Intel® Intel386™ DX MICROPROCESSOR
32-BIT CHMOS MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

m Flexible 32-Bit Microprocessor m Optimized for System Performance
— 8, 16, 32-Bit Data Types — Pipelined Instruction Execution
— 8 General Purpose 32-Bit Registers — On-Chip Address Translation Caches

m Very Large Address Space — 20, 25 and 33 MHz Clock
— 4 Gigabyte Physical — 40, 50 and 66 Megabytes/Sec Bus
— 64 Terabyte Virtual Bandwidth
— 4 Gigabyte Maximum Segment Size m Numerics Support via Intel387™ DX

m Integrated Memory Management Unit Math Coprocessor
— Virtual Memory Support m Complete System Development
— Optional On-Chip Paging Support
—4 Levels of Protection — Software: C, PL/M, Assembler
— Fully Compatible with 80286 System Generation Tools

m Object Code Compatible with All 8086 — Debuggers: PSCOPE, ICET-386
Family Microprocessors m High Speed CHMOS IV Technology

m Virtual 8086 Mode Allows Running of . .
8086 Software in a Protected and 132 Pin Grid Array Package
Paged System m 132 Pin Plastic Quad Flat Package

(See Packaging Specification, Order #231369)

m Hardware Debugging Support

The Intel386 DX Microprocessor is an entry-level 32-bit microprocessor designed for single-user applications
and operating systems such as MS-DOS and Windows. The 32-bit registers and data paths support 32-bit
addresses and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes
(2**46) of virtual memory. The integrated memory management and protection architecture includes address
translation registers, multitasking hardware and a protection mechanism to support operating systems. Instruc-
tion pipelining, on-chip address translation, ensure short average instruction execution times and maximum
system throughput.

The Intel386 DX CPU offers new testability and debugging features. Testability features include a self-test and
direct access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code
execution or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the
Intel386 DX offers immediate access to the world’s largest microprocessor software base.
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1. PIN ASSIGNMENT

The Intel386 DX pinout as viewed from the top side
of the component is shown by Figure 1-1. Its pinout
as viewed from the Pin side of the component is
Figure 1-2.
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Vce and GND connections must be made to multi-
ple Voo and Vgg (GND) pins. Each Vg and Vsg
must be connected to the appropriate voltage level.
The circuit board should include Voo and GND
planes for power distribution and all Vgg and Vgg

pins must be connected to the appropriate plane.

Pins identified as “N.C.” should remain completely
unconnected.
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Figure 1-1. Intel386™ DX PGA
Pinout—View from Top Side

Figure 1-2. Intel386™ DX PGA
Pinout—View from Pin Side

Table 1-1. Intel386™ DX PGA Pinout—Functional Grouping

Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin
A2 C4 A24 L2 D6 L14 D28 M6 Voo C12 Vss F2
A3 A3 A25 K3 D7 K12 D29 P4 D12 F3
A4 B3 A26 M1 D8 L13 D30 P3 G2 F14
A5 B2 A27 N1 D9 N14 D31 M5 G3 J2
A6 C3 A28 L3 D10 M12 D/C# A1 G12 J3
A7 c2 A29 M2 D11 N13 ERROR # A8 G14 J12
A8 C1 A30 P1 D12 N12 HLDA M14 L12 J13
A9 D3 A31 N2 D13 P13 HOLD D14 M3 M4
A10 D2 ADS # E14 D14 P12 INTR B7 M7 M8
Al D1 BEO # E12 D15 M11 LOCK # Cc10 M13 M10
A12 E3 BE1# C13 D16 N11 M/IO# A12 N4 N3
A13 E2 BE2# B13 D17 N10 NA# D13 N7 P6
Al4 E1 BE3# A13 D18 P11 NMI B8 P2 P14
A15 F1 BS16# C14 D19 P10 PEREQ c8 P8 W/R# B10
A16 G1 BUSY # B9 D20 M9 READY # G13 Vss A2 N.C. A4
A17 H1 CLK2 F12 D21 N9 RESET Cc9 A6 B4
A18 H2 DO H12 D22 P9 Veo Al A9 B6
A19 H3 D1 H13 D23 N8 A5 B1 B12
A20 J1 D2 H14 D24 P7 A7 B5 Cé
A21 K1 D3 J14 D25 N6 A10 B11 Cc7
A22 K2 D4 K14 D26 P5 A4 B14 E13
A23 L1 D5 K13 D27 N5 C5 C11 F13
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1.1 PIN DESCRIPTION TABLE

The following table lists a brief description of each pin on the Intel386 DX. The following definitions are used in
these descriptions:

# The named signal is active LOW.

| Input signal.

(0] Output signal.

170 Input and Output signal.

— No electrical connection.

For a more complete description refer to Section 5.2 Signal Description.

