## ATF-53189

Enhancement Mode<sup>[1]</sup> Pseudomorphic HEMT in SOT 89 Package



## **Data Sheet**

## Description

Avago Technologies's ATF-53189 is a single-voltage high linearity, low noise E-pHEMT FET packaged in a low cost surface mount SOT89 package. The device is ideal as a high-linearity, low noise, medium-power amplifier. Its operating frequency range is from 50 MHz to 6 GHz.

ATF-53189 is ideally suited for Cellular/PCS and WCDMA wireless infrastructure, WLAN, WLL and MMDS application, and general-purpose discrete E-pHEMT amplifiers that require medium power and high linearity. All devices are 100% RF and DC tested.

## **Pin Connections and Package Marking**



#### Notes:

Package marking provides orientation and identification:

"3G" = Device Code

- "x" = Month code indicates the month of manufacture.
- D = Drain
- S = Source
- G = Gate

## Features

- Single voltage operation
- High Linearity and Gain
- Low Noise Figure
- Excellent uniformity in product specifications
- SOT 89 standard package
- Point MTTF > 300 years<sup>[2]</sup>
- MSL-1 and lead-free
- Tape-and-Reel packaging option available

#### **Specifications**

#### 2 GHz, 4.0V, 135 mA (Typ.)

- 40.0 dBm Output IP3
- 23.0 dBm Output Power at 1dB gain compression
- 0.85 dB Noise Figure
- 15.5 dB Gain
- 46% PAE at P1dB
- LFOM<sup>[3]</sup> 12.7 dB

#### Applications

- Front-end LNA Q1 and Q2, Driver or Pre-driver Amplifier for Cellular/PCS and WCDMA wireless infrastructure
- Driver Amplifier for WLAN, WLL/RLL and MMDS applications
- General purpose discrete E-pHEMT for other high linearity applications

#### Notes:

- 1. Enhancement mode technology employs a single positive  $V_{gy'}$  eliminating the need of negative gate voltage associated with conventional depletion mode devices.
- 2. Refer to reliability datasheet for detailed MTTF data.
- 3. Linearity Figure of Merit (LFOM) is OIP3 divided by DC bias power.

#### ATF-53189 Absolute Maximum Ratings<sup>[1]</sup>

| Symbol               | Parameter                              | Units | Absolute<br>Maximum |
|----------------------|----------------------------------------|-------|---------------------|
| V <sub>ds</sub>      | Drain–Source Voltage <sup>[2]</sup>    | V     | 7                   |
| V <sub>gs</sub>      | Gate–Source Voltage <sup>[2]</sup>     | V     | -5 to 1.0           |
| V <sub>gd</sub>      | Gate Drain Voltage <sup>[2]</sup>      | V     | -5 to 1.0           |
| I <sub>ds</sub>      | Drain Current <sup>[2]</sup>           | mA    | 300                 |
| l <sub>gs</sub>      | Gate Current                           | mA    | 20                  |
| P <sub>diss</sub>    | Total Power Dissipation <sup>[3]</sup> | W     | 1.0                 |
| P <sub>in max.</sub> | RF Input Power                         | dBm   | +24                 |
| T <sub>ch</sub>      | Channel Temperature                    | °C    | 150                 |
| T <sub>stg</sub>     | Storage Temperature                    | °C    | -65 to 150          |

## Thermal Resistance<sup>[2,4]</sup>

 $\theta_{ch-b} = 70^{\circ}C/W$ 

#### Notes:

- 1. Operation of this device above any one of these parameters may cause permanent damage.
- 2. Assuming DC quiescent conditions.
- 3. Board (package belly) temperature T<sub>B</sub> is 25°C. Derate 14.30 mW/°C for T<sub>B</sub> > 80°C.

 Channel-to-board thermal resistance measured using 150°C Liquid Crystal Measurement method.

