BROADCAST ANALOG TUNING DIGITAL DISPLAY AM/FM/SW RADIO RECEIVER #### **Features** - Worldwide FM band support (64–109 MHz) - Worldwide AM band support (504–1750 kHz) - SW band support (2.3–28.5 MHz) - Selectable support for all AM/FM/SW regional bands ■ - Enhanced FM/SW band coverage - 2-wire control interface - Mono output - Valid station indicator - Digital volume support - Bass/Treble support - Minimal BOM components with no manual alignment - Excellent real-world performance - China TV channels audio carrier reception in FM band - V 2.0 to 3.6 V supply voltage - Wide range of ferrite loop sticks and air loop antenna support - 16-pin SOIC package - RoHS compliant - Not EN55020 compliant * *Note: For consumer applications that require EN 55020 compliance, use Si4844-B. Ordering Information See page 19. #### **Applications** - Table and portable radios - Boom boxes - Clock radios - Modules for consumer electronics - Toys, lamps, and any application needing an AM/FM/SW radio #### **Description** The Si4827 is an entry level analog-tuned digital-display digital CMOS AM/FM/SW radio receiver IC that integrates the complete receiver function from antenna input to audio output. Working with Host MCU (I²C-compatible 2-wire control interface), frequencies information can be displayed on LCD while the analog-tune features are kept. The Si4827 enhances the FM and SW band coverage, and further supports China TV channels audio reception in FM band. The superior control algorithm integrated in the Si4827 provides an easy and reliable control interface while eliminating all the manual tuned external components used in traditional solutions. #### **Functional Block Diagram** #### **Pin Assignments** Si4827-A10 (SOIC) AOUT IRQ □ 1 ● GND TUNE1 TUNE2 □ VDD XTALI BAND ___ NC XTALO/LNA_EN SCLK FMI _ RFGND _ 10 SDIO RST АМІ 🗆 This product, its features, and/or its architecture is covered by one or more of the following patents, as well as other patents, pending and issued, both foreign and domestic: 7,127,217; 7,272,373; 7,272,375; 7,321,324; 7,355,476; 7,426,376; 7,471,940; 7,339,503; 7,339,504. ## TABLE OF CONTENTS | <u>Section</u> | <u>Page</u> | |-------------------------------------|-------------| | 1. Electrical Specifications | 4 | | 2. Typical Application Schematic | | | 3. Bill of Materials | 12 | | 4. Functional Description | 13 | | 4.1. Overview | 13 | | 4.2. FM Receiver | 14 | | 4.3. AM Receiver | 14 | | 4.4. SW Receiver | 14 | | 4.5. Frequency Tuning | 14 | | 4.6. Band Select | 14 | | 4.7. Bass and Treble | 15 | | 4.8. Volume Control | 15 | | 4.9. High Fidelity DAC | 15 | | 4.10. Soft Mute | | | 4.11. Reference Clock | | | 4.12. Reset, Powerup, and Powerdown | | | 4.13. Memorizing Status | | | 4.14. Programming with Commands | | | 5. Commands and Properties | | | 6. Pin Descriptions: Si4827-A10 | | | 7. Ordering Guide | | | 8. Package Outline: Si4827-A10 | | | 9. PCB Land Pattern: Si4827-A10 | | | 10. Top Markings | | | 10.1. Si4827-A10 Top Marking | | | 10.2. Top Marking Explanation | | | 11. Additional Reference Resources | | | Document Change List | | | Contact Information | 25 | 3 ## 1. Electrical Specifications Table 1. Recommended Operating Conditions^{1,2} | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------------|---------------------|----------------|-----|-----|-----|------| | Supply Voltage ³ | V_{DD} | | 2.0 | _ | 3.6 | V | | Power Supply Powerup Rise Time | V_{DDRISE} | | 10 | _ | _ | μs | | Ambient Temperature Range | T _A | | 0 | 25 | 70 | °C | #### Notes: - Typical values in the data sheet apply at V_{DD} = 3.3 V and 25 °C unless otherwise stated. All minimum and maximum specifications in the data sheet apply across the recommended operating conditions for minimum $V_{DD} = 2.7 \text{ V}.$ - 3. Operation at minimum V_{DD} is guaranteed by characterization when V_{DD} voltage is ramped down to 2.0 V. Part initialization may become unresponsive below 2.3 V. #### **Table 2. DC Characteristics** $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ TA} = 0 \text{ to } 70 \text{ }^{\circ}\text{C})$ | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | | |---|------------------------|----------------|-----|------|-----|------|--| | FM Mode | | | | | | | | | Supply Current* | I _{FM} | | _ | 21.0 | _ | mA | | | AM/SW Mode | AM/SW Mode | | | | | | | | Supply Current* | I _{AM} | | _ | 20.0 | _ | mA | | | Supplies and Interfa | Supplies and Interface | | | | | | | | V _{DD} Powerdown