Symbol Type Name and Function

CLK2 | CLK2 provides the fundamental timing for the Intel386 DX.

D31-Dg 1/0 DATA BUS inputs data during memory, 1/0 and interrupt acknowledge
read cycles and outputs data during memory and I/O write cycles.

Agz1-As o} ADDRESS BUS outputs physical memory or port I/0 addresses.

BEO # -BE3 # (0] BYTE ENABLES indicate which data bytes of the data bus take part in
a bus cycle.

W/R# (0] WRITE/READ is a bus cycle definition pin that distinguishes write
cycles from read cycles.

D/C# (0] DATA/CONTROL is a bus cycle definition pin that distinguishes data
cycles, either memory or I/0, from control cycles which are: interrupt
acknowledge, halt, and instruction fetching.

M/IO # (0] MEMORY 1/0 is a bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

LOCK # O BUS LOCK is a bus cycle definition pin that indicates that other
system bus masters are denied access to the system bus while it is
active.

ADS # (0] ADDRESS STATUS indicates that a valid bus cycle definition and
address (W/R#, D/C#, M/IO#, BEO#, BE1#, BE2#, BE3# and
Ag1-Ay) are being driven at the Intel386 DX pins.

NA # | NEXT ADDRESS is used to request address pipelining.

READY # | BUS READY terminates the bus cycle.

BS16# | BUS SIZE 16 input allows direct connection of 32-bit and 16-bit data
buses.

HOLD | BUS HOLD REQUEST input allows another bus master to request
control of the local bus.
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1.1 PIN DESCRIPTION TABLE (Continued)

Symbol Type Name and Function

HLDA (0] BUS HOLD ACKNOWLEDGE output indicates that the Intel386 DX
has surrendered control of its local bus to another bus master.

BUSY # | BUSY signals a busy condition from a processor extension.

ERROR # | ERROR signals an error condition from a processor extension.

PEREQ | PROCESSOR EXTENSION REQUEST indicates that the processor
extension has data to be transferred by the Intel386 DX.

INTR INTERRUPT REQUEST is a maskable input that signals the Intel386

DX to suspend execution of the current program and execute an
interrupt acknowledge function.

NMI NON-MASKABLE INTERRUPT REQUEST is a non-maskable input
that signals the Intel386 DX to suspend execution of the current
program and execute an interrupt acknowledge function.

RESET RESET suspends any operation in progress and places the Intel386
DX in a known reset state. See Interrupt Signals for additional
information.

N/C — NO CONNECT should always remain unconnected. Connection of a

N/C pin may cause the processor to malfunction or be incompatible
with future steppings of the Intel386 DX.

Vee | SYSTEM POWER provides the + 5V nominal D.C. supply input.

Vss | SYSTEM GROUND provides 0V connection from which all inputs and
outputs are measured.
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2. BASE ARCHITECTURE

2.1 INTRODUCTION

The Intel386 DX consists of a central processing
unit, a memory management unit and a bus inter-
face.

The central processing unit consists of the execu-
tion unit and instruction unit. The execution unit con-
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo-
rithm. The multiply algorithm stops the iteration
when the most significant bits of the multiplier are all
zero. This allows typical 32-bit multiplies to be exe-
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement a virtual memory system,
the Intel386 DX supports full restartability for all
page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an Intel386 DX can have a maximum of 16,381
segments of up to four gigabytes each, thus provid-
ing 64 terabytes (trillion bytes) of virtual memory to
each task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel386 DX has two modes of operation: Real
Address Mode (Real Mode), and Protected Virtual
Address Mode (Protected Mode). In Real Mode the
Intel386 DX operates as a very fast 8086, but with
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32-bit extensions if desired. Real Mode is required
primarily to setup the processor for Protected Mode
operation. Protected Mode provides access to the
sophisticated memory management, paging and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect-
ed from one another and the host Intel386 DX oper-
ating system, by the use of paging, and the 1/0 Per-
mission Bitmap.

Finally, to facilitate high performance system hard-
ware designs, the Intel386 DX bus interface offers
address pipelining, dynamic data bus sizing, and di-
rect Byte Enable signals for each byte of the data
bus. These hardware features are described fully be-
ginning in Section 5.

2.2 REGISTER OVERVIEW

The Intel386 DX has 32 register resources in the
following categories:

e General Purpose Registers
e Segment Registers

® |nstruction Pointer and Flags
e Control Registers

e System Address Registers

® Debug Registers

® Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit In-
tel386 DX.

Figure 2-1 shows all of Intel386 DX base architec-
ture registers, which include the general address
and data registers, the instruction pointer, and the
flags register. The contents of these registers are
task-specific, so these registers are automatically
loaded with a new context upon a task switch opera-
tion.

