 - 32-lead PLCC
 - 32-lead TSOP (8mm x 14mm)
 - 48-ball TFBGA (6mm x 8mm)
 - 34-ball WFBGA (4mm x 6mm) for 1M and 2M
- All devices are RoHS compliant

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Product Description

The SST39LF010, SST39LF020, SST39LF040 and SST39VF010, SST39VF020, SST39VF040 are 128K x8, 256K x8 and 5124K x8 CMOS Multi-Purpose Flash (MPF) manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick-oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39LF010/020/040 devices write (Program or Erase) with a 3.0-3.6V power supply. The SST39VF010/020/040 devices write with a 2.7-3.6V power supply. The devices conform to JEDEC standard pinouts for x8 memories.

Featuring high performance Byte-Program, the SST39LF010/020/040 and SST39VF010/020/040 devices provide a maximum Byte-Program time of 20 μ sec. These devices use Toggle Bit or Data# Polling to indicate the completion of Program operation. To protect against inadvertent write, they have on-chip hardware and Software Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, they are offered with a guaranteed typical endurance of 100,000 cycles. Data retention is rated at greater than 100 years.

The SST39LF010/020/040 and SST39VF010/020/040 devices are suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, they significantly improves performance and reliability, while lowering power consumption. They inherently use less energy during Erase and Program than alternative flash technologies. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. These devices also improve flexibility while lowering the cost for program, data, and configuration storage applications.

The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

To meet surface mount requirements, the SST39LF010/020/040 and SST39VF010/020/040 devices are offered in 32-lead PLCC and 32-lead TSOP packages. The SST39LF/VF010 and SST39LF/VF020 are also offered in a 48-ball TFBGA package. See Figures 2, 3, 4, and 5 for pin assignments.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Block Diagram

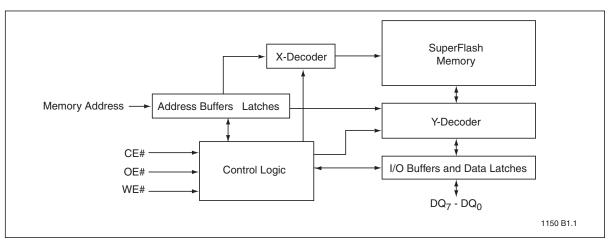


Figure 1: Functional Block Diagram

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Pin Assignments

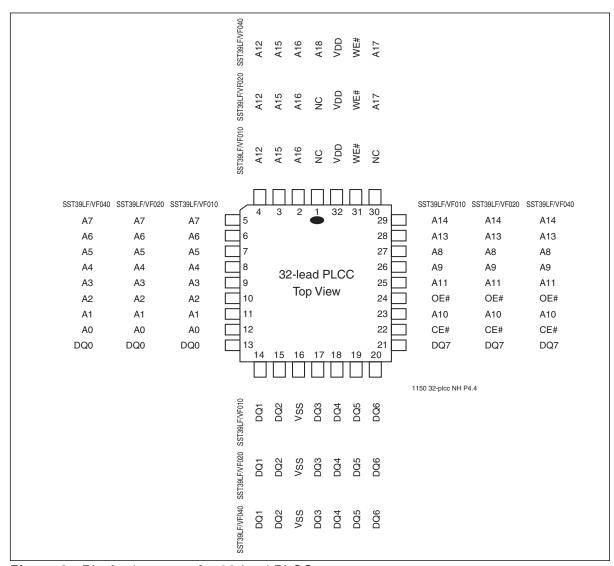


Figure 2: Pin Assignments for 32-lead PLCC

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

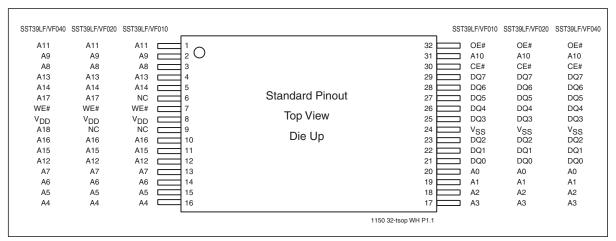


Figure 3: Pin Assignments for 32-lead TSOP (8mm x 14mm)

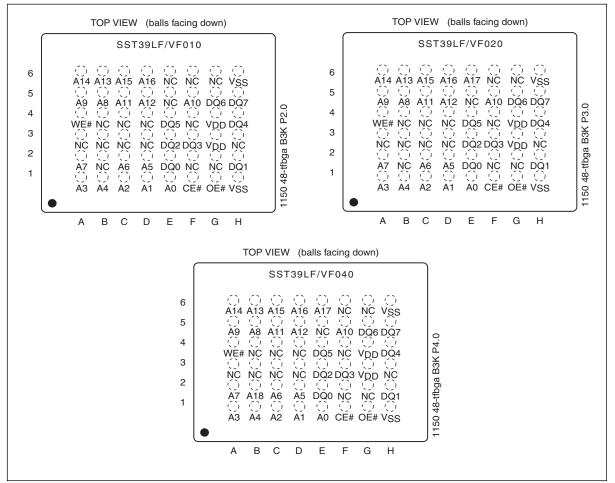


Figure 4: Pin Assignment for 48-ball TFBGA (6mm x 8mm) for 1 Mbit, 2 Mbit, and 4 Mbit