Current | I _{DDPD} | | _ | 10 | _ | μA | | | *Note: Specifications are guaranteed by characterization. | | | | | | | | **Table 3. Reset Timing Characteristics** $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V, TA} = 0 \text{ to } 70 \text{ °C})$ | Parameter | Symbol | Min | Тур | Max | Unit | |--|-------------------|-----|-----|-----|------| | RSTB Pulse Width | t _{PRST} | 100 | _ | _ | μs | | 2-wire Bus Idle Time After RSTB Rises | t _{SDIO} | 100 | _ | _ | μs | | 2-wire Bus Idle Time Before RSTB Rises, and VDD Valid Time Before RSTB Rises | t _{SRST} | 100 | _ | _ | μs | | RSTB Low Time Before VDD Becomes Invalid | t _{RRST} | 0 | _ | _ | μs | #### Notes: - 1. RSTB must be held low for at least 100 µs after the voltage supply has been ramped up. - 2. RSTB needs to be asserted (pulled low) prior to the supply voltage being ramped down. Figure 1. Reset Timing Table 4. 2-Wire Control Interface Characteristics 1,2,3 $(V_{DD}$ = 2.7 to 3.6 V, T_A = 0 to 70 °C) | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|--|----------------|----------------------------|-----|-----|------| | SCLK Frequency | f _{SCLK} | | 0 | _ | 400 | kHz | | SCLK Low Time | t _{LOW} | | 1.3 | _ | _ | μs | | SCLK High Time | t _{HIGH} | | 0.6 | _ | _ | μs | | SCLK Input to SDIO ↓ Setup
(START) | t _{SU:STA} | | 0.6 | _ | _ | μs | | SCLK Input to SDIO ↓ Hold (START) | t _{HD:STA} | | 0.6 | _ | _ | μs | | SDIO Input to SCLK ↑ Setup | t _{SU:DAT} | | 100 | _ | _ | ns | | SDIO Input to SCLK ↓ Hold ^{4,5} | t _{HD:DAT} | | 0 | _ | 900 | ns | | SCLK input to SDIO [↑] Setup
(STOP) | t _{SU:STO} | | 0.6 | _ | _ | μs | | STOP to START Time | t _{BUF} | | 1.3 | _ | _ | μs | | SDIO Output Fall Time | t _{f:OUT} | | $20 + 0.1 \frac{C_b}{1pF}$ | _ | 250 | ns | | SDIO Input, SCLK Rise/Fall Time | t _{f:IN}
t _{r:IN} | | $20 + 0.1 \frac{C_b}{1pF}$ | _ | 300 | ns | | SCLK, SDIO Capacitive Loading | C _b | | _ | _ | 50 | pF | | Input Filter Pulse Suppression | t _{SP} | | _ | _ | 50 | ns | #### Notes: - 1. When V_D = 0 V, SCLK and SDIO are low impedance. - 2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is high) does not occur within 300 ns before the rising edge of RST. - 3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until after the first start condition. - **4.** The Si4827 delays SDIO by a minimum of 300 ns from the V_{IH} threshold of SCLK to comply with the minimum t_{HD:DAT} specification. - 5. The maximum t_{HD:DAT} has only to be met when f_{SCLK} = 400 kHz. At frequencies below 400 kHz, t_{HD:DAT} may be violated as long as all other timing parameters are met. Figure 2. 2-Wire Control Interface Read and Write Timing Parameters Figure 3. 2-Wire Control Interface Read and Write Timing Diagram 7 Table 5. FM Receiver Characteristics 1,2 $(V_{DD}$ = 2.7 to 3.6 V, TA = 0 to 70 °C) | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|-----------------|-----------------|-----|-----|-----|-------------------| | Input Frequency | f _{RF} | | 64 | _ | 109 | MHz | | Sensitivity with Headphone
Network ³ | | (S+N)/N = 26 dB | _ | 4.0 | _ | μV EMF | | LNA Input Resistance ^{4,5} | | | _ | 4 | _ | kΩ | | LNA Input Capacitance ^{4,5} | | | _ | 5 | _ | pF | | AM Suppression ^{4,5,6,7} | | m = 0.3 | _ | 50 | _ | dB | | Input IP3 ^{4,8} | | | _ | 105 | _ | dBµV EMF | | Adjacent Channel Selectivity ⁴ | | ±200 kHz | _ | 45 | _ | dB | | Alternate Channel Selectivity ⁴ | | ±400 kHz | _ | 60 | _ | dB | | Audio Output Voltage ^{5,6,7,12} | | | _ | 72 | _ | mV _{RMS} | | Audio Mono S/N ^{5,6,7,9,10} | | | _ | 45 | _ | dB | | Audio Frequency Response Low ⁴ | | –3 dB | _ | _ | 30 | Hz | | Audio Frequency Response High ⁴ | | –3 dB | 15 | _ | _ | kHz | | Audio THD ^{5,6,11} | | | _ | 0.1 | 0.5 | % | | Audio Output Load Resistance ^{4,10} | R _L | Single-ended | 10 | _ | _ | kΩ | | Audio Output Load Capacitance ^{4,10} | C _L | Single-ended | _ | _ | 50 | pF | #### Notes: - **1.