## **ATF-53189 Electrical Specifications**

## $T_A = 25^{\circ}$ C, DC bias for RF parameters is Vds = 4.0V and Ids = 135 mA unless otherwise specified.

| Symbol | Parameters and Test Conditions                  |                                                                                            | Units   | Min.  | Тур.  | Max. |
|--------|-------------------------------------------------|--------------------------------------------------------------------------------------------|---------|-------|-------|------|
| Vgs    | Operational Gate Voltage                        | Vds = 4.0V, Ids = 135 mA                                                                   | V       | _     | 0.65  | _    |
| Vth    | Threshold Voltage                               | Vds = 4.0V, Ids = 8 mA                                                                     | V       |       | 0.30  | _    |
| Ids    | Drain to Source Current                         | Vds = 4.0V, Vgs = 0V                                                                       | μΑ      | _     | 3.70  | _    |
| Gm     | Transconductance                                | $Vds = 4.0V, Gm = \Delta Ids/\Delta Vg \Delta Vgs = Vgs1 - Vgs2 Vgs1 = 0.6V, Vgs2 = 0.55V$ | s; mmho | _     | 650   | _    |
| lgss   | Gate Leakage Current                            | Vds = 0V, Vgs = -4V                                                                        | μΑ      | -10.0 | -0.34 | _    |
| NF     | Noise Figure                                    | f=900 MHz                                                                                  | dB      | _     | 0.80  | _    |
|        |                                                 | f=2.0 GHz                                                                                  | dB      |       | 0.85  | 1.3  |
|        |                                                 | f=2.4 GHz                                                                                  | dB      |       | 1.00  | —    |
| G      | Gain <sup>[1]</sup>                             | f=900 MHz                                                                                  | dB      | _     | 17.2  | _    |
|        |                                                 | f=2.0 GHz                                                                                  | dB      | 14.0  | 15.5  | 17.0 |
|        |                                                 | f=2.4 GHz                                                                                  | dB      | _     | 15.0  | —    |
| OIP3   | Output 3rd Order Intercept Point <sup>[1]</sup> | f=900 MHz                                                                                  | dBm     | _     | 42.0  | _    |
|        |                                                 | f=2.0 GHz                                                                                  | dBm     | 36.0  | 40.0  | _    |
|        |                                                 | f=2.4 GHz                                                                                  | dBm     | _     | 38.6  | —    |
| P1dB   | Output 1dB Compressed <sup>[1]</sup>            | f=900 MHz                                                                                  | dBm     |       | 21.7  | _    |
|        |                                                 | f=2.0 GHz                                                                                  | dBm     | —     | 23.0  | _    |
|        |                                                 | f=2.4 GHz                                                                                  | dBm     | _     | 23.2  |      |
| PAE    | Power Added Efficiency                          | f=900 MHz                                                                                  | %       |       | 33.8  | _    |
|        |                                                 | f=2.0 GHz                                                                                  | %       |       | 46.0  |      |
|        |                                                 | f=2.4 GHz                                                                                  | %       | —     | 49.0  |      |
| ACLR   | Adjacent Channel Leakage                        | Offset BW = 5 MHz                                                                          | dBc     | _     | -54.0 | _    |
|        | Power Ratio <sup>[1,2]</sup>                    | Offset BW = 10 MHz                                                                         | dBc     | —     | -64.0 | _    |

Notes:

1. Measurements at 2 GHz obtained using production test board described in Figure 1.

2. ACLR test spec is based on 3GPP TS 25.141 V5.3.1 (2002-06)

- Test Model 1

- Active Channels: PCCPCH + SCH + CPICH + PICH + SCCPCH + 64 DPCH (SF=128)

- Freg = 2140 MHz

- Pin = -8 dBm

- Channel Integrate Bandwidth = 3.84 MHz



Figure 1. Block diagram of the 2 GHz production test board used for NF, Gain, OIP3, P1dB, PAE and ACLR measurements. This circuit achieves a trade-off between optimal OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.

#### Product Consistency Distribution Charts<sup>[1,2]</sup>



Figure 2. OIP3 @ 2 GHz, 4V, 135 mA. LSL = 36 dBm, Nominal = 40 dBm.





Figure 3. NF @ 2 GHz, 4V, 135 mA. USL = 1.30 dBm, Nominal = 0.84 dBm.



#### Notes:

- 1. Distribution data sample size is 500 samples taken from 3 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.
- Measurements are made on production test board, which represents a trade-off between optimal OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.

#### Gamma Load and Source at Optimum OIP3 Tuning Conditions

The device's optimum OIP3 measurements were determined using a Maury Load Pull System at 4.0V, 135 mA quiesent bias.