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Figure 5: Pin Assignment for 34-ball WFBGA (4mm x 6mm) for 1 Mbit and 2 Mbit

Table 1: Pin Description

Symbol	Pin Name	Functions	Functions		
A _{MS} ¹ -A ₀	Address Inputs		To provide memory addresses. During Sector-Erase A _{MS} -A ₁₂ address lines will select the sector. During Block-Erase A _{MS} -A ₁₆ address lines will select the block.		
DQ ₇ -DQ ₀	Data Input/output	To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.			
CE#	Chip Enable	To activate the device when CE# is low.			
OE#	Output Enable	To gate the data output buffers.	To gate the data output buffers.		
WE#	Write Enable	To control the Write operations.			
V _{DD}	Power Supply	To provide power supply voltage:	3.0-3.6V for SST39LF010/020/040 2.7-3.6V for SST39VF010/020/040		
V _{SS}	Ground				
NC	No Connection	Unconnected pins.			

1. A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF010, A_{17} for SST39LF/VF020, and A_{18} for SST39LF/VF040

T1.1 25023

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Device Operation

Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

Read

The Read operation of the SST39LF010/020/040 and SST39VF010/020/040 devices are controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 6).

Byte-Program Operation

The SST39LF010/020/040 and SST39VF010/020/040 are programmed on a byte-by-byte basis. Before programming, the sector where the byte exists must be fully erased. The Program operation is accomplished in three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load byte address and byte data. During the Byte-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed, within 20 µs. See Figures 7 and 8 for WE# and CE# controlled Program operation timing diagrams and Figure 17 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, will be ignored.

Sector-Erase Operation

The Sector-Erase operation allows the system to erase the device on a sector-by-sector basis. The sector architecture is based on uniform sector size of 4 KByte. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The sector address is latched on the falling edge of the sixth WE# pulse, while the command (30H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase can be determined using either Data# Polling or Toggle Bit methods. See Figure 11 for timing waveforms. Any commands written during the Sector-Erase operation will be ignored.

Chip-Erase Operation

The SST39LF010/020/040 and SST39VF010/020/040 devices provide a Chip-Erase operation, which allows the user to erase the entire memory array to the '1's state. This is useful when the entire device must be quickly erased.

The Chip-Erase operation is initiated by executing a six- byte Software Data Protection command sequence with Chip-Erase command (10H) with address 5555H in the last byte sequence. The internal Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

internal Erase operation, the only valid read is Toggle Bit or Data# Polling. See Table 4 for the command sequence, Figure 12 for timing diagram, and Figure 20 for the flowchart. Any commands written during the Chip-Erase operation will be ignored.

Write Operation Status Detection

The SST39LF010/020/040 and SST39VF010/020/040 devices provide two software means to detect the completion of a Write (Program or Erase) cycle, in order to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ $_7$) and Toggle Bit (DQ $_6$). The End-of-Write detection mode is enabled after the rising edge of WE# which initiates the internal Program or Erase operation.

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the Write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ_7 or DQ_6 . In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Data# Polling (DQ₇)

When the SST39LF010/020/040 and SST39VF010/020/040 are in the internal Program operation, any attempt to read DQ $_7$ will produce the complement of the true data. Once the Program operation is completed, DQ $_7$ will produce true data. Note that even though DQ $_7$ may have valid data immediately following completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 μ s. During internal Erase operation, any attempt to read DQ $_7$ will produce a "0". Once the internal Erase operation is completed, DQ $_7$ will produce a "1". The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector- or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 9 for Data# Polling timing diagram and Figure 18 for a flowchart.

Toggle Bit (DQ₆)

During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating '0's and '1's, i.e., toggling between 0 and 1. When the internal Program or Erase operation is completed, the toggling will stop. The device is then ready for the next operation. The Toggle Bit is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector- or Chip-Erase, the Toggle Bit is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 10 for Toggle Bit timing diagram and Figure 18 for a flowchart.

Data Protection

The SST39LF010/020/040 and SST39VF010/020/040 provide both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a Write cycle.

Vpp Power Up/Down Detection: The Write operation is inhibited when VpD is less than 1.5V.

Write Inhibit Mode: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Software Data Protection (SDP)

The SST39LF010/020/040 and SST39VF010/020/040 provide the JEDEC approved Software Data Protection scheme for all data alteration operation, i.e., Program and Erase. Any Program operation requires the inclusion of a series of three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte load sequence. These devices are shipped with the Software Data Protection permanently enabled. See Table 4 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to read mode, within $T_{\rm RC}$.

Product Identification

The Product Identification mode identifies the devices as the SST39LF/VF010, SST39LF/VF020, and SST39LF/VF040 and manufacturer as SST. This mode may be accessed by software operations. Users may use the Software Product Identification operation to identify the part (i.e., using the device ID) when using multiple manufacturers in the same socket. For details, see Table 4 for software operation, Figure 13 for the Software ID Entry and Read timing diagram, and Figure 19 for the Software ID entry command sequence flowchart.