** Additional testing information is available in "AN603: Si4822/26/27/40/44-DEMO Board Test Procedure" Volume = maximum for all tests. Tested at RF = 98.1 MHz. - 2. To ensure proper operation and receiver performance, follow the guidelines in "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines." Silicon Laboratories will evaluate schematics and layouts for qualified customers. - 3. Frequency is 64~109 MHz. - 4. Guaranteed by characterization. - **5.** $V_{EMF} = 1 \text{ mV}.$ - **6.** F_{MOD} = 1 kHz, MONO, and L = R unless noted otherwise. - **7.** $\Delta f = 22.5 \text{ kHz}.$ - 8. $|f_2 f_1| > 2$ MHz, $f_0 = 2 \times f_1 f_2$. - **9.** $B_{AF} = 300 \text{ Hz to } 15 \text{ kHz}, \text{ A-weighted}.$ - **10.** At A_{OUT} pin. - **11.** $\Delta f = 75 \text{ kHz}.$ - 12. Tested in Digital Volume Mode. ## Table 6. AM/SW Receiver Characteristics 1, 2 $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ TA} = 0 \text{ to } 70 ^{\circ}\text{C})$ | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|-----------------|--|-----|-----|------|----------------------| | Input Frequency | f _{RF} | Medium Wave (AM) | 504 | _ | 1750 | kHz | | | | Short Wave (SW) | 2.3 | _ | 28.5 | MHz | | Sensitivity ^{3,4,5} | | (S+N)/N = 26 dB | _ | 30 | _ | μV EMF | | Large Signal Voltage Handling ⁵ | | THD < 8% | _ | 300 | _ | mV _{RMS} | | Power Supply Rejection Ratio ⁵ | | ΔV_{DD} = 100 mV _{RMS} , 100 Hz | _ | 40 | _ | dB | | Audio Output Voltage ^{3,6,8} | | | _ | 54 | _ | ${\sf mV}_{\sf RMS}$ | | Audio S/N ^{3,4,6} | | | _ | 45 | _ | dB | | Audio THD ^{3,6} | | | | 0.1 | _ | % | | Antenna Inductance ^{5,7} | | | 180 | | 450 | μH | #### Notes: - Additional testing information is available in "AN603: Si4822/26/27/40/44 DEMO Board Test Procedure." Volume = maximum for all tests. Tested at RF = 6 MHz. - 2. To ensure proper operation and receiver performance, follow the guidelines in "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines." Silicon Laboratories will evaluate schematics and layouts for qualified customers. - 3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter. - **4.** B_{AF} = 300 Hz to 15 kHz, A-weighted. - **5.** Guaranteed by characterization. - 6. $V_{IN} = 5 \text{ mVrms}$. - 7. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels. - 8. Tested in Digital Volume Mode. #### Table 7. Reference Clock and Crystal Characteristics $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, T_A = 0 \text{ to } 70 \text{ }^{\circ}\text{C})$ | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|--------|-------------------|--------|--------|--------|------| | | R | Reference Clock | | | | | | XTALI Supported Reference Clock Frequencies* | | | 31.130 | 32.768 | 40,000 | kHz | | Reference Clock Frequency
Tolerance for XTALI | | | -100 | _ | 100 | ppm | | REFCLK_PRESCALE | | | 1 | _ | 4095 | | | REFCLK | | | 31.130 | 32.768 | 34.406 | kHz | | | С | rystal Oscillator | | | | | | Crystal Oscillator Frequency | | | _ | 32.768 | _ | kHz | | Crystal Frequency Tolerance | | | -100 | _ | 100 | ppm | | Board Capacitance | | | _ | _ | 3.5 | pF | *Note: The Si4827-A10 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 9 of "AN610: Si48xx ATDD Programming Guide." **Table 8. Thermal Conditions** | Parameter | Symbol | Min | Тур | Max | Unit | | |---|----------------|-----|-----|-----|------|--| | Thermal Resistance* | θ_{JA} | _ | 80 | _ | °C/W | | | Ambient Temperature | T _A | 0 | 25 | 70 | °C | | | Junction Temperature T _J — — 77 °C | | | | | | | | *Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad. | | | | | | | ### Table 9. Absolute Maximum Ratings^{1,2} | Parameter | Symbol | Value | Unit | |-----------------------------|------------------|-------------|-----------------| | Supply Voltage | V_{DD} | -0.5 to 5.8 | V | | Input Current ³ | I _{IN} | 10 | mA | | Operating Temperature | T _{OP} | -40 to 95 | °C | | Storage Temperature | T _{STG} | -55 to 150 | °C | | RF Input Level ⁴ | | 0.4 | V _{PK} | #### Notes: - 1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended operating conditions for extended periods may affect device reliability. - 2. The Si4827-A10 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV HBM. Handling and assembly of these devices should only be done at ESD-protected workstations. - 3. For input pins RST, SDIO, SCLK, XTALO/LNA EN, XTALI, BAND, TUNE2, TUNE1 and