The base architecture also includes six directly ac-
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in Intel386 DX segment registers of Figure
2-1. Various selector values can be loaded as a pro-
gram executes, if desired.
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GENERAL DATA AND ADDRESS REGISTERS
31 16 15 0
AX EAX
BX EBX
cX ECX
DX EDX
si ES
DI EDI
BP EBP
P ESP
SEGMENT SELECTOR REGISTERS
15 0
cs CODE
ss STACK
DS '
ES DATA
Fs
GS
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0
P EIP
FLAGS | EFLAGS

Figure 2-1. Intel386™ DX Base
Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad-
dress, Debug, and Test, are primarily used by sys-
tem software.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers

General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI,

Intel386™ DX MICROPROCESSOR

BP, and SP. When accessed as a 16-bit operand,
the upper 16 bits of the register are neither used nor
changed.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0
AH AlX AL EAX
BH B|X BL EBX
CH ox cL ECX
DH D|X DL EDX
S| ESl
DI EDI
BP EBP
SP ESP
31 16 15 0
| | er
-
P

Figure 2-2. General Registers
and Instruction Pointer

2.3.2 Instruction Pointer

The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next in-
struction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the Intel386 DX. The
lower 16 bits (bit 0-15) of EFLAGS contain the
16-bit flag register named FLAGS, which is most
useful when executing 8086 and 80286 code.
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NOTE:
0 indicates Intel reserved: do not define; see section 2.3.10.

FLAGS

3322222222221111111111
10987654321098765432109876543210
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EFLAGS RESERVED FOR INTEL MEN RN EGEEEEE G E N E

f A A A AAAAA ﬂ‘ A 4
VIRTUAL MODE CARRY FLAG
RESUME FLAG PARITY FLAG
NESTED TASK FLAG AUXILIARY CARRY
1/0 PRIVILEGE LEVEL ZERO FLAG
OVERFLOW SIGN FLAG
DIRECTION FLAG TRAP FLAG
INTERRUPT ENABLE

231630-50

Figure 2-3. Flags Register

VM  (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel386 DX
is in Protected Mode, the Intel386 DX will
switch to Virtual 8086 operation, handling
segment loads as the 8086 does, but gener- NT
ating exception 13 faults on privileged op-
codes. The VM bit can be set only in Protect-
ed Mode, by the IRET instruction (if current
privilege level = 0) and by task switches at
any privilege level. The VM bit is unaffected
by POPF. PUSHF always pushes a 0 in this
bit, even if executing in virtual 8086 Mode.
The EFLAGS image pushed during interrupt
processing or saved during task switches will
contain a 1 in this bit if the interrupted code
was executing as a Virtual 8086 Task.

RF  (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at IOPL
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of
the breakpoint service routine, the IRET

10

instruction can pop an EFLAG image having
the RF bit set and resume the program’s exe-
cution at the breakpoint address without gen-
erating another breakpoint fault on the same
location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task’s Task State
Segment (TSS) has a valid back link to the
previous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maxi-
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAG register. POPF and
IRET instruction can alter the IOPL field when
executed at CPL = 0. Task switches can al-
ways alter the IOPL field, when the new flag
image is loaded from the incoming task’s
TSS.
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OF  (Overflow Flag, bit 11) ZF (Zero Flag, bit 6)
OF is set if the operation resulted in a signed ZF is set if all bits of the result are 0. Other-
overflow. Signed overflow occurs when the wise it is reset.
operation resulted in carry/borrow into the i ;
sign bit (high-order bit) of the result but did AF (Auxmar)./.Carry Fla.tg, bit 4) o .
not result in a carry/borrow out of the high- The Auxiliary Flag is used to simplify the addi-
order bit, or vice-versa. For 8/16/32 bit oper- tion and subtraction of packed BCD quanti-
ations, OF is set according to overflow at bit ties. AF is set if the operation resulted in a
7/15/31, respectively. carry out of bit 3 (addlthn) ora .borrow into b}t
L . 3 (subtraction). Otherwise AF is reset. AF is
DF  (Direction Flag, bit 10) affected by carry out of, or borrow into bit 3
DF defines whether ESI and/or EDI registers only, regardless of overall operand length: 8,
postdecrement or postincrement during the 16 or 32 bits.
string instructions. Postincrement occurs if PF  (Parity Flags, bit 2)
DF is reset. Postdecrement occurs if DF is ) ) ) .
set. PF is set if the low-order eight bits of the op-
. eration contains an even number of “1’s”
IF (INTR Enable Flag, bit 9) (even parity). PF is reset if the low-order eight
The IF flag, when set, allows recognition of bits have odd parity. PF is a function of only
external interrupts signalled on the INTR pin. the low-order eight bits, regardless of oper-
When [F is reset, external interrupts signalled and size.
on the INTR are not recognized. IOPL indi- CF  (Carry Flag, bit 0)
cates the maximum CPL value allowing alter- . ) . .
ation of the IF bit when new values are CF is set |_f _the operation re_sulted in a carry
popped into EFLAGS or FLAGS. out of_ (addltlon),_or a borro_w into (_subtract|on)
] the high-order bit. Otherwise CF is reset. For
TF  (Trap Enable Flag, bit 8) 8-, 16- or 32-bit operations, CF is set accord-
TF controls the generation of exception 1 ing to carry/borrow at bit 7, 15 or 31, respec-
trap when single-stepping through code. tively.
When TF is set, the Intel386 DX generates an
exception 1 trap after the next instruction is Note in these descriptions, “set” means “set to 1,”
executed. When TF is reset, exception 1 and “reset” means ‘“reset to 0.”
traps occur only as a function of the break-
point addresses loaded into debug registers
DRO-DR3. 2.3.4 Segment Registers
SF (S|g.n Flag., bit 7) ) ) ) Six 16-bit segment registers hold segment selector
SF is set if the high-order bit of the result s yalyes identifying the currently addressable memory
set, it is reset otherwise. For 8-, 16-, 32-bit  gegments. Segment registers are shown in Figure 2-
operations, SF reflects the state of bit 7, 15, 4 In Protected Mode, each segment may range in
31 respectively. size from one byte up to the entire linear and physi-
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N . Other N
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- — —
Selector DS- —|—|—
Selector ES- —|—|—
Selector FS- —|—|—
Selector GS- —|—|—