#### Typical Gammas at Optimum OIP3<sup>[1]</sup>

| Freq  | Gamma  | Gamma Source |        | Load      | OIP3  | Gain | P1dB  | PAE  |
|-------|--------|--------------|--------|-----------|-------|------|-------|------|
| (GHz) | Mag    | Ang (deg)    | Mag    | Ang (deg) | (dBm) | (dB) | (dBm) | (%)  |
| 0.9   | 0.8179 | -143.28      | 0.0721 | 124.08    | 42.0  | 17.2 | 21.7  | 33.8 |
| 2.0   | 0.7411 | -112.36      | 0.4080 | 119.91    | 41.6  | 15.6 | 23.4  | 44.2 |
| 3.9   | 0.6875 | -94.23       | 0.4478 | 174.74    | 41.3  | 11.2 | 23.1  | 41.4 |
| 5.8   | 0.5204 | -75.91       | 0.3525 | -120.13   | 36.9  | 5.6  | 22.4  | 25.7 |

Note:

1. Typical describes additional product performance information that is not covered by the product warranty.



Figure 6. Typical IV Curve.









Figure 9. OIP3 vs. Ids and Vds at 3.9 GHz



Figure 10. Small Signal Gain vs. Ids and Vds at 900 MHz



#### ATF-53189 Typical Performance Curves (at $25^{\circ}$ C unless specified otherwise) Tuned for Optimal OIP3 at Vd = 4.0V, Ids = 135 mA.

Note: Bias current for these charts are quiescent conditions. Actual level may increase depending on amount of RF drive.



ATF-53189 Typical Performance Curves (at 25°C unless specified otherwise), continued Tuned for Optimal OIP3 at Vd = 4.0V, Ids = 135 mA.



Figure 13. OIP3 vs. Ids and Vds at 5.8 GHz



8



Figure 15. Small Signal Gain/Pout/PAE vs. Pin at Vds=3V and Freq=900 MHz



Figure 16. Small Signal Gain/Pout/PAE vs. Pin at Vds=4V and Freq=900MHz



Figure 17. Small Signal Gain/Pout/PAE vs. Pin at Vds=5V and Freq=900MHz



Figure 18. Small Signal Gain/Pout/PAE vs. Pin at Vds=3V and Freq = 2 GHz

#### Note: Bias current for these charts are quiescent conditions. Actual level may increase depending on amount of RF drive.





Figure 19. Small Signal Gain/Pout/PAE vs. Pin at Vds=4V and Freq = 2 GHz



Figure 20. Small Signal Gain/Pout/PAE vs. Pin at Vds=5V and Freq = 2 GHz



Figure 21. Small Signal Gain/Pout/PAE vs. Pin at Vds=3V and Freq=3.9 GHz



Figure 22. Small Signal Gain/Pout/PAE vs. Pin at Vds=4V and Freq=3.9 GHz



Figure 23. Small Signal Gain/Pout/PAE vs. Pin at Vds=5V and Freq=3.9 GHz



Figure 24. Small Signal Gain/Pout/PAE vs. Pin at Vds=3V and Freq=5.8 GHz

#### Note: Bias current for the above charts are quiescent conditions. Actual level may increase depending on amount of RF drive.

ATF-53189 Typical Performance Curves (at 25°C unless specified otherwise), continued Tuned for Optimal OIP3 at Vd = 4.0V, Ids = 135 mA.

Tuned for Optimal OIP3 at Vd = 4.0V, Ids = 135 mA, Over Temperature and Frequency



Figure 25. Small Signal Gain/Pout/PAE vs. Pin at Vds=4V and Freq=5.8 GHz

ATF-53189 Typical Performance Curves, continued

Figure 26. Small Signal Gain/Pout/PAE vs. Pin at Vds=5V and Freq=5.8 GHz



Figure 27. OIP3 vs. Temperature and Frequency at optimum OIP3



Figure 29. PAE vs. Temperature and Frequency at optimum OIP3



Figure 28. Gain vs. Temperature and Frequency at optimum OIP3



Figure 30. P1dB vs. Temperature and Frequency at optimum OIP3

#### Note: Bias current for the above charts are quiescent conditions. Actual level may increase depending on amount of RF drive.