Table 2: Product Identification

	Address	Data
Manufacturer's ID	0000H	BFH
Device ID		
SST39LF/VF010	0001H	D5H
SST39LF/VF020	0001H	D6H
SST39LF/VF040	0001H	D7H

T2.1 25023

Product Identification Mode Exit/Reset

In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read operation. Please note that the Software ID Exit command is ignored during an internal Program or Erase operation. See Table 4 for software command codes, Figure 14 for timing waveform, and Figure 19 for a flowchart.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Operations

Table 3: Operation Modes Selection

Mode	CE#	OE#	WE#	DQ	Address
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	A _{IN}
Program	V _{IL}	V _{IH}	V _{IL}	D _{IN}	A _{IN}
Erase	V _{IL}	V _{IH}	V _{IL}	X ¹	Sector address, XXH for Chip-Erase
Standby	V _{IH}	Х	Х	High Z	X
Write Inhibit	Х	V _{IL}	Х	High Z/ D _{OUT}	X
	Х	Х	V _{IH}	High Z/ D _{OUT}	X
Product Identification					
Software Mode	V _{IL}	V _{IL}	V _{IH}		See Table 4

T3.4 25023

Table 4: Software Command Sequence

Command 1st Bus Sequence Write Cycle		2nd Bus Write Cycle		3rd Bus Write Cycle		4th Bus Write Cycle		5th Bus Write Cycle		6th Bus Write Cycle		
	Addr ¹	Data	Addr ¹	Data								
Byte-Program	5555H	AAH	2AAAH	55H	5555H	A0H	BA ²	Data				
Sector-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	SA _X ³	30H
Chip-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	5555H	10H
Software ID Entry ^{4,5}	5555H	AAH	2AAAH	55H	5555H	90H						
Software ID Exit ⁶	XXH	F0H										
Software ID Exit ⁶	5555H	AAH	2AAAH	55H	5555H	F0H						

T4.2 25023

Addresses $A_{\text{MS}}\text{-}A_{15}$ can be V_{IL} or $V_{\text{IH}},$ but no other value, for the Command sequence.

A_{MS} = Most significant address

 $A_{MS} = A_{16}$ for SST39LF/VF010, A_{17} for SST39LF/VF020, and A_{18} for SST39LF/VF040

- 2. BA = Program Byte address
- 3. SA_X for Sector-Erase; uses $A_{MS}\text{-}A_{12}$ address lines
- 4. The device does not remain in Software Product ID mode if powered down.
- 5. With A_{MS} - A_1 = 0; SST Manufacturer's ID = BFH, is read with A_0 = 0,

SST39LF/VF010 Device ID = D5H, is read with $A_0 = 1$,

SST39LF/VF020 Device ID = D6H, is read with $A_0 = 1$,

SST39LF/VF040 Device ID = D7H, is read with $A_0 = 1$.

6. Both Software ID Exit operations are equivalent

^{1.} X can be V_{IL} or $V_{\text{IH}},$ but no other value.

^{1.} Address format A₁₄-A₀ (Hex),

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V_{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	2.0V to V_{DD} +2.0V
Voltage on A ₉ Pin to Ground Potential	0.5V to 13.2V
Package Power Dissipation Capability (Ta = 25°C)	1.0W
Surface Mount Solder Reflow Temperature ¹	\dots . 260°C for 10 seconds
Output Short Circuit Current ²	50 mA

- Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions.
 Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.
- 2. Outputs shorted for no more than one second. No more than one output shorted at a time.

Table 5: Operating Range SST39LF010/020/040

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	3.0-3.6V

T5.1 25023

Table 6: Operating Range SST39VF010/020/040

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7-3.6V
Industrial	-40°C to +85°C	2.7-3.6V

T6.1 25023

Table 7: AC Conditions of Test¹

Input Rise/Fall Time	Output Load		
5ns	C _L = 30 pF for SST39LF010/020/040		
	C _L = 100 pF for SST39VF010/020/040		

T7.1 25023

1. See Figures 15 and 16

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Table 8: DC Operating Characteristics $-V_{DD} = 3.0-3.6V$ for SST39LF010/020/040 and 2.7-3.6V for SST39VF010/020/040¹

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	Power Supply Current				Address input=V _{ILT} /V _{IHT} , at f=1/T _{RC} Min V _{DD} =V _{DD} Max
	Read ²		20	mA	CE#=V _{IL} , OE#=WE#=V _{IH} , all I/Os open
	Program and Erase ³		30	mA	CE#=WE#=V _{IL} , OE#=V _{IH}
I _{SB}	Standby V _{DD} Current		15	μA	CE#=V _{IHC} , V _{DD} =V _{DD} Max
ILI	Input Leakage Current		1	μΑ	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max
I _{LO}	Output Leakage Current		10	μΑ	V _{OUT} =GND to V _{DD} , V _{DD} =V _{DD} Max
V _{IL}	Input Low Voltage		0.8	V	V _{DD} =V _{DD} Min
V _{IH}	Input High Voltage	0.7V _{DD}		V	V _{DD} =V _{DD} Max
V _{IHC}	Input High Voltage (CMOS)	V _{DD} -0.3		V	V _{DD} =V _{DD} Max
V _{OL}	Output Low Voltage		0.2	V	I _{OL} =100 μA, V _{DD} =V _{DD} Min
V _{OH}	Output High Voltage	V _{DD} -0.2		V	I _{OH} =-100 μA, V _{DD} =V _{DD} Min

T8.7 25023

- 1. Typical conditions for the Active Current shown on the front data sheet page are average values at 25°C (room temperature), and $V_{DD} = 3V$ for VF devices. Not 100% tested.
- 2. Values are for 70 ns conditions. See the *Multi-Purpose Flash Power Rating* application note for further information.
- 3. 30 mA max for Erase operations in the industrial temperature range.