Figure 2-4. Intel386™ DX Segment Registers, and Associated Descriptor Registers
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cal space of the machine, 4 Gbytes (232 bytes). If a
maximum sized segment is used (limit
FFFFFFFFH) it should be Dword aligned (i.e., the
least two significant bits of the segment base should
be zero). This will avoid a segment limit violation (ex-
ception 13) caused by the wrap around. In Real Ad-
dress Mode, the maximum segment size is fixed at
64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the segment registers CS, SS, DS,
ES, FS and GS. The selector in CS indicates the
current code segment; the selector in SS indicates
the current stack segment; the selectors in DS, ES,
FS and GS indicate the current data segments.

2.3.5 Segment Descriptor Registers

The segment descriptor registers are not program-
mer visible, yet it is very useful to understand their
content. Inside the Intel386 DX, a descriptor register
(programmer invisible) is associated with each pro-
grammer-visible segment register, as shown by Fig-
ure 2-4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be-
ing used is automatically involved with the memory
reference. The 32-bit segment base address be-
comes a component of the linear address calcula-

intgl.

tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type
of memory reference requested.

2.3.6 Control Registers

The Intel386 DX has three control registers of 32
bits, CRO, CR2 and CR3, to hold machine state of a
global nature (not specific to an individual task).
These registers, along with System Address Regis-
ters described in the next section, hold machine
state that affects all tasks in the system. To access
the Control Registers, load and store instructions
are defined.

CRO: Machine Control Register (includes 80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the In-
tel386 DX LMSW instructions work in an identical
fashion to the LMSW instruction on the 802886. (i.e. It
only operates on the low-order 16-bits of CRO and it
ignores the new bits in CR0O.) New Intel386 DX oper-
ating systems should use the MOV CRO, Reg in-
struction.

The defined CRO bits are described below.

PG (Paging Enable, bit 31)
the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

R  (reserved, bit 4)

This bit is reserved by Intel. When loading CRO
care should be taken to not alter the value of

this bit,

31 24|23 16|15 8|7 0

aloolofo]olofolo]ofofo]o]ofo|o]ofo|o]ofo|o|olofo|o]o|r|L|5|Y E|cRo
N J

NOTE: IIIindicates Intel reserved: Do not define; SEE SECTION 2.3.10

MSwW

Figure 2-5. Control Register 0
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TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces-
sor ESCape opcode will cause a Coprocessor
Not Available trap (exception 7). The trap han-
dler typically saves the Intel387 DX coproces-
sor context belonging to a previous task, loads
the Intel387 DX coprocessor state belonging to
the current task, and clears the TS bit before
returning to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual Intel387 DX coprocessor (this is
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.
MP  (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.
PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tran-
sition from Protected Mode to Real Mode. Note
that for strict 80286 compatibility, PE cannot be
reset by the LMSW instruction.