# ATF-53189 Typical Performance Curves (at $25^{\circ}$ C unless specified otherwie), continued Tuned for Optimal OIP3 at Vd = 4.0V, Ids = 135 mA

#### Note:

Bias current for the above charts are quiescent conditions. Actual level may increase depending on amount of RF drive.

ATF-53189 Typical Scattering and Noise Parameters at 25°C,  $V_{ps} = 4.0V$ ,  $I_{ps} = 180$  mA

| Freq. |       | S <sub>11</sub> |       | S <sub>21</sub> |        |       | <b>S</b> <sub>12</sub> |        |       | S,,,   | MSG/MAG |
|-------|-------|-----------------|-------|-----------------|--------|-------|------------------------|--------|-------|--------|---------|
| GHz   | Mag.  | Ang.            | dB    | Mag.            | Ang.   | dB    | Mag.                   | Ang.   | Mag.  | Ang.   | dB      |
| 0.1   | 0.776 | -48.1           | 32.2  | 40.839          | 154.1  | -38.4 | 0.012                  | 65.5   | 0.428 | -39.3  | 35.3    |
| 0.2   | 0.798 | -84.7           | 30.7  | 34.138          | 135.6  | -34.0 | 0.02                   | 50.5   | 0.411 | -71.3  | 32.3    |
| 0.3   | 0.818 | -110.2          | 29.0  | 28.059          | 121.7  | -32.0 | 0.025                  | 39.4   | 0.396 | -94.8  | 30.5    |
| 0.4   | 0.832 | -128.2          | 27.3  | 23.278          | 111.2  | -31.4 | 0.027                  | 31.7   | 0.384 | -111.6 | 29.4    |
| 0.5   | 0.835 | -151.9          | 24.8  | 17.424          | 100.1  | -31.7 | 0.026                  | 23.3   | 0.397 | -146.6 | 28.3    |
| 0.6   | 0.84  | -160.3          | 23.4  | 14.811          | 94.8   | -31.7 | 0.026                  | 20.5   | 0.401 | -153.7 | 27.6    |
| 0.7   | 0.842 | -166.9          | 22.2  | 12.876          | 90.2   | -31.4 | 0.027                  | 18.6   | 0.403 | -159   | 26.8    |
| 0.8   | 0.843 | -172.2          | 21.1  | 11.394          | 86.3   | -31.4 | 0.027                  | 17.5   | 0.402 | -163.3 | 26.3    |
| 0.9   | 0.844 | -176.9          | 20.2  | 10.225          | 82.7   | -31.1 | 0.028                  | 16.5   | 0.4   | -166.8 | 25.6    |
| 1.0   | 0.847 | 178.8           | 19.3  | 9.256           | 79.3   | -31.1 | 0.028                  | 15.7   | 0.398 | -169.8 | 25.2    |
| 1.5   | 0.847 | 161.9           | 16.0  | 6.316           | 64.7   | -30.2 | 0.031                  | 13.4   | 0.389 | 178.4  | 23.1    |
| 2.0   | 0.847 | 147.6           | 13.7  | 4.818           | 51.4   | -29.4 | 0.034                  | 11     | 0.377 | 169.3  | 21.5    |
| 2.5   | 0.843 | 133.8           | 11.9  | 3.928           | 38.4   | -28.6 | 0.037                  | 7.6    | 0.367 | 160.5  | 18.9    |
| 3.0   | 0.841 | 119.8           | 10.6  | 3.369           | 25.2   | -28.0 | 0.04                   | 2.5    | 0.365 | 152.5  | 17.0    |
| 3.5   | 0.851 | 110             | 9.6   | 3.036           | 14.5   | -27.5 | 0.042                  | -2.4   | 0.385 | 143.8  | 16.3    |
| 4.0   | 0.862 | 100.1           | 8.6   | 2.702           | 3.7    | -27.3 | 0.043                  | -7.3   | 0.405 | 135.2  | 15.5    |
| 5.0   | 0.882 | 80.4            | 6.2   | 2.034           | -17.9  | -26.9 | 0.045                  | -17.2  | 0.446 | 117.8  | 13.5    |
| 6.0   | 0.903 | 60.7            | 2.7   | 1.367           | -39.4  | -26.4 | 0.048                  | -27    | 0.486 | 100.5  | 10.8    |
| 7.0   | 0.939 | 44              | 0.2   | 1.027           | -59.4  | -27.1 | 0.044                  | -37.6  | 0.544 | 87.1   | 10.5    |
| 8.0   | 0.956 | 31.8            | -2.1  | 0.786           | -77.8  | -27.7 | 0.041                  | -48.7  | 0.607 | 72.6   | 10.0    |
| 9.0   | 0.94  | 23.2            | -4.6  | 0.586           | -94.2  | -29.1 | 0.035                  | -61.5  | 0.669 | 57.9   | 6.7     |
| 10.0  | 0.948 | 13.6            | -6.8  | 0.459           | -110   | -30.8 | 0.029                  | -79    | 0.721 | 45.5   | 6.1     |
| 11.0  | 0.942 | 2.6             | -8.7  | 0.368           | -126.9 | -34.0 | 0.02                   | -117   | 0.756 | 35.1   | 4.8     |
| 12.0  | 0.92  | -4.3            | -10.3 | 0.305           | -141.2 | -38.4 | 0.012                  | -172.6 | 0.784 | 24.8   | 2.3     |
| 13.0  | 0.959 | -15.4           | -12.3 | 0.244           | -161.1 | -35.4 | 0.017                  | 104.4  | 0.794 | 15.1   | 3.7     |
| 14.0  | 0.952 | -20.1           | -14.3 | 0.193           | -171.7 | -35.4 | 0.017                  | 73.2   | 0.812 | 7.6    | 0.8     |
| 15.0  | 0.943 | -21             | -15.5 | 0.168           | 179.4  | -35.9 | 0.016                  | 82.9   | 0.847 | 1.3    | -0.3    |
| 16.0  | 0.956 | -24.2           | -16.2 | 0.155           | 169.6  | -34.0 | 0.02                   | 81.5   | 0.852 | -2.9   | 0.3     |
| 17.0  | 0.959 | -31.9           | -16.0 | 0.159           | 155.5  | -31.4 | 0.027                  | 87     | 0.865 | -7.8   | 1.5     |
| 18.0  | 0.918 | -43.5           | -15.7 | 0.164           | 137.8  | -28.4 | 0.038                  | 78.1   | 0.847 | -14.7  | -2.0    |

