1-220 MHz High Performance Differential (VC) TCXO

Features

- Any frequency between 1 MHz and 220 MHz accurate to 6 decimal places
- LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as ±5 ppm. Contact SiTime for tighter stability options
- Industrial and extended commercial temperature ranges
- Industry-standard packages: 3.2 x 2.5, 5.0 x 3.2 and 7.0 x 5.0 mm
- For frequencies higher than 220 MHz, refer to SiT5022 datasheet

Applications

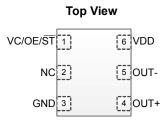
- SATA, SAS, 10GB Ethernet, Fibre Channel, PCI-Express
- Networking, broadband, instrumentation

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition
	L	VPECL an	d LVDS, C	ommon E	lectrical C	haracteristics
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
		2.25	_	3.63	V	Termination schemes in Figures 1 and 2 - XX ordering code
Output Frequency Range	f	1	-	220	MHz	
Initial Tolerance	F_init	-2	ī	2	ppm	At 25°C after two reflows
Stability Over Temperature	F_stab					Over operating temperature range at rated nominal power
		-5	-	+5	ppm	supply voltage and load.
						Contact SiTime for tighter stability options.
Supply Voltage	F_vdd	-	50	-	ppb	±10% Vdd
Output Load	F_load	1	0.1	-	ppm	15 pF ±10% of load
First Year Aging	F_aging1	-2.5	I	+2.5	ppm	25°C
10-year Aging	F_aging10	-5	-	+5	ppm	25°C
Operating Temperature Range	T_use	-40	-	+85	°C	Industrial
		-20	-	+70	°C	Extended Commercial
Pull Range	PR		12.5, ±25, ±5	50	ppm	
Upper Control Voltage	VC_U	Vdd-0.1	-	-	V	All Vdds. Voltage at which maximum deviation is guaranteed.
Control Voltage Range	VC_L	-	-	0.1	V	
Control Voltage Input Impedance	Z_vc	100	-	_	kΩ	
Frequency Change Polarity	- \/ D\/	_	Positive slope	e 8	– kHz	
Control Voltage -3dB Bandwidth	V_BW VIH	70%	-	8	Vdd	B:: 4. 05 : . 07
Input Voltage High			-	-		Pin 1, OE or ST
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE or ST
Input Pull-up Impedance	Z_in	-	100	250	kΩ	Pin 1, OE logic high or logic low, or ST logic high
		2	ı	-	ΜΩ	Pin 1, ST logic low
Start-up Time	T_start	-	6	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	-	6	10	ms	In Standby mode, measured from the time ST pin crosses
Duty Cycle	DC	45	-	55	%	Contact SiTime for tighter duty cycle
		L\	/PECL, DO	and AC C	Characteris	stics
Current Consumption	ldd	_	61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low
Output Disable Leakage Current	I_leak	-	-	1	μΑ	OE = Low
Standby Current	I_std	-	-	100	μΑ	ST = Low, for all Vdds
Maximum Output Current	I_driver	-	-	30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1	-	Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9	-	Vdd-1.5	V	See Figure 1(a)
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 1(b)
Rise/Fall Time	Tr, Tf	-	300	500	ps	20% to 80%, see Figure 1(a)
OE Enable/Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V
		-	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds

SiTime Corporation

1-220 MHz High Performance Differential (VC) TCXO


The Smart Timing Choice™

Electrical Characteristics (continued)

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition		
LVDS, DC and AC Characteristics								
Current Consumption	ldd	=	47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V		
OE Disable Supply Current	I_OE	-	-	35	mA	OE = Low		
Differential Output Voltage	VOD	250	350	450	mV	See Figure 2		
Output Disable Leakage Current	I_leak	_	_	1	μΑ	OE = Low		
Standby Current	I_std	_	-	100	μΑ	ST = Low, for all Vdds		
VOD Magnitude Change	ΔVOD	-	_	50	mV	See Figure 2		
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2		
VOS Magnitude Change	ΔVOS	-	-	50	mV	See Figure 2		
Rise/Fall Time	Tr, Tf	-	495	600	ps	20% to 80%, see Figure 2		
OE Enable/Disable Time	T_oe	_	_	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period		
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 100 MHz, VDD = 3.3V or 2.5V		
		-	1.2	1.7	ps	f = 156.25 MHz, VDD = 3.3V or 2.5V		
		-	1.2	1.7	ps	f = 212.5 MHz, VDD = 3.3V or 2.5V		
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds		