IRQ. - 4. At RF input pins, FMI, and AMI. ## 2. Typical Application Schematic #### Notes: - 1. Place C4 close to VDD and GND pins. - 2. All grounds connect directly to GND plane on PCB. - 3. Pin 5 leave floating. - 4. To ensure proper operation and receiver performance, follow the guidelines in "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines." Silicon Labs will evaluate the schematics and layouts for qualified customers. - 5. Pin 6 connects to the FM antenna interface and pin 8 connects to the AM antenna interface. - 6. Place Si4827 as close as possible to antenna jack and keep the FMI and AMI traces as short as possible. - 7. Recommend keeping the AM ferrite loop antenna at least 5 cm away from the Si4827. - 8. Keep the AM ferrite loop antenna away from MCU, audio amplifier, and other circuits which have AM interference. - 9. Place the transformer T1 away from any sources of interference and even away from the I/O signals of the Si4827. ## 3. Bill of Materials Table 10. Si4827-A10 Bill of Materials | Component(s) | Value/Description | Supplier | | | |--------------|--|--------------------------|--|--| | C1 | Reset capacitor 0.1 µF, ±20%, Z5U/X7R | | | | | C4 | Supply bypass capacitor, 0.1 µF, ±20%, Z5U/X7R | Murata | | | | C5 | Coupling capacitor, 0.47 µF, ±20%, Z5U/X7R | Murata | | | | B1 | Ferrite bead 2.5 k/100 MHz | Murata | | | | VR1 | Variable resistor (POT), 100 kΩ, ±10% | Kennon | | | | U1 | Si4827-A AM/FM/SW Analog Tune Digital Display Radio Tuner | Silicon Laboratories | | | | ANT1 | Ferrite stick,180–450 µH | Jiaxin | | | | | Optional Components | | | | | C2, C3 | Crystal load capacitors, 22 pF, ±5%, COG (Optional: for crystal oscillator option) | Venkel | | | | Y1 | 32.768 kHz crystal (Optional: for crystal oscillator option) | Epson or equivalent | | | | ANT2 | Air loop antenna, 10–20 μH | Various | | | | S1 | Band switch | Any, depends on customer | | | | R1 | Resistor, 203 k Ω , $\pm 1\%$ | Venkel | | | | R2 | Resistor, 50 kΩ, ±1%, | Venkel | | | | R3 | Resistor, 180 kΩ, ±1% | Venkel | | | | R4 | Resistor, 67 kΩ, ±1% | Venkel | | | ## 4. Functional Description Figure 4. Si4827-A10 Functional Block Diagram #### 4.1. Overview The Si4827-A10 is the entry level analog-tuned digitaldisplay digital CMOS AM/FM/SW radio receiver IC that integrates the complete receiver function from antenna input to audio output. Working with an external MCU with LCD/LED driver, Si4827 can output the AM/FM/SW frequencies and band and volume information to display on LCD/LED, while using a simple potentiometer at the for analog-tune. Leveraging front end Laboratories' proven and patented digital intermediate frequency (low-IF) receiver architecture. the Si4827 delivers superior RF performance and interference rejection in AM, FM and SW bands. Additionally, the digital core provides advanced audio conditioning for all environments, removing pops, clicks, and loud static in variable signal conditions. The superior control algorithm integrated in Si4827 provides easy and reliable control interface while eliminating all the manual tuned external components used in traditional solutions. Like other successful audio products from Silicon Labs, Si4827 offers unmatched integration and PCB space savings with minimum external components and a small board area on a single side PCB. The high integration and complete system production test simplifies designin, increases system quality, and improves manufacturability. The receiver has very low power consumption, runs off two AAA batteries, and delivers the performance benefits of high performance digital radio experience with digital display to the legacy analog-tuned radio market. The Si4827 provides good flexibility in using the chip. The frequency range of FM/AM/SW bands, deemphasis value, AM tuning step, and AM soft mute level/rate can be either configured by the MCU or by using external hardware to make a selection. The reference clock of the FM tuner can be provided by either the crystal or by the host MCU within tolerance. The Si4827 also has flexibility in selecting bands and configuring band properties, enabling masked Host MCU for multiple projects, and reducing the cost of development. Four tuning preferences are available to meet