Table 9: Recommended System Power-up Timings

Symbol	Parameter	Minimum	Units
T _{PU-READ} 1	Power-up to Read Operation	100	μs
T _{PU-WRITE} ¹	Power-up to Program/Erase Operation	100	μs

Table 10: Capacitance (Ta = 25°C, f=1 Mhz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ¹	I/O Pin Capacitance	$V_{I/O} = 0V$	12 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	6 pF

Table 11: Reliability Characteristics

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ^{1,2}	Endurance	10,000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} ¹	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

T11.3 25023

- 1. This parameter is measured only for initial qualification and after a design or process change that could affect this
- 2. N_{END} endurance rating is qualified as a 10,000 cycle minimum for the whole device. A sector- or block-level rating would result in a higher minimum specification.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

AC Characteristics

Table 12:Read Cycle Timing Parameters - V_{DD} = 3.0-3.6V for SST39LF010/020/040 and 2.7-3.6V for SST39VF010/020/040

		SST39LF010-45 SST39LF020-45 SST39LF040-45		SST39LF020-55 SST39LF040-55		SST39VF010-70 SST39VF020-70 SST39VF040-70		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	45		55		70		ns
T _{CE}	Chip Enable Access Time		45		55		70	ns
T _{AA}	Address Access Time		45		55		70	ns
T _{OE}	Output Enable Access Time		30		30		35	ns
T _{CLZ} ¹	CE# Low to Active Output	0		0		0		ns
T _{OLZ} 1	OE# Low to Active Output	0		0		0		ns
T _{CHZ} ¹	CE# High to High-Z Output		15		15		25	ns
T _{OHZ} ¹	OE# High to High-Z Output		15		15		25	ns
T _{OH} ¹	Output Hold from Address Change	0		0		0		ns

T12.2 25023

Table 13: Program/Erase Cycle Timing Parameters

Symbol	Parameter	Min	Max	Units
T _{BP}	Byte-Program Time		20	μs
T _{AS}	Address Setup Time	0		ns
T _{AH}	Address Hold Time	30		ns
T _{CS}	WE# and CE# Setup Time	0		ns
T _{CH}	WE# and CE# Hold Time	0		ns
T _{OES}	OE# High Setup Time	0		ns
T _{OEH}	OE# High Hold Time	10		ns
T _{CP}	CE# Pulse Width	40		ns
T _{WP}	WE# Pulse Width	40		ns
T _{WPH} ¹	WE# Pulse Width High	30		ns
T _{CPH} ¹	CE# Pulse Width High	30		ns
T _{DS}	Data Setup Time	40		ns
T _{DH} ¹	Data Hold Time	0		ns
T _{IDA} ¹	Software ID Access and Exit Time		150	ns
T _{SE}	Sector-Erase		25	ms
T _{SCE}	Chip-Erase		100	ms