CR1: reserved
CR1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The

Intel386™ DX MICROPROCESSOR

error code pushed onto the page fault handler’s
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The In-
tel386 DX page directory table is always page-
aligned (4 Kbyte-aligned). Therefore the lowest
twelve bits of CR3 are ignored when written and
they store as undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does not change during the task switch, the cached
page table entries are not flushed.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU
and Intel386 DX protection model. These tables or
segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Table),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respectively. Section 4 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 24|23

16|15

8|7 0

PAGE FAULT LINEAR ADDRESS REGISTER CR2

PAGE DIRECTORY BASE REGISTER

lo]o]o]o]o[o]o]o|o]o]o]0]|cRs

NOTE: E’ indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2 and 3
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SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
A A
q5 @ 4 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT  ATTRIBUTES

~

TR SELECTOR

LDTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Registers DR0-3 specify the four linear
breakpoints. The Debug Control Register DR7 is
used to set the breakpoints and the Debug Status
Register DR6, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in section 2.12 Debugging support.

DEBUG REGISTERS
31 0

LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3

Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
TEST REGISTERS (FOR PAGE CACHE)

31 0

TEST CONTROL TR6
TEST STATUS TR7

Figure 2-8. Debug and Test Registers
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Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the Intel386 DX. TR6 is the command test
register, and TR7 is the data register which contains
the data of the Translation Lookaside buffer test.
Their use is discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.9 Register Accessibility

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.10 Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Intel386 DX register bits are Intel reserved.
When reserved bits are called out, treat them as
fully undefined. This is essential for your soft-
ware compatibility with future processors! Fol-
low the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.
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Table 2-1. Register Usage

Usein Usein Usein

Register Real Mode Protected Mode Virtual 8086 Mode
Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Register Yes Yes Yes Yes IOPL* IOPL*
Control Registers Yes Yes PL=0 PL=10 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=10 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made 1/0 Privilege Level sensitive in Virtual 8086 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel386 DX handling of these
bits. Depending on undefined values risks mak-
ing your software incompatible with future proc-
essors that define usages for the Intel386 DX-
undefined bits. AVOID ANY SOFTWARE DEPEN-
DENCE UPON THE STATE OF UNDEFINED In-
tel386 DX REGISTER BITS.

2.4 INSTRUCTION SET

241

The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control

Instruction Set Overview

These Intel386 DX instructions are listed in Table
2-2.

All Intel386 DX instructions operate on either 0, 1, 2,
or 3 operands; where an operand resides in a regis-
ter, in the instruction itself, or in memory. Most zero
operand instructions (e.g. CLI, STI) take only one
byte. One operand instructions generally are two
bytes long. The average instruction is 3.2 bytes long.
Since the Intel386 DX has a 16-byte instruction
queue, an average of 5 instructions will be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel386 DX (32-bit code), operands are 8 or 32 bits;
when executing existing 80286 or 8086 code (16-bit
code), operands are 8 or 16 bits. Prefixes can be
added to all instructions which override the default
length of the operands, (i.e. use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

For a more elaborate description of the instruction

set, refer to the Intel386 DX Programmer’s Refer-
ence Manual.

15



n
Intel386™ DX MICROPROCESSOR |n'te| .

2.4.2 Intel386™ DX Instructions Table 2-2b. Arithmetic Instructions
Table 2-2a. Data Transfer ADDITION
GENERAL PURPOSE ADD Add operands
MOV Move operand ADC Add with carry
PUSH Push operand onto stack INC Increment operand by 1
POP Pop operand off stack AAA ASCII adjust for addition
PUSHA Push all registers on stack DAA Decimal adjust for addition
POPA Pop all registers off stack SUBTRACTION
XCHG Exchange Operand, Register SUB Subtract operands
XLAT Translate SBB Subtract with borrow
CONVERSION DEC Decrement operand by 1
MOVZX |Move byte or Word, Dword, with zero NEG Negate operand
extension CMP Compare operands
MOVSX |Move byte or Word, Dword, sign DAS Decimal adjust for subtraction
extended AAS ASCII Adjust for subtraction
CBW Convert byte to Word, or Word to Dword MULTIPLICATION
CWD Convert Word to DWORD MUL Multiply Double/Single Precision
CWDE Convert Word to DWORD extended IMUL Integer multiply
cDhQ Convert DWORD to QWORD AAM ASCII adjust after multiply
INPUT/OUTPUT DIVISION
IN Input operand from |/O space DIV Divide unsigned
ouT Output operand to 1/0 space DIV Integer Divide
ADDRESS OBJECT AAD ASCII adjust before division
LEA Load effective address - N
LDS Load pointer into D segment register Table 2-2c. String Instructions
- - - MOVS Move byte or Word, Dword string
LES Load pointer into E segment register -
LFS Load pointer into F segment register INS Input St””;" from I/O space
LGS Load pointer into G segment register ouTsS Output string to I/0 space .
LSS Load pointer into S (Stack) segment CMPS Compare byte or Word, Dworc.i string
register SCAS Scan Byte or Word, Dword string
FLAG MANIPULATION LODS Load byte or Word, Dword string
LAHF Load A register from Flags STOS Store byte or Word, Dword string
SAHF Store A register in Flags REP Repeat
PUSHF  |Push flags onto stack REPE/ )
POPF Pop flags off stack 2E;ZE/ Repeat while equal/zero
PUSHFD _|Push EFlags onto stack REPNZ Repeat while not equal/not zero
POPFD Pop EFlags off stack Table 2-2d. Logical Instructions
CLC Clear Carry Flag LOGICALS
CLD Clear Direction Flag NOT “NOT” operands
CMC Complement Carry Flag AND “AND” operands
STC Set Carry Flag OR “Inclusive OR” operands
STD Set Direction Flag XOR “Exclusive OR” operands
TEST “Test” operands