different tuning preference requirements. #### 4.2. FM Receiver The Si4827-A10 integrates a low noise amplifier (LNA) supporting the worldwide FM broadcast band (64 to 109 MHz) and the TV audio stations within the frequency range in China area are also supported. The FM band can also be configured to be wider range such as 64–108 MHz in one band. Pre-emphasis and de-emphasis is a technique used by FM broadcasters to improve the signal-to-noise ratio of FM receivers by reducing the effects of high frequency interference and noise. When the FM signal is transmitted, a pre-emphasis filter is applied to accentuate the high audio frequencies. All FM receivers incorporate a de-emphasis filter which attenuates high frequencies to restore a flat frequency response. Two time constants are used in various regions. The de-emphasis time constant can be chosen to be 50 or 75 µs. Refer to "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines." #### 4.3. AM Receiver The highly integrated Si4827-A10 supports worldwide AM band reception from 504 to 1750 kHz with five subbands using a digital low-IF architecture with a minimum number of external components and no manual alignment required. This patented architecture allows for high-precision filtering, offering excellent selectivity and SNR with minimum variation across the AM band. Similar to the FM receiver, the Si4827-A10 optimizes sensitivity and rejection of strong interferers, allowing better reception of weak stations. To offer maximum flexibility, the receiver supports a wide range of ferrite loop sticks from 180–450 μ H. An air loop antenna is supported by using a transformer to increase the effective inductance from the air loop. Using a 1:5 turn ratio inductor, the inductance is increased by 25 times and easily supports all typical AM air loop antennas, which generally vary between 10 and 20 μ H. A 9, 10 kHz tuning step can be chosen by the external resistor or host MCU according to the different regions, and AM soft mute level can be programmed by the host MCU to have different tuning experiences. One of the AM bands can be configured as a universal AM band that simultaneously supports 9 kHz and 10 kHz channel spaces for all regional AM standards. Refer to "AN610: Si48xx ATDD Programming Guide" and "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" for more details. #### 4.4. SW Receiver The Si4827 supports short wave band receptions from 2.3 to 28.5 MHz in 5 kHz step size increments. It can also be configured to have wide SW band that can be used in SW radio with 1 or 2 SW bands. The Si4827 supports extensive short wave features such as minimal discrete components and no factory adjustments. The Si4827 supports using the FM antenna to capture short wave signals. Refer to "AN610: Si48xx ATDD Programming Guide" and "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" for more details. #### 4.5. Frequency Tuning A valid channel can be found by tuning the potentiometer that is connected to the TUNE1 and TUNE2 pin of the Si4827-A10 chip. To offer easy tuning, the Si4827-A10 also outputs the tuned information to the MCU with LCD/LED driver to display. It will light up the icon on display if the RF signal quality passes a certain threshold when tuned to a valid station. Refer to "AN610: Si48xx ATDD Programming Guide" for more details. #### 4.6. Band Select The Si4827-A10 supports worldwide AM band with five sub-bands, US/Europe/Japan/China FM band with five sub-bands, and SW band with 16 sub-bands. Si4827-A10 provides the flexibility to configure the band and band properties at either the MCU side or the tuner side, enabling masked MCU for multiple projects. For details on band selection, refer to "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" and "AN610: Si48xx ATDD Programming Guide". #### 4.7. Bass and Treble The Si4827-A10 supports Bass/Treble tone control for superior sound quality. The Si4827-A10 can be set to be default normal, or programmed by the host MCU I²C-compatible 2-wire mode. FM has nine levels Bass/Treble effect and AM/SW has seven levels Bass/Treble effect. For further configuration details, refer to "AN610: Si48xx ATDD Programming Guide". #### 4.8. Volume Control The Si4827-A10 not only allows users to