T13.1 25023

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

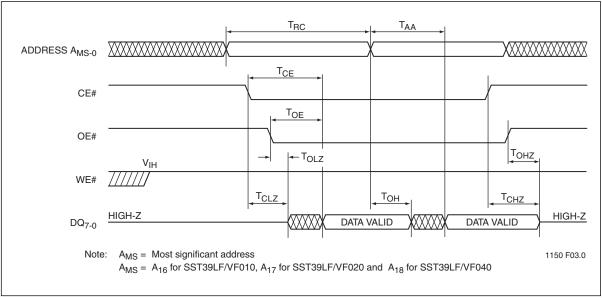


Figure 6: Read Cycle Timing Diagram

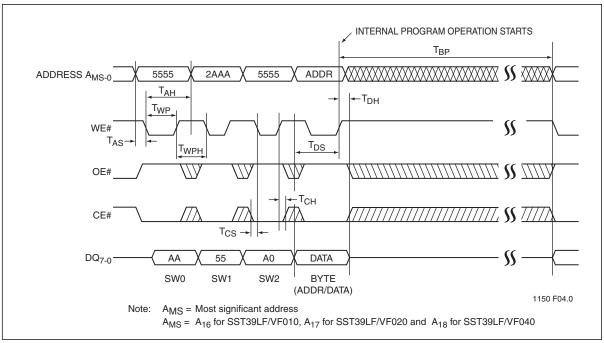


Figure 7: WE# Controlled Program Cycle Timing Diagram

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

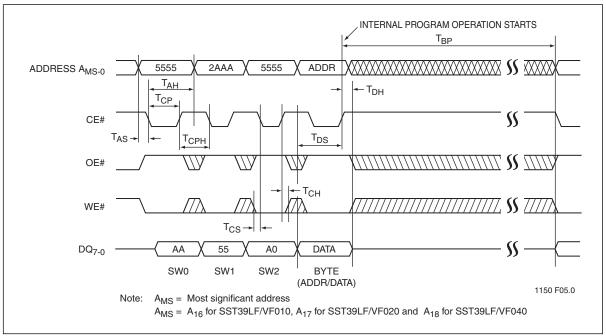


Figure 8: CE# Controlled Program Cycle Timing Diagram

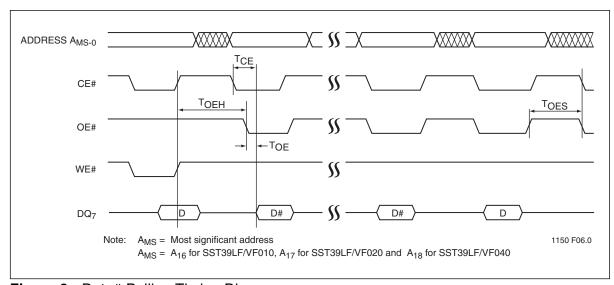


Figure 9: Data# Polling Timing Diagram

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

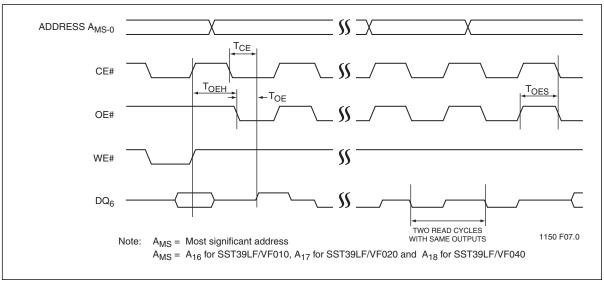


Figure 10:Toggle Bit Timing Diagram

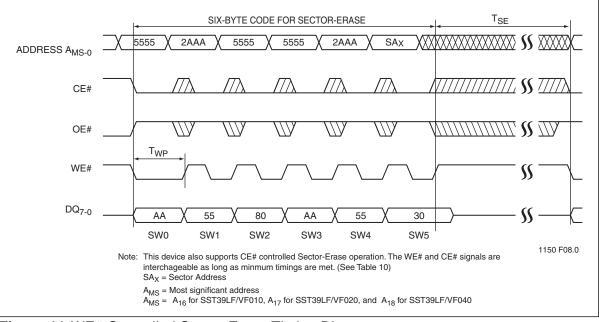


Figure 11:WE# Controlled Sector-Erase Timing Diagram

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

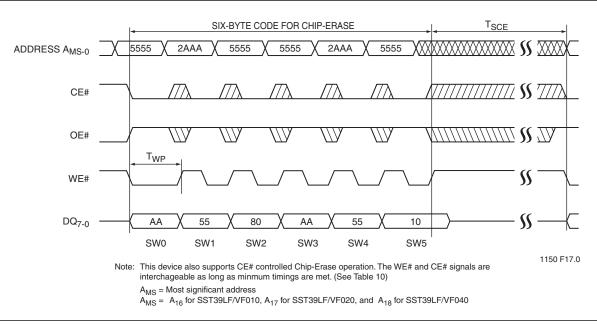


Figure 12:WE# Controlled Chip-Erase Timing Diagram