16
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Table 2-2d. Logical Instructions (Continued) Table 2-2f. Program Control Instructions
SHIFTS (Continued)
SHL/SHR |Shift logical left or right UNCONDITIONAL TRANSFERS
SAL/SAR |Shift arithmetic left or right CALL Call procedure/task
SHLD/ RET Return from procedure
SHRD Double shift left or right JMP Jump
ROTATES ITERATION CONTROLS

ROL/ROR | Rotate left/right LOOP Loop
RCL/RCR | Rotate through carry left/right LOOPE/

Table 2-2e. Bit Manipulation Instructions LOOPZ _ |Loop if equal/zero

SINGLE BIT INSTRUCTIONS LOOPNE/ _
- LOOPNZ |Loop if not equal/not zero
BT Bit Test - - —
BTS Bit Test and Set JoXz | JUMP 'If';_elfl’_:':t::f:;_; 0
BTR Bit Test and Reset
BTC Bit Test and Complement INT Interrupt -
BSF Bit Scan Forward INTO Interrupt if overflow
BSA Bit Scan Reverse IRET Returr_1 from Interrupt/Task
- CLI Clear interrupt Enable
Table 2-2f. Program Control Instructions STI Set Interrupt Enable
CONDITIONAL TRANSFERS

Table 2-2g. High Level Language Instructions
BOUND | Check Array Bounds

ENTER Setup Parameter Block for Entering
Procedure

SETCC Set byte equal to condition code
JA/JNBE |Jump if above/not below nor equal
JAE/JNB |Jump if above or equal/not below

JB/JNAE |Jump if below/not above nor equal LEAVE Leave Procedure

JBE/JNA |[Jump if below or equal/not above Table 2-2h. Protection Model

JC Jump ?f carry SGDT Store Global Descriptor Table
JE/JZ Jump if equal/zero SIDT Store Interrupt Descriptor Table
JG/JNLE |Jump if greater/not less nor equal STR Store Task Register

JGE/JNL |Jump if greater or equal/not less SLDT Store Local Descriptor Table
JL/INGE |Jump if less/not greater nor equal LGDT Load Global Descriptor Table
JLE/JNG |Jump if less or equal/not greater LIDT Load Interrupt Descriptor Table
JNC Jump !f not carry LTR Load Task Register
JNE/JNZ_|Jump if not equal/not zero LLDT Load Local Descriptor Table

JNO Jump if not overflow ARPL Adjust Requested Privilege Level
JNP/JPO |Jump if not parity/parity odd LAR Load Access Rights

JNS Jump if not sign LSL Load Segment Limit

JO Jump if overflow VERR/

JP/JPE _ |Jump if parity/parity even VERW | Verify Segment for Reading or Writing
JS Jump if Sign LMSW Load Machine Status Word (lower

16 bits of CRO0)
SMSW Store Machine Status Word
Table 2-2i. Processor Control Instructions

HLT Halt
WAIT Wait until BUSY # negated
ESC Escape

LOCK Lock Bus
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2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview

The Intel386 DX provides a total of 11 addressing
modes for instructions to specify operands. The ad-
dressing modes are optimized to allow the efficient
execution of high level languages such as C and
FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located
in one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

2.5.3 32-Bit Memory Addressing
Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
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The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register’s con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80]



Intel386™ DX MICROPROCESSOR

SEGMENT REGISTER

SELECTOR

EFFECTIVE
ADDRESS

A picuTs  ES
ACCESS RIGHTS DS
ACCESS RIGHTS €S

LIMIT
Pl BASE ADDRESS

> G_) ¢ DISPLACEMENT
(IN INSTRUCTION)

LINEAR

DESCRIPTOR REGISTERS Ly ADDRESS TARGET ADDRESS
< + >—>

SCALE

1,2,4,0R 8
SEGMENT
LIMIT
SELECTED
SEGMENT

> /
SEGMENT BASE ADDRESS
231630-51

I BASE REGISTER I
INDEX REGISTER

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the Intel386 DX can execute
16-bit instructions in Real and Protected Modes. The
processor determines the size of the instructions it is
executing by examining the D bit in the CS segment
Descriptor. If the D bit is 0 then all operand lengths
and effective addresses are assumed to be 16 bits
long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode the
default size for operands and addresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Intel386 DX is able to execute ei-
ther 16 or 32-bit instructions. This is specified via the
use of override prefixes. Two prefixes, the Operand
Size Prefix and the Address Length Prefix, over-
ride the value of the D bit on an individual instruction
basis. These prefixes are automatically added by In-
tel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM386 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.
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Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SI,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel386 DX addressing modes.