use the traditional PVR wheel volume control through an external speaker amplifier, it also supports digital volume control programmed by the host MCU. Si4827-A10 can be programmed to be Bass/Treble mode only or digital volume mode only; it can also be programmed to have the digital volume coexist with Bass/Treble in two modes. Refer to "AN610: Si48xx ATDD Programming Guide" and "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" for more details. #### 4.9. High Fidelity DAC High-fidelity digital-to-analog converters (DACs) drive analog audio signals onto the AOUT pin. The audio output may be muted. #### 4.10. Soft Mute The soft mute feature is available to attenuate the audio outputs and minimize audible noise in very weak signal conditions. Advanced algorithm is implemented to get a better analog tuning experience. The soft mute feature is triggered by the SNR metric. The SNR threshold for activating soft mute is programmable, as are soft mute attenuation levels and attack and decay rates. #### 4.11. Reference Clock The Si4827-A10 supports RCLK input (to XTALI pin) with the spec listed in Table 7. It can be shared with the host MCU to save extra crystal. An onboard crystal oscillator is available to generate the 32.768 kHz reference when an external crystal and load capacitors are provided. Refer to "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" for more details. #### 4.12. Reset, Powerup, and Powerdown Setting the RSTB pin low will disable analog and digital circuitry, reset the registers to their default settings, and disable the bus. Setting the RSTB pin high will bring the device out of reset. Figure 1 shows typical reset, startup, and shutdown timings for the Si4827. RSTB must be held low (asserted) during any power supply transitions and kept asserted as specified in Figure 1 after the power supplies are ramped up and stable. Failure to assert RSTB as indicated here may cause the device to malfunction and may result in permanent device damage. A powerdown mode is available to reduce power consumption when the part is idle. Putting the device in powerdown mode will disable analog and digital circuitry while keeping the bus active. #### 4.13. Memorizing Status The Si4827-A10 provides the feature to memorize status from the last power down with a simple design on PCB, including frequency of the FM/AM/SW station. Refer to "AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines" for details. #### 4.14. Programming with Commands To ease development time and offer maximum customization, the Si4827 provides a simple yet powerful software interface to program the receiver. The device is programmed using commands, arguments, properties, and responses. To perform an action, the user writes a command byte and associated arguments, causing the chip to execute the given command. Commands control an action such as powerup the device, shut down the device, or get the current tuned frequency. Arguments are specific to a given command and are used to modify the command. Properties are a special command argument used to modify the default chip operation and are generally configured immediately after powerup. Examples of properties are de-emphasis level and soft mute attenuation threshold. Responses provide the user information and are echoed after a command and associated arguments are issued. All commands provide a 1-byte status update, indicating interrupt and clear-to-send status information. For a detailed description of the commands and properties for the Si4827, see "AN610: Si48xx ATDD Programming Guide". ## 5. Commands and Properties Table 11. Si4827-A10 FM Receiver Command Summary | Cmd | Name | Description | | |------|--|---|--| | 0xE0 | ATDD_GET_STATUS | Get tune freq, band and etc., status of the device. | | | 0xE1 | 0xE1 ATDD_POWER_UP Power up device, band selection, and band properties setup. | | | | 0xE2 | ATDD_AUDIO_MODE | Audio output mode: get/set audio mode and settings. | | | 0x10 | GET_REV | Returns the revision information of the device. | | | 0x11 | POWER_DOWN | Power down device. | | | 0x12 | SET_PROPERTY | Sets the value of a property. | | | 0x13 | GET_PROPERTY | Retrieve a property's value. | | **Note:** The Si4827 has its own power up and get status