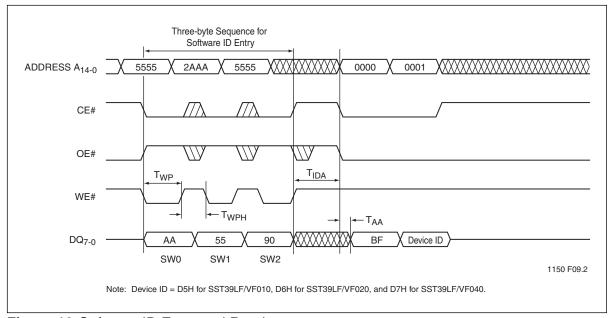


Figure 13: Software ID Entry and Read

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

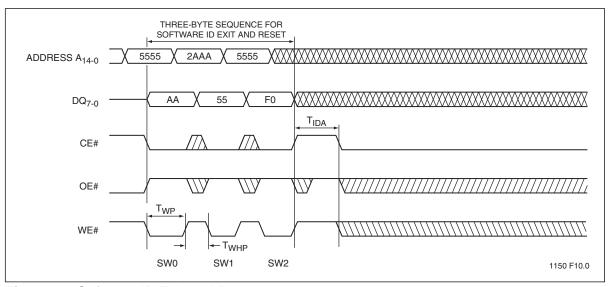


Figure 14: Software ID Exit and Reset

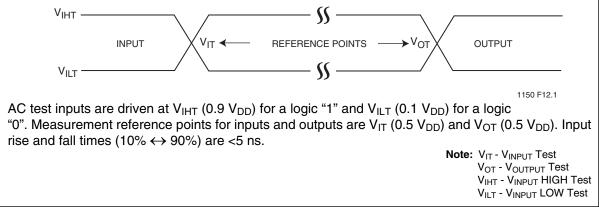


Figure 15:AC Input/Output Reference Waveforms

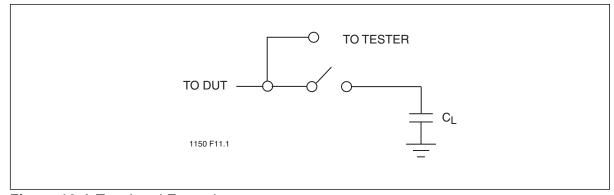


Figure 16:A Test Load Example

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

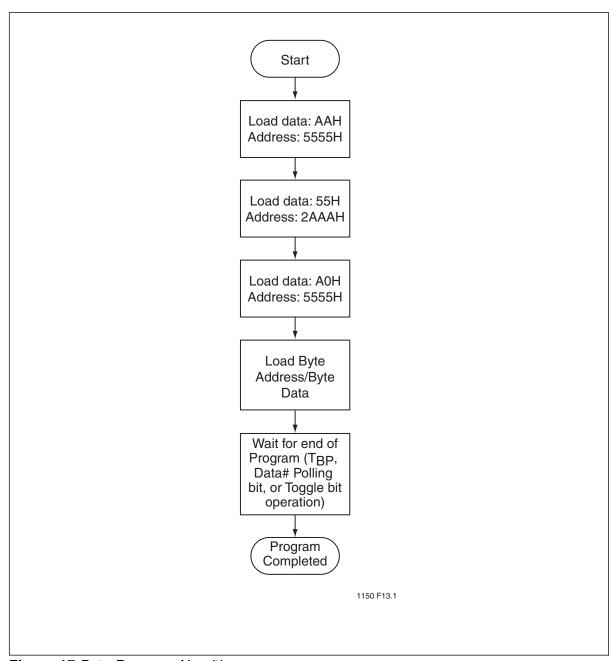


Figure 17:Byte-Program Algorithm

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

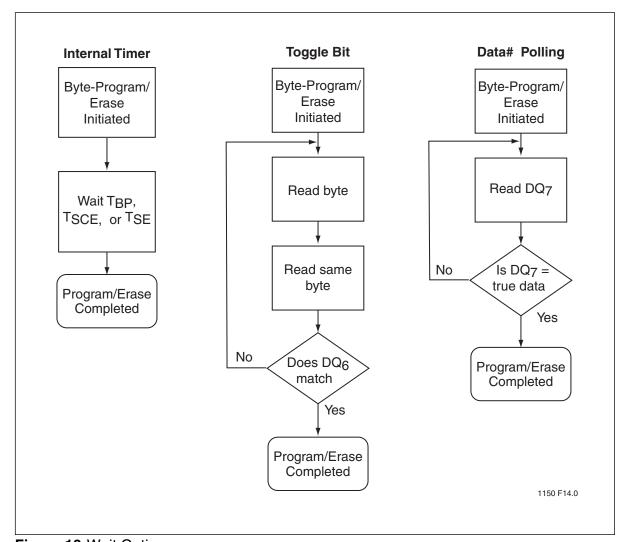


Figure 18: Wait Options

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

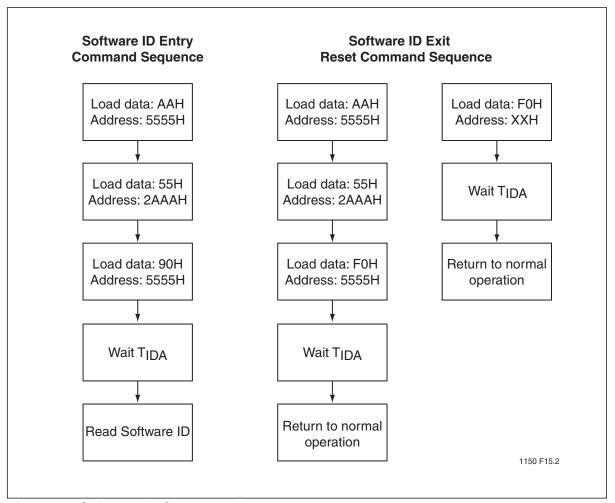
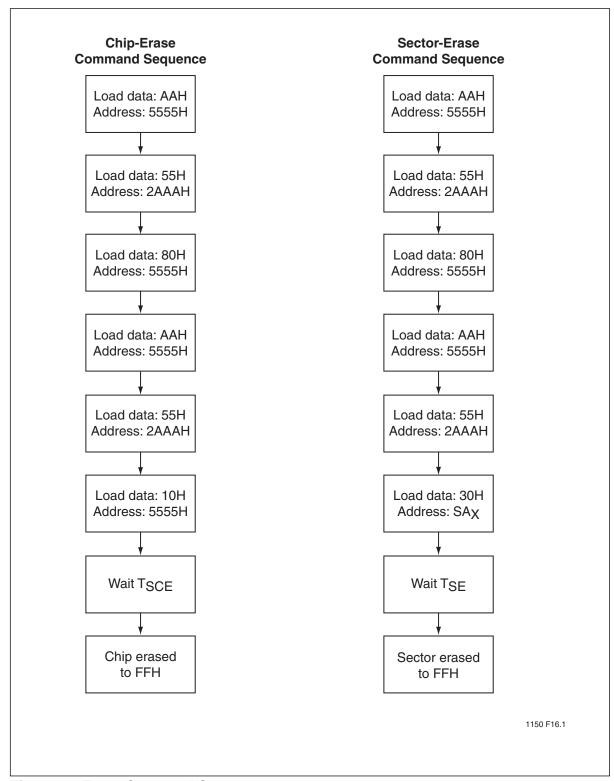
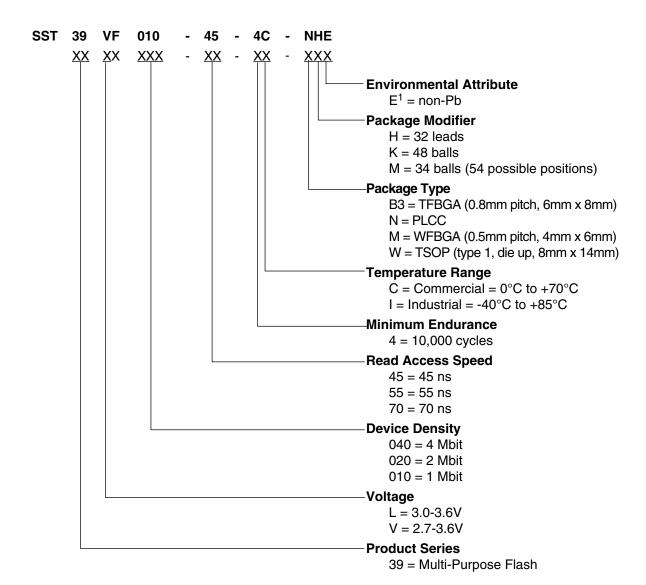