Pin Description

Pin	Мар	Functionality				
		V Control	Voltage control			
1	1 VC/OE/ST Output Enable		H or Open: specified frequency output L: output is high impedance			
			H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to I_std.			
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation			
3	GND	Power	VDD Power Supply Ground			
4	OUT+	Output	Oscillator output			
5	OUT-	Output	Complementary oscillator output			
6	VDD	Power	Power supply voltage			

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge (HBM)	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Thermal Consideration

Package	θJA, 4 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050, 6-pin	142	27
5032, 6-pin	97	20
3225, 6-pin	109	20

Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

Waveform Diagrams

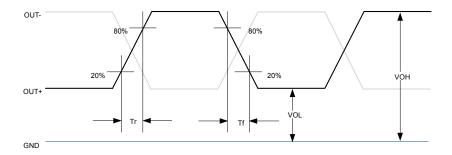


Figure 1(a). LVPECL Voltage Levels per Differential Pin (OUT+/OUT-)

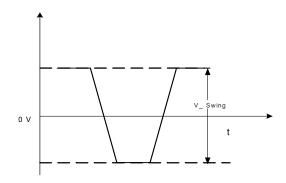


Figure 1(b). LVPECL Voltage Levels Across Differential Pair

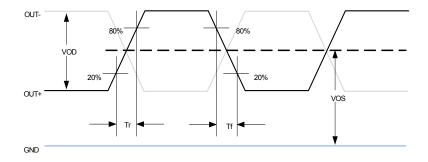


Figure 2. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

Termination Diagrams

LVPECL:

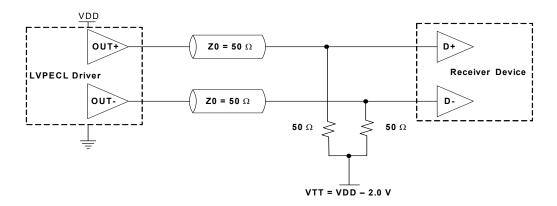


Figure 3. LVPECL Typical Termination

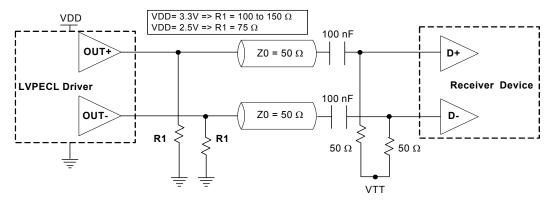


Figure 4. LVPECL AC Coupled Termination

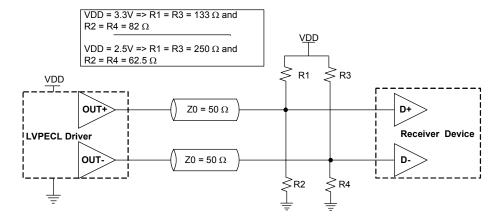


Figure 5. LVPECL with Thevenin Typical Termination

1-220 MHz High Performance Differential (VC) TCXO

LVDS:

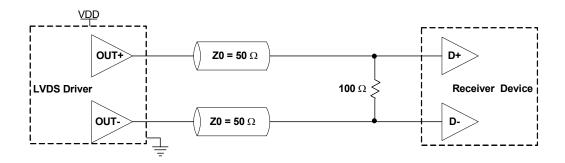
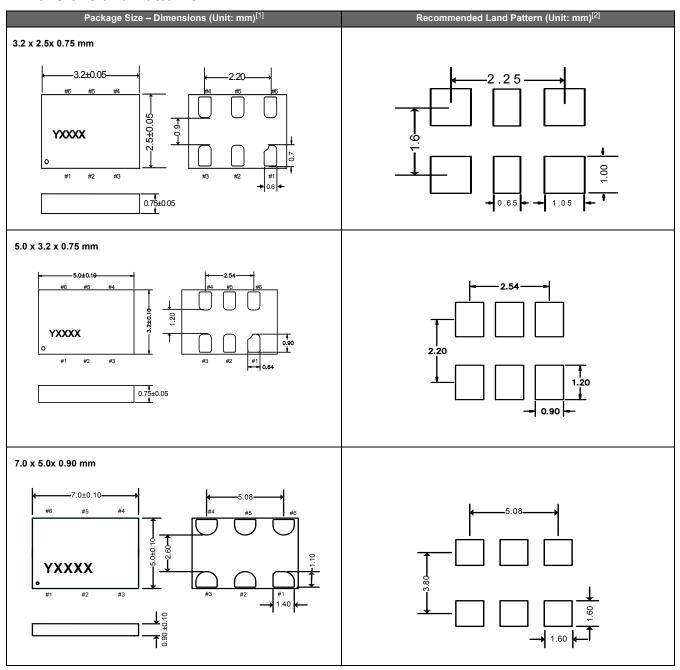
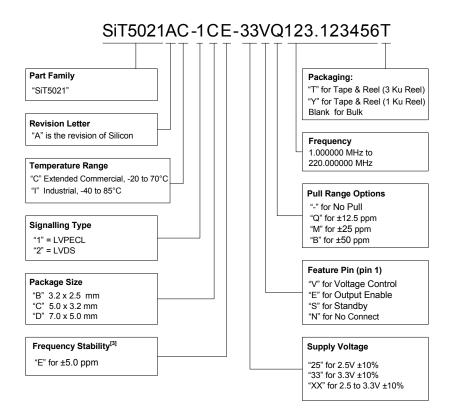



Figure 6. LVDS Single Termination (Load Terminated)

1-220 MHz High Performance Differential (VC) TCXO

Dimensions and Patterns


Notes:

- 1. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 2. A capacitor of value 0.1 μF between Vdd and GND is recommended.

1-220 MHz High Performance Differential (VC) TCXO

Ordering Information

Note:

3. Contact SiTime for tighter stability options.

Ordering Codes for Supported Tape & Reel Packing Method

Device Size	12 mm T&R (3ku)	12 mm T&R (1ku)	12 mm T&R (250u)	16 mm T&R (3ku)	16 mm T&R (1ku)	16 mm T&R (250u)
7.0 x 5.0 mm	-	-	-	Т	Y	X
5.0 x 3.2 mm	Т	Y	Х	-	-	-
3.2 x 2.5 mm	Т	Y	X	-	-	=

Frequencies Not Supported

Range 1: From 209.000001 MHz to 210.999999 MHz

1-220 MHz High Performance Differential (VC) TCXO

Revision History

Version	Release Date	Change Summary
1.2	8/20/13	Original
1.3	12/16/13	Added input specifications, LVPECL/LVDS waveforms, packaging T&R options
1.4	12/11/14	Modified Thermal Consideration values and Pin Configuration table (pin 1) and drawing
1.5	11/12/15	Revised stability over temperature and first year aging values in the electrical characteristics table Revised frequency stability and supply voltage options

© SiTime Corporation 2015. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

Supplemental Information

The Supplemental Information section is not part of the datasheet and is for informational purposes only.

Silicon MEMS Outperforms Quartz

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Unlike quartz suppliers, SiTime has in-house MEMS and analog CMOS expertise, which allows SiTime to develop the most reliable products. Figure 1 shows a comparison with quartz technology.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal[™] process, which eliminates foreign particles and improves long term aging and reliability
- · World-class MEMS and CMOS design expertise

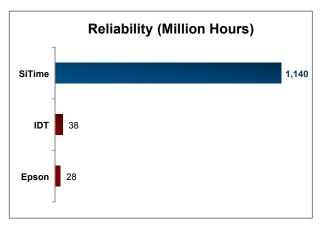


Figure 1. Reliability Comparison^[1]

Best Aging

Unlike quartz, MEMS oscillators have excellent long term aging performance which is why every new SiTime product specifies 10-year aging. A comparison is shown in Figure 2.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal process, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

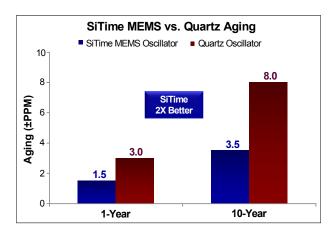


Figure 2. Aging Comparison^[2]

Best Electro Magnetic Susceptibility (EMS)

SiTime's oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is SiTime Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