commands which are different from previous si47xx tuner parts. To differentiate, we use "ATDD_POWER_UP" and ATDD_GET_STATUS to denote the ATDD specific commands instead of the general si47xx "POWER_UP" and "STATUS" commands. Table 12. Si4827-A10 FM Receiver Property Summary | Prop | Name | Description | Default | |--------|----------------------------------|---|---------| | 0x0201 | REFCLK_FREQ | Sets frequency of reference clock in Hz. The range is 31130 to 34406 Hz, or 0 to disable the AFC. Default is 32768 Hz. | 0x8000 | | 0x0202 | REFCLK_PRESCALE | Sets the prescaler value for RCLK input. | 0x0001 | | 0x1100 | FM_DEEMPHASIS | Sets deemphasis time constant. Default is 75 µs. | 0x0002 | | 0x1300 | FM_SOFT_MUTE_RATE | Sets the attack and decay rates when entering and leaving soft mute. | 0x0040 | | 0x1301 | FM_SOFT_MUTE_SLOPE | Configures attenuation slope during soft mute in dB attenuation per dB SNR below the soft mute SNR threshold. Default value is 2. | 0x0002 | | 0x1302 | FM_SOFT_MUTE_
MAX_ATTENUATION | Sets maximum attenuation during soft mute (dB). Set to 0 to disable soft mute. Default is 16 dB. | 0x0010 | | 0x1303 | FM_SOFT_MUTE_
SNR_THRESHOLD | Sets SNR threshold to engage soft mute. Default is 4 dB. | | | 0x4000 | RX_VOLUME | Sets the output volume. | | | 0x4001 | RX_HARD_MUTE | Mutes the audio output. L and R audio outputs may be muted independently. | | | 0x4002 | RX_BASS_TREBLE | Sets the output bass/treble level. | 0x0004 | | 0x4003 | RX_ACTUAL_VOLUME | Read the actual output volume. | 0x003F | Table 13. Si4827-A10 AM/SW Receiver Command Summary | Cmd | Name | Description | |------|-----------------|--| | 0xE0 | ATDD_GET_STATUS | Get tune freq, band and etc status of the device | | 0xE1 | ATDD_POWER_UP | Power up device, band selection, and band properties setup | | 0xE2 | ATDD_AUDIO_MODE | Audio output mode: get/set audio mode settings. | | 0x10 | GET_REV | Returns the revision information of the device. | | 0x11 | POWER_DOWN | Power down device. | | 0x12 | SET_PROPERTY | Sets the value of a property. | | 0x13 | GET_PROPERTY | Retrieve a property's value. | **Note:** The Si4827 has its own power up and get status commands which are different from previous si47xx tuner parts. To differentiate, we use "ATDD_POWER_UP" and ATDD_GET_STATUS to denote the ATDD specific commands instead of the general Si47xx "POWER_UP" and "STATUS" commands. Table 14. Si4827-A10 AM/SW Receiver Property Summary | Prop | Name | Description | Default | |--------|----------------------------------|--|----------| | 0x0201 | REFCLK_FREQ | Sets frequency of reference clock in Hz. The range is 31130 to 34406 Hz, or 0 to disable the AFC. Default is 32768 Hz. | 0x8000 | | 0x0202 | REFCLK_PRESCALE | Sets the prescaler value for RCLK input. | 0x0001 | | 0x4000 | RX_VOLUME | Sets the output volume. | 0x003F | | 0x4001 | RX_HARD_MUTE | Mutes the audio output. L and R audio outputs may be muted independently. | 0x0000 | | 0x4002 | RX_BASS_TREBLE | Sets the output bass/treble level. | 0x0003 | | 0x4003 | RX_ACTUAL_VOLUME | Read the actual output volume. | 0x003F | | 0x3300 | AM_SOFT_MUTE_RATE | Sets the attack and decay rates when entering and leaving soft mute. | 0x0040 | | 0x3301 | AM_SOFT_MUTE_SLOPE | Configures attenuation slope during soft mute in dB attenuation per dB SNR below the soft mute SNR threshold. | 0x0002., | | 0x3302 | AM_SOFT_MUTE_
MAX_ATTENUATION | Sets maximum attenuation during soft mute (dB). Set to 0 to disable soft mute. | | | 0x3303 | AM_SOFT_MUTE_
SNR_THRESHOLD | Sets SNR threshold to engage soft mute. | 0x0008 | ## 6. Pin Descriptions: Si4827-A10 | Pin Number(s) | Name | Description | |---------------|--------------|--| | 1 | IRQ | Interrupt request. | | 2 | TUNE1 | Frequency tuning. | | 3 | TUNE2 | Frequency tuning. | | 4 | BAND | Band selection and de-emphasis selection. | | 5 | NC | No connect. Leave floating. | | 6 | FMI | FM RF inputs. FMI should be connected to the antenna trace. | | 7 | RFGND | RF ground. Connect to ground plane on PCB. | | 8 | AMI | AM RF input. AMI should be connected to the AM antenna. | | 9 | RST | Device reset (active low) input. | | 10, | SDIO | Serial data input/output. | | 11 | SCLK | Serial clock input. | | 12 | XTALO/LNA_EN | Crystal oscillator output, enable the SW external LNA in SW mode when not used as XTALO. | | 13, | XTALI | Crystal oscillator input/external reference clock input | | 14 | VDD | Supply voltage. May be connected directly to battery. | | 15 | GND | Ground. Connect to ground plane on PCB. | | 16 | AOUT | Audio output. | ## 7. Ordering Guide | Part Number ^{1,2} | Description | Package Type | Operating
