

TLDR440.

Vishay Semiconductors

High Intensity LED, \oslash 3 mm Tinted Diffused

Description

This LED contains the double heterojunction (DH) GaAlAs on GaAs technology.

This deep red LED can be utilized over a wide range of drive current. It can be DC or pulse driven to achieve desired light output.

The device is available in a 3 mm tinted diffused package.

Features

- Exceptional brightness
- Very high intensity even at low drive currents
- Wide viewing angle
- Low forward voltage
- 3 mm (T-1) tinted diffused package
- Deep red color
- Categorized for luminous intensity
- Outstanding material efficiency
- Lead-free device

Parts Table

Applications

Bright ambient lighting conditions Battery powered equipment Indoor and outdoor information displays Portable equipment Telecommunication indicators General use

Part	Color, Luminous Intensity	Angle of Half Intensity $(\pm \phi)$	Technology
TLDR4400	$Red, I_V > 25 mcd$	40 °	GaAIAs on GaAs
TLDR4401	Red, $I_V = (25 \text{ to } 50) \text{ mcd}$	40 °	GaAIAs on GaAs

Absolute Maximum Ratings

 $T_{amb} = 25 \text{ °C}$, unless otherwise specified **TLDR440**.

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6	V
DC Forward current	T _{amb} ≤ 60 °C	I _F	50	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	A
Power dissipation	T _{amb} ≤ 60 °C	P _V	100	mW
Junction temperature		Тј	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	$t \le 5 s$, 2 mm from body	T _{sd}	260	°C
Thermal resistance junction/ ambient		R _{thJA}	400	K/W

Vishay Semiconductors

Optical and Electrical Characteristics

 $T_{amb} = 25 \ ^{\circ}C$, unless otherwise specified

Red

TLDR440.

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Luminous intensity 1)	I _F = 20 mA	TLDR4400	Ι _V	25	45		mcd
		TLDR4401	I _V	25		50	mcd
Luminous intensity	I _F = 1 mA		Ι _V		2		mcd
Dominant wavelength	I _F = 20 mA		λ_d		648		nm
Peak wavelength	I _F = 20 mA		λ _p		650		nm
Spectral line half width	I _F = 20 mA		Δλ		20		nm
Angle of half intensity	I _F = 20 mA		φ		± 40		deg
Forward voltage	I _F = 20 mA		V _F		1.8	2.2	V
Reverse current	V _R = 6 V		I _R			10	μA
Junction capacitance	V _R = 0, f = 1 MHz		Cj		30		pF

 $^{1)}$ in one Packing Unit $I_{Vmin}/I_{Vmax} \leq 0.5$

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

Figure 1. Power Dissipation vs. Ambient Temperature

Figure 2. Forward Current vs. Ambient Temperature for InGaN

TLDR440.

Vishay Semiconductors

Figure 3. Forward Current vs. Pulse Length

Figure 4. Rel. Luminous Intensity vs. Angular Displacement

Figure 5.

Figure 6. Rel. Luminous Intensity vs. Ambient Temperature

Figure 7. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

Figure 8. Relative Luminous Intensity vs. Forward Current

TLDR440.

Vishay Semiconductors

Figure 9. Relative Intensity vs. Wavelength

Package Dimensions in mm

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331