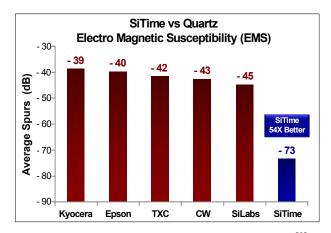


Figure 3. Electro Magnetic Susceptibility (EMS)[3]

Best Power Supply Noise Rejection

SiTime's MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is SiTime Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- · Best analog CMOS design expertise

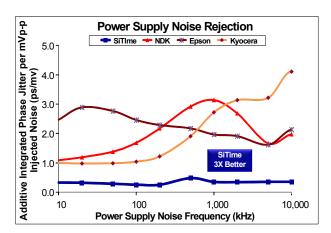


Figure 4. Power Supply Noise Rejection^[4]

Silicon MEMS Outperforms Quartz

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than guartz
- Center-anchored MEMS resonator is the most robust design

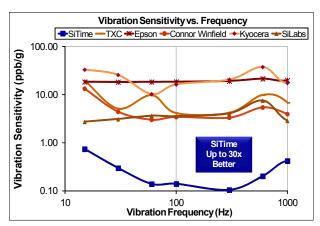


Figure 5. Vibration Robustness^[5]

Notes:

- 1. Data Source: Reliability documents of named companies.
- 2. Data source: SiTime and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - · Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

SiTime, SiT9120AC-1D2-33E156.250000 - MEMS based - 156.25 MHz

Epson, EG-2102CA 156.2500M-PHPAL3 - SAW based - 156.25 MHz

TXC, BB-156.250MBE-T - 3rd Overtone quartz based - 156.25 MHz

Kyocera, KC7050T156.250P30E00 - SAW based - 156.25 MHz

Connor Winfield (CW), P123-156.25M - 3rd overtone quartz based - 156.25 MHz

SiLabs, Si590AB-BDG - 3rd overtone quartz based - 156.25 MHz

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

SiTime, SiT8208AI-33-33E-25.000000, MEMS based - 25 MHz

NDK, NZ2523SB-25.6M - quartz based - 25.6 MHz

Kyocera, KC2016B25M0C1GE00 - quartz based - 25 MHz

Epson, SG-310SCF-25M0-MB3 - quartz based - 25 MHz

- 5. Devices used in this test: same as EMS test stated in Note 3.
- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - Condition A: half sine wave shock pulse, 500-g, 1ms
 - \bullet Continuous frequency measurement in 100 μs gate time for 10 seconds

Devices used in this test: same as EMS test stated in Note 3

7. Additional data, including setup and detailed results, is available upon request to qualified customers. Please contact productsupport@sitime.com.

Best Shock Robustness

SiTime's oscillators can withstand at least $50,000 \ g$ shock. They all maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than guartz
- Center-anchored MEMS resonator is the most robust design

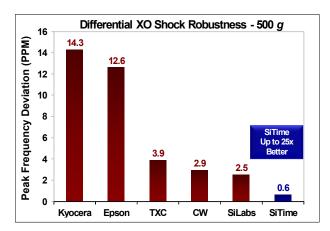


Figure 6. Shock Robustness^[6]

Document Feedback Form



SiTime values your input in improving our documentation. Click <u>here</u> for our online feedback form or fill out and email the form below to <u>productsupport@sitime.com</u>.

1. Does the Electrical Characteristics table provide complete information?			Yes	No	
If No, what paramete	ers are missing?				
2. Is the organization	n of this document easy to follow?		Yes	No	
If "No," please sugge	est improvements that we can make:				
3. Is there any applic	ation specific information that you would like	e to see in this o	document? (Ch	eck all that appl	y)
EMI	Termination recommendations	Shock an	d vibration perf	formance	Other
If "Other," please spe	ecify:				
4. Are there any erro	ers in this document?	Yes	No		
If "Yes", please spec	ify (what and where):				
5. Do you have addit	ional recommendations for this document?				
Name					
Title					
Company					
Address					
City / State or Provin	ce / Postal Code / Country				
Telephone					
Application					
Would you like a rep	ly? Yes No				

Thank you for your feedback. Please click the email icon in your Adobe Reader tool bar and send to productsupport@sitime.com. Or you may use our online-feedback form.

Feedback Form Rev. 1.0 www.sitime.com

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331