When executing 32-bit code, the Intel386 DX uses
either 8-, or 32-bit displacements, and any register
can be used as base or index registers. When exe-
cuting 16-bit code, the displacements are either 8, or
16 bits, and the base and index register conform to
the 80286 model. Table 2-3 illustrates the differenc-
es.

2.6 DATA TYPES

The Intel386 DX supports all of the data types com-
monly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the Intel386
DX bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2’s complement rep-

resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.
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Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quanti-
ty.

Offset: A 16- or 32-bit offset only quantity which
indirectly references another memory location.

Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one digit in each
nibble.

When the Intel386 DX is coupled with an Intel387
DX Numerics Coprocessor then the following com-
mon Floating Point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real
number representation. Floating point numbers
are supported by the Intel387 DX numerics co-
processor.

Figure 2-10 illustrates the data types supported by
the Intel386 DX and the Intel387 DX numerics co-
processor.
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Figure 2-10. Intel386™ DX Supported Data Types
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2.7 MEMORY ORGANIZATION

2.7.1 Introduction

Memory on the Intel386 DX is divided up into 8-bit
quantities (bytes), 16-bit quantities (words), and
32-bit quantities (dwords). Words are stored in two
consecutive bytes in memory with the low-order byte
at the lowest address, the high order byte at the high
address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest ad-
dress. The address of a word or dword is the byte
address of the low-order byte.

In addition to these basic data types, the Intel386
DX supports two larger units of memory: pages and
segments. Memory can be divided up into one or
more variable length segments, which can be
swapped to disk or shared between programs. Mem-
ory can also be organized into one or more 4K byte
pages. Finally, both segmentation and paging can
be combined, gaining the advantages of both sys-
tems. The Intel386 DX supports both pages and
segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organiz-
ing memory in logical modules, and as such is a tool
for the application programmer, while pages are use-
ful for the system programmer for managing the
physical memory of a system.

2.7.2 Address Spaces

The Intel386 DX has three distinct address spaces:
logical, linear, and physical. A logical address
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(also known as a virtual address) consists of a se-
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS-
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on Intel386 DX has a maximum of 16K
(214 —1) selectors, and offsets can be 4 gigabytes,
(232 bits) this gives a total of 246 bits or 64 terabytes
of logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE %} DISPLACEMENT
32 o
SCALE
1,2,4,8
PHYSICAL
v MEMORY
—>®<— BE3 - BEO
A31=A2
32, EFFECTIVE _
ADDRESS 52 52
15 2 0 LOGICAL OR SEGMENTATION »| PAGING UNIT >
R | 14 VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE) |7 PHYSICAL
SELECTOR | P R ADDRESS ADDRESS
L DESCRIPTOR
INDEX
SEGMENT
REGISTER
231630-53

Figure 2-11. Address Translation
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2.7.3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the Intel386 DX, segments are vari-
able sized blocks of linear addresses which have
certain attributes associated with them. There are
two main types of segments: code and data, the
segments are of variable size and can be as small
as 1 byte or as large as 4 gigabytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provides the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2-4. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

Intel386™ DX MICROPROCESSOR

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 4.1.

2.8 1/0 SPACE

The Intel386 DX has two distinct physical address
spaces: Memory and 1/0. Generally, peripherals are
placed in I/0 space although the Intel386 DX also
supports memory-mapped peripherals. The /0
space consists of 64K bytes, it can be divided into
64K 8-bit ports, 32K 16-bit ports, or 16K 32-bit ports,
or any combination of ports which add up to less
than 64K bytes. The 64K I/O address space refers
to physical memory rather than linear address since
170 instructions do not go through the segmentation
or paging hardware. The M/IO # pin acts as an addi-
tional address line thus allowing the system designer
to easily determine which address space the proces-
sor is accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch Cs None

Destination of PUSH, PUSHF, INT, SS None

CALL, PUSHA Instructions

Source of POP, POPA, POPF, SS None

IRET, RET instructions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS Instructions

(Dl is Base Register)

Other Data References, with

Effective Address Using Base

Register of:
[EAX] DS DS,CS,SS,ES,FS,GS
[EBX] DS DS,CS,SS,ES,FS,GS
[ECX] DS DS,CS,SS,ES,FS,GS
[EDX] DS DS,CS,SS,ES,FS,GS
[ESI] DS DS,CS,SS,ES,FS,GS
[EDI] DS DS,CS,SS,ES,FS,GS
[EBP] SS DS,CS,SS,ES,FS,GS
[ESP] SS DS,CS,SS,ES,FS,GS

23



Intel386™ DX MICROPROCESSOR

The |/0 ports are accessed via the IN and OUT I/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/10# pin to be driven low.