| Freq | Fmin | Gamr  | na Opt | Rn/50 | Ga    | 40                                     |
|------|------|-------|--------|-------|-------|----------------------------------------|
| GHz  | dB   | Mag   | Ang    | -     | dB    | MSG                                    |
| 0.5  | 0.65 | 0.394 | 163.6  | 0.11  | 25.82 | 30                                     |
| 0.9  | 0.76 | 0.417 | 172.4  | 0.09  | 21.83 |                                        |
| 1.0  | 0.79 | 0.423 | 175.3  | 0.08  | 21.71 |                                        |
| 1.5  | 0.86 | 0.465 | -165.4 | 0.08  | 18.70 |                                        |
| 2.0  | 0.94 | 0.509 | -147.7 | 0.06  | 17.63 |                                        |
| 2.4  | 1.00 | 0.545 | -134.6 | 0.08  | 16.45 |                                        |
| 3.0  | 1.10 | 0.600 | -116.7 | 0.16  | 14.90 |                                        |
| 3.5  | 1.17 | 0.645 | -103.3 | 0.28  | 13.53 | -10                                    |
| 5.0  | 1.41 | 0.777 | -70.0  | 0.35  | 11.35 |                                        |
| 5.8  | 1.53 | 0.840 | -56.1  | 0.41  | 10.31 |                                        |
| 6.0  | 1.56 | 0.855 | -52.9  | 0.42  | 10.38 | U Z 4 6 8 10 12 14 16 18               |
| 7.0  | 1.72 | 0.920 | -39.0  | 0.51  | 9.79  | FREQUENCY (GHz)                        |
| 8.0  | 1.87 | 0.970 | -27.5  | 0.97  | 7.91  | Figure 36. MSG/MAG & $ S21 ^2$ vs. and |
| 9.0  | 2.03 | 0.993 | -19.1  | 1.88  | 6.11  | Frequency at 4.0V/180 mA.              |
| 10.0 | 2.18 | 0.997 | -7.5   | 2.54  | 4.56  |                                        |