Temperature/Voltage | |----------------------------|--|------------------|----------------------------------| | Si4827-A10-CS | AM/FM/SW Broadcast Analog Tune
Digital Display Radio Receiver | 16L SOIC Pb-free | 0 to 70 °C
2.0 to 3.6 V | #### Notes: - 1. Add an "(R)" at the end of the device part number to denote tape and reel option. The devices will typically operate at 25 °C with degraded specifications for V_{DD} voltage ramped down to 2.0 V. 2. The -C suffix in the part number indicates Consumer Grade product. Visit www.silabs.com to get more information on - product grade specifications. ## 8. Package Outline: Si4827-A10 The 16-pin SOIC illustrates the package details for the Si4827-A10. Table 15 lists the values for the dimensions shown in the illustration. Figure 5. 16-Pin SOIC **Table 15. Package Dimensions** | Dimension | Min | Max | |-----------|------|------| | А | _ | 1.75 | | A1 | 0.10 | 0.25 | | A2 | 1.25 | _ | | b | 0.31 | 0.51 | | С | 0.17 | 0.25 | | D | 9.90 | BSC | | E | 6.00 | BSC | | E1 | 3.90 | BSC | | е | 1.27 | BSC | | L | 0.40 | 1.27 | | L2 | 0.25 | BSC | | h | 0.25 | 0.50 | | θ | 0° | 8° | | aaa | 0. | 10 | | bbb | 0 | 20 | | ccc | 0. | 10 | | ddd | 0 | 25 | #### Notes: 20 - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. - 3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC. - **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. ## 9. PCB Land Pattern: Si4827-A10 Figure 6 illustrates the PCB land pattern details for the Si4827-A10-CS SOIC. Table 16 lists the values for the dimensions shown in the illustration. Figure 6. PCB Land Pattern **Table 16. PCB Land Pattern Dimensions** | Dimension | Feature | (mm) | |-----------|--------------------|------| | C1 | Pad Column Spacing | 5.40 | | E | Pad Row Pitch | 1.27 | | X1 | Pad Width | 0.60 | | Y1 | Pad Length | 1.55 | ### Notes: - **1.** This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion). - **2.** All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. ## 10. Top Markings ## 10.1. Si4827-A10 Top Marking ## 10.2. Top Marking Explanation | Mark Method: | Laser | | | |-----------------|-------------------------------------|---|--| | Pin 1 Mark: | Mold Dimple (Bottom-Left Corner) | | | | Font Size: | 0.71 mm (2.0 Point) Right-Justified | | | | Line 1 Marking: | Customer Part Number | Si4827A10 | | | | Circle = 1.3 mm Diameter | "e3" Pb-Free Symbol | | | Line 2 Marking: | YY = Year
WW = Work week | Assigned by the Assembly House. Corresponds to the year and work week of the mold date. | | | | TTTTTT = Manufacturing code | Manufacturing Code from the Assembly Purchase Order form. | | ## 11. Additional Reference Resources Contact your local sales representatives for more information or to obtain copies of the following references: - AN602: Si4822/26/27/40/44 Antenna, Schematic, Layout, and Design Guidelines - AN603: Si4822/26/27/40/44-DEMO Board Test Procedure - Si4827-DEMO Board User's Guide - AN610: Si48xx ATDD Programming Guide ## **DOCUMENT CHANGE LIST** #### Revision 0.1 to Revision 0.8 - Updated "Features" - Added ambient temperature range to "Table 1. Recommended Operating Conditions" - Updated Table 6, "AM/SW Receiver Characteristics" - Updated Table 7, "Reference Clock and Crystal Characteristics" - Updated Section "2.Typical Application Schematic" - Updated Section "4.3. AM Receiver" - Updated Section "4.7. Bass and Treble" - Updated Section 6 "Pin Descriptions: Si4827-A10" - Updated Section "8. Package Outline: Si4827-A10" #### **Revision 0.8 to Revision 1.0** - Updated Table 3. "Reset Timing Characteristics" - Updated "Pin Assignment" - Inserted Section 4.12. "Reset, Powerup, and Powerdown" ### **CONTACT INFORMATION** Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Email: FMinfo@silabs.com Internet: www.silabs.com #### **Patent Notice** Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331