1/0 port addresses 00F8H through OOFFH are re-
served for use by Intel.

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Intel386 DX would restart the in-
struction. Traps are exceptions that are reported im-
mediately after the execution of the instruction
which caused the problem. User defined interrupts
are examples of traps. Aborts are exceptions which
do not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
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immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the Intel386 DX and shows where
the return address points.

The Intel386 DX has the ability to handle up to 256
different interrupts/exceptions. In order to service
the interrupts, a table with up to 256 interrupt vec-
tors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service rou-
tine. In Real Mode (see section 3.1), the vectors are
4 byte quantities, a Code Segment plus a 16-bit off-
set; in Protected Mode, the interrupt vectors are 8
byte quantities, which are put in an Interrupt Descrip-
tor Table (see section 4.1). Of the 256 possible inter-
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Intel386 DX which identifies the appro-
priate entry in the interrupt table. The table contains
the starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-
gram execution resumes at the appropriate instruc-
tion.

The 8-bit interrupt vector is supplied to the Intel386
DX in several different ways: exceptions supply the
interrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware in-
terrupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the Intel386 DX to respond to asynchronous ex-
ternal hardware events. A hardware interrupt occurs
when the INTR is pulled high and the Interrupt Flag
bit (IF) is enabled. The processor only responds to
interrupts between instructions, (REPeat String in-
structions, have an “interrupt window”, between
memory moves, which allows interrupts during long
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Table 2-5. Interrupt Vector Assignments

. Interrupt Instruction Which Ret:ro?n?: ?oress
Function Number Can Cau..lse Faulting Type
Exception Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Coprocessor Segment Overrun 9 ESC NO ABORT
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Intel Reserved 15
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
Intel Reserved 17-31
Two Byte Interrupt 0-255 |INTn NO TRAP

* Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

string moves). When an interrupt occurs the proces-
sor reads an 8-bit vector supplied by the hardware
which identifies the source of the interrupt, (one of
224 user defined interrupts). The exact nature of the
interrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.9.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI

input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the In-
tel386 DX will not service further NMI requests, until
an interrupt return (IRET) instruction is executed or
the processor is reset. If NMI occurs while currently
servicing an NMI, its presence will be saved for serv-
icing after executing the first IRET instruction. The IF
bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

2.9.5 Software Interrupts

A third type of interrupt/exception for the Intel386
DX is the software interrupt. An INT n instruction
causes the processor to execute the interrupt serv-
ice routine pointed to by the nth vector in the inter-
rupt table.
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A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. It is discussed in section 2.12.

2.9.6 Interrupt and Exception
Priorities

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel386 DX invokes the NMI service
routine first. If, after the NMI service routine has
been invoked, maskable interrupts are still enabled,
then the Intel386 DX will invoke the appropriate in-
terrupt service routine.

Table 2-6a. Intel386™ DX Priority for
Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel386 DX if, in the
course of executing an instruction, the Intel386 DX
detects a problematic condition. The Intel386 DX
then immediately invokes the appropriate exception
service routine. The state of the Intel386 DX is such
that the instruction causing the exception can be re-
started. If the exception service routine has taken
care of the problematic condition, the instruction will
execute without causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Intel386 DX executes instructions, it follows a

consistent cycle in checking for exceptions, as
shown in Table 2-6b. This cycle is repeated
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as each instruction is executed, and occurs in paral-

lel with instruction decoding and execution.

Table 2-6b. Sequence of Exception Checking

Consider the case of the Intel386 DX having just
completed an instruction. It then performs the
following checks before reaching the point where
the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc-
tion).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see 4.6.4); or exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e. not at IOPL or
at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If ESCAPE opcode for numeric coprocessor,
check if EM=1 or TS=1 (exception 7 if either
are 1).

9. If WAIT opcode or ESCAPE opcode for nu-
meric coprocessor, check ERROR # input sig-
nal (exception 16 if ERROR# input is assert-
ed).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (excep-
tion 14).

Note that the order stated supports the concept
of the paging mechanism being “underneath”
the segmentation mechanism. Therefore, for any
given code or data reference in memory, seg-
mentation exceptions are generated before pag-
ing exceptions are generated.
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2.9.7 Instruction Restart

The Intel386 DX fully supports restarting all instruc-
tions after faults. If an exception is detected in the
instruction to be e