Notes:

1.  $F_{min}$  values at 2 GHz and higher are based on measurements while the  $F_{min}$  below 2 GHz have been extrapolated. The  $F_{min}$  values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.

| ATF-53189 Typical Scattering and Noise Parameters at 25°C, $V_{DS} = 4.0V$ , $I_{DS} = 135$ mA |  |
|------------------------------------------------------------------------------------------------|--|
|------------------------------------------------------------------------------------------------|--|

| Freq. |       | <b>S</b> <sub>11</sub> |       | <b>S</b> <sub>21</sub> |        |       | <b>S</b> <sub>12</sub> |        |       | S <sub>22</sub> | MSG/MAG |
|-------|-------|------------------------|-------|------------------------|--------|-------|------------------------|--------|-------|-----------------|---------|
| GHz   | Mag.  | Ang.                   | dB    | Mag.                   | Ang.   | dB    | Mag.                   | Ang.   | Mag.  | Ang.            | dB      |
| 0.1   | 0.916 | -47.6                  | 32.6  | 42.775                 | 152.6  | -37.7 | 0.013                  | 66.7   | 0.458 | -40.7           | 35.2    |
| 0.2   | 0.897 | -83.9                  | 30.9  | 35.086                 | 133.4  | -33.2 | 0.022                  | 49.5   | 0.43  | -73.3           | 32.0    |
| 0.3   | 0.885 | -109.5                 | 29.1  | 28.4                   | 119.5  | -31.4 | 0.027                  | 37.8   | 0.407 | -96.8           | 30.2    |
| 0.4   | 0.878 | -127.5                 | 27.4  | 23.322                 | 109.2  | -30.8 | 0.029                  | 29.9   | 0.39  | -113.4          | 29.1    |
| 0.5   | 0.859 | -151.3                 | 24.8  | 17.286                 | 98.2   | -31.4 | 0.027                  | 21.3   | 0.399 | -148.1          | 28.1    |
| 0.6   | 0.857 | -159.9                 | 23.3  | 14.647                 | 93.1   | -31.1 | 0.028                  | 18.6   | 0.401 | -155            | 27.2    |
| 0.7   | 0.855 | -166.5                 | 22.1  | 12.703                 | 88.7   | -31.1 | 0.028                  | 16.9   | 0.402 | -160.1          | 26.6    |
| 0.8   | 0.854 | -171.9                 | 21.0  | 11.225                 | 84.9   | -30.8 | 0.029                  | 15.6   | 0.4   | -164.3          | 25.9    |
| 0.9   | 0.852 | -176.6                 | 20.1  | 10.065                 | 81.5   | -30.8 | 0.029                  | 14.6   | 0.398 | -167.7          | 25.4    |
| 1.0   | 0.854 | 179.1                  | 19.2  | 9.101                  | 78.2   | -30.8 | 0.029                  | 13.9   | 0.396 | -170.6          | 25.0    |
| 1.5   | 0.851 | 162.1                  | 15.8  | 6.197                  | 63.9   | -29.9 | 0.032                  | 11.3   | 0.386 | 178             | 22.9    |
| 2.0   | 0.85  | 147.7                  | 13.5  | 4.726                  | 50.7   | -29.4 | 0.034                  | 9      | 0.374 | 169             | 21.4    |
| 2.5   | 0.846 | 133.9                  | 11.7  | 3.851                  | 37.7   | -28.4 | 0.038                  | 5.7    | 0.364 | 160.4           | 19.3    |
| 3.0   | 0.844 | 119.8                  | 10.4  | 3.301                  | 24.6   | -28.0 | 0.04                   | 0.8    | 0.362 | 152.4           | 17.0    |
| 3.5   | 0.854 | 110                    | 9.4   | 2.968                  | 13.9   | -27.7 | 0.041                  | -4     | 0.382 | 143.7           | 16.2    |
| 4.0   | 0.863 | 100.2                  | 8.4   | 2.636                  | 3.1    | -27.5 | 0.042                  | -8.7   | 0.401 | 135             | 15.3    |
| 5.0   | 0.883 | 80.5                   | 5.9   | 1.972                  | -18.5  | -26.9 | 0.045                  | -18.1  | 0.441 | 117.6           | 13.3    |
| 6.0   | 0.902 | 60.8                   | 2.3   | 1.308                  | -40    | -26.6 | 0.047                  | -27.6  | 0.48  | 100.2           | 10.3    |
| 7.0   | 0.939 | 44.1                   | 0.0   | 1.005                  | -60    | -27.1 | 0.044                  | -38.6  | 0.542 | 87.3            | 10.3    |
| 8.0   | 0.956 | 31.8                   | -2.3  | 0.769                  | -78.3  | -27.7 | 0.041                  | -49.6  | 0.605 | 72.8            | 9.8     |
| 9.0   | 0.94  | 23.2                   | -4.8  | 0.573                  | -95    | -29.1 | 0.035                  | -62.1  | 0.668 | 58.1            | 6.6     |
| 10.0  | 0.948 | 13.6                   | -7.0  | 0.448                  | -110.5 | -30.8 | 0.029                  | -80    | 0.721 | 45.6            | 5.9     |
| 11.0  | 0.942 | 2.6                    | -8.9  | 0.36                   | -127.7 | -34.0 | 0.02                   | -118.6 | 0.757 | 35.2            | 4.6     |
| 12.0  | 0.92  | -4.2                   | -10.5 | 0.297                  | -141.8 | -38.4 | 0.012                  | -173.3 | 0.784 | 24.8            | 2.1     |
| 13.0  | 0.959 | -15.4                  | -12.4 | 0.239                  | -161.9 | -34.9 | 0.018                  | 105    | 0.794 | 15.1            | 3.5     |
| 14.0  | 0.951 | -20                    | -14.5 | 0.188                  | -172.9 | -35.4 | 0.017                  | 74     | 0.812 | 7.7             | 0.4     |
| 15.0  | 0.942 | -21.1                  | -15.7 | 0.164                  | 178.7  | -35.4 | 0.017                  | 84.5   | 0.847 | 1.4             | -0.6    |
| 16.0  | 0.956 | -24.2                  | -16.5 | 0.149                  | 167.8  | -34.0 | 0.02                   | 82.4   | 0.853 | -2.9            | 0.0     |
| 17.0  | 0.958 | -31.8                  | -16.2 | 0.155                  | 154.1  | -31.4 | 0.027                  | 87.3   | 0.866 | -7.8            | 1.2     |
| 18.0  | 0.92  | -43.5                  | -15.9 | 0.161                  | 136.9  | -28.4 | 0.038                  | 78.5   | 0.848 | -14.7           | -2.1    |

