

Si52144 EVALUATION BOARD USER'S GUIDE

Description

The Si52144 is a four port PCIe clock generator compliant with the PCIe Gen1, Gen2 and Gen3 standards. The Si52144 is a 24-pin QFN device that operates on a 3.3 V power supply and can be controlled using SMBus signals along with hardware control input pins. The differential outputs support spread spectrum and can be controlled through SSON input pin. The Si52144 needs a crystal or clock input of 25 MHz. The connections are described in this document.

EVB Features

This document is intended to be used in conjunction with the Si52144 device and data sheet for the following tests:

- PCIe Gen1, Gen2, Gen3 compliancy
- Power consumption test
- Jitter performance
- Testing out I²C code for signal tuning
- In-system validation where SMA connectors are present

1. Front Panel

Figure 1. Evaluation Module Front Panel

Table 1. Input Jumper Settings

Jumper Label	Туре	Description	
OE0	I	OE0, 3.3 V Input for Enabling DIFF0 Clock Output . 1 = DIFF0 enabled, 0 = DIFF0 disabled.	
OE1	I	OE1, 3.3 V Input for Enabling DIFF1 Clock Output . 1 = DIFF1 enabled, 0 = DIFF1 disabled.	
OE2	I	OE2, 3.3 V Input for Enabling DIFF2 Clock Output . 1 = DIFF2 enabled, 0 = DIFF2 disabled.	
OE3	I	OE3, 3.3 V Input for Enabling DIFF3 Clock Output . 1 = DIFF3 enabled, 0 = DIFF3 disabled.	
SSON	I	SSON Input, 3.3 V-Tolerant Active Input for Spread Selection. Internal 100 k Ω pulldown. Refer to Table 2.	
SDATA	I/O	SMBus-Compatible SDATA.	
SCLK	I	SMBus-Compatible SCLOCK.	

SSON	Frequency (MHz)	Spread (%)	Note
0	100.00	OFF	Default Value for SSON=0
1	100.00	-0.5	

Table 2. Spread Selection

1.1. Generating DIFF Outputs from the Si52144

If the input pins are left floating upon power-on of the device, by default all DIFF outputs DIFF[0:3] are ON with 100 MHz and with spread spectrum disabled. The input pin headers have clear indication of jumper settings for setting logic LOW (0) and HIGH (1) as shown below. The jumper placed on the middle and left pin will set input OE0 to LOW; the jumper placed on the middle and right pin will set input OE0 to HIGH.

The output enable pins can be changed on the fly to observe outputs stopped cleanly. To enable the spread spectrum, the SSON input needs to change from a logic level low to high. Input functionality is explained in detail below.

1.1.1. SSON Input

Apply the appropriate logic level to SSON input to achieve clock frequency selection. When the SSON is HIGH, –0.5% down spread is enabled on all differential outputs with a saw-tooth spread profile. When the SSON is LOW, spread profile is disabled.

1.1.2. OE [0:3] Input

The output enable pins can change on the fly when the device is on. Deasserting (valid low) results in corresponding DIFF output to be stopped after their next transition with final state low/low. Asserting (valid high) results in corresponding output that was stopped are to resume normal operation in a glitch-free manner.

Each of the hardware OE [0:3] pins are mapped via I²C to control bit in Control register. The hardware pin and the Register Control Bit both need to be high to enable the output. Both of these form an "AND" function to disable or enable the DIFF output. The DIFF outputs and their corresponding I²C control bits and hardware pins are listed in Table 3.

I ² C Control Bit	Output	Hardware Control Input
Byte1 [bit 2]	DIFF0	OE0
Byte1 [bit 0]	DIFF1	OE1
Byte2 [bit 7]	DIFF2	OE2
Byte2 [bit 6]	DIFF3	OE3

Table 3. Output Enable Control

2. Schematics

Figure 3. Device Power Supply

VDD_3.3V

Śи

+ C6

10uF

DUTGND

VDD_3V31

HEADER 1x1

TP3 TP4 TP5 GND GND GND O O O

DUTGND

TP1 TP2 GND GND GND1

HEADER 1x1

C7 0.1uF

DUTGND

4

Figure 4. Clock and Control Signals

CONTACT INFORMATION

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331