Figure 19: Software ID Command Flowcharts

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040




Figure 20: Erase Command Sequence

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Product Ordering Information

Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are RoHS compliant.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Valid combinations for SST39LF010

SST39LF010-45-4C-NHE SST39LF010-45-4C-WHE SST39LF010-45-4C-B3KE

SST39LF010-45-4C-MME

Valid combinations for SST39VF010

SST39VF010-70-4C-NHE SST39VF010-70-4C-WHE SST39VF010-70-4C-B3KE

SST39VF010-70-4I-NHE SST39VF010-70-4I-WHE SST39VF010-70-4I-B3KE

Valid combinations for SST39LF020

SST39LF020-45-4C-NHE SST39LF020-45-4C-WHE SST39LF020-45-4C-B3KE

SST39LF020-45-4C-MME

Valid combinations for SST39VF020

SST39VF020-70-4C-NHE SST39VF020-70-4C-WHE SST39VF020-70-4C-B3KE

SST39VF020-70-4I-NHE SST39VF020-70-4I-WHE SST39VF020-70-4I-B3KE

Valid combinations for SST39LF040

SST39LF040-45-4C-NHE SST39LF040-45-4C-WHE SST39LF040-45-4C-B3KE

Valid combinations for SST39VF040

SST39VF040-70-4C-NHE SST39VF040-70-4C-WHE SST39VF040-70-4C-B3KE SST39VF040-70-4I-NHE SST39VF040-70-4I-WHE SST39VF040-70-4I-B3KE

Note:Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Packaging Diagrams

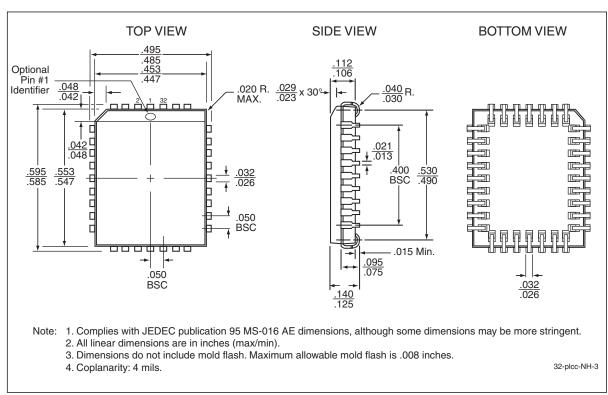
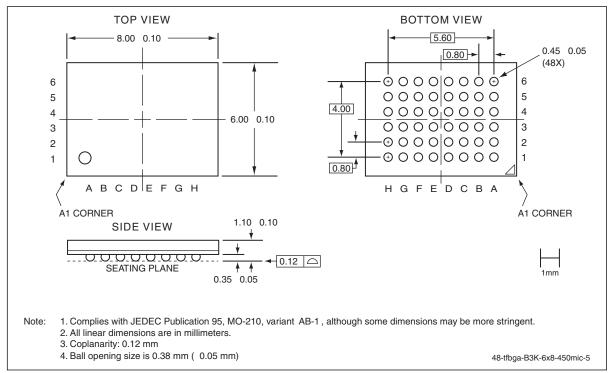



Figure 21:32-lead Plastic Lead Chip Carrier (PLCC) SST Package Code: NH

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Figure 22:48-ball Thin-profile, Fine-pitch Ball Grid Array (TFBGA) 6mm x 8mm SST Package Code: B3K

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

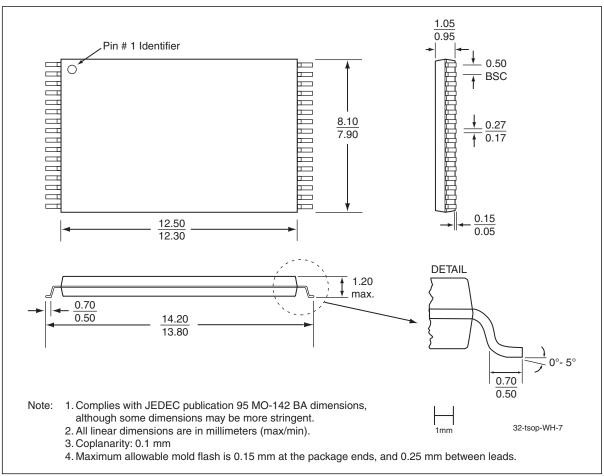
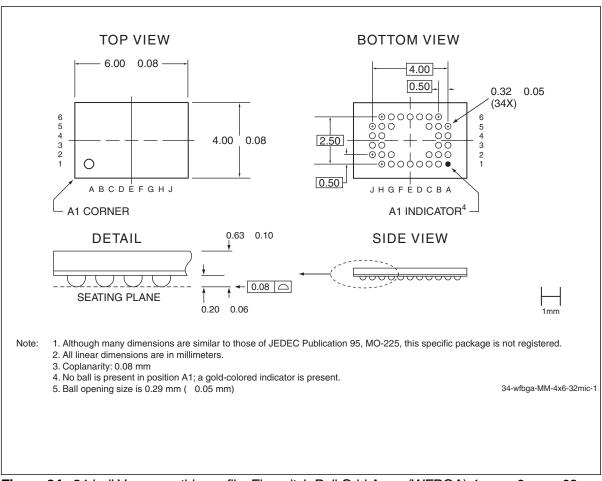



Figure 23:32-lead Thin Small Outline Package (TSOP) 8mm x 14mm SST Package Code: WH

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Figure 24: 34-ball Very-very-thin-profile, Fine-pitch Ball Grid Array (WFBGA) 4mm x 6mm x.63mm SST Package Code: MM

1 Mbit / 2 Mbit / 4 Mbit Multi-Purpose Flash SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

Table 14: Revision History

Number	Description	Date
01	• 2000 Data Book	Feb 2000
02	 Changed speed from 45 ns to 55 ns for the SST39LF020 and SST39LF040 	Aug 2000
03	 2002 Data Book: Reintroduced the 45 ns parts for the SST39LF020 and SST39LF040 	Feb 2002
04	Added the B3K package for the 2 Mbit devices	Oct 2002
	 Added footnote in Table 8 to indicate I_{DD} Write is 30 mA max for Erase operations in the Industrial temperature range. 	
05	Changes to Table 8 on page 13	Mar 2003
	 Added footnote for MPF power usage and Typical conditions Clarified the Test Conditions for Power Supply Current and Read parameters Clarified I_{DD} Write to be Program and Erase Corrected I_{DD} Program and Erase from 20 mA to 30 mA 	
	Part number changes - see page 24 for additional information	0
06	 Added new "MM" Micro-Package MPNs for 1M and 2M LF parts- see page 24 	Oct 2003
07	2004 Data Book	Nov 2003
	 Added non-Pb MPNs and removed footnote (See page 24) 	
	Updated B3K and MM package diagrams	
08	Added RoHS Compliant statement.	Dec 2005
	Added 4 MBit to Figure 4.	
	 Revised Absolute Max Stress Ratings for Surface Mount Solder Reflow Temperature 	
	 Removed SST39VFxxx-90 Timing Parameters from Figure 12. 	
	 Added Footnote and removed Read Access Speed 90 = 90 to Product Ordering Information. 	
	Removed 90 part numbers Valid Combinations lists	
09	 Edited page Valid Combinations on page 21. Changed 39LF040-70-4C- B3KE to 39LF040-45-4C-B3KE 	Jan 2006
10	Removed leaded parts	Nov 2008
11	Added package YME	Feb 2009
12	Revised "Product Ordering Information" on page 24	Apr 2009
13	 Changed endurance from 10,000 to 100,000 in Product Description, page 1 	Sep 2009
14	• EOL of SST39LF010-45-4C-YME. Replacement part is SST39LF010-45-4C-MME in this document.	Jan 2010
	Removed all references to the YME package.	
Α	 EOL of SST39LF512 and SST39VF512 parts. Replacement parts are SST39LF010 and SST39VF010. 	Aug 2011
	Applied new document format.	
	Released document under letter revision system.	
	• Updated spec number S71150 to DS25023.	

SST39LF010 / SST39LF020 / SST39LF040 SST39VF010 / SST39VF020 / SST39VF040

Data Sheet

ISBN:978-1-61341-479-8

© 2011 Silicon Storage Technology, Inc-a Microchip Technology Company. All rights reserved.

SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology nology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and registered trademarks mentioned herein are the property of their respective owners.

Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.

Memory sizes denote raw storage capacity; actual usable capacity may be less.

SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of

For sales office locations and information, please see www.microchip.com.

Silicon Storage Technology, Inc. A Microchip Technology Company www.microchip.com

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331