| Freq | Fmin | Gamr  | na Opt | Rn/50 | Ga    |                                        |
|------|------|-------|--------|-------|-------|----------------------------------------|
| GHz  | dB   | Mag   | Ang    |       | dB    | 30 MSG                                 |
| 0.5  | 0.30 | 0.162 | 150.8  | 0.05  | 26.27 |                                        |
| 0.9  | 0.41 | 0.291 | 161.3  | 0.05  | 22.12 |                                        |
| 1.0  | 0.44 | 0.302 | 164.2  | 0.05  | 22.02 |                                        |
| 1.5  | 0.53 | 0.369 | -174.2 | 0.04  | 18.95 |                                        |
| 2.0  | 0.62 | 0.433 | -154.6 | 0.04  | 17.05 | S21                                    |
| 2.4  | 0.69 | 0.484 | -140.2 | 0.05  | 15.87 |                                        |
| 3.0  | 0.80 | 0.556 | -120.6 | 0.10  | 14.63 | <sup>≌</sup> 10                        |
| 3.5  | 0.89 | 0.613 | -106.1 | 0.19  | 13.21 | -10                                    |
| 5.0  | 1.16 | 0.764 | -71.0  | 0.26  | 11.19 | -20                                    |
| 5.8  | 1.31 | 0.832 | -56.6  | 0.30  | 10.26 |                                        |
| 6.0  | 1.34 | 0.848 | -53.4  | 0.30  | 10.04 | FREQUENCY (GHz)                        |
| 7.0  | 1.52 | 0.914 | -39.3  | 0.39  | 9.64  | Figure 37. MSG/MAG & $ S21 ^2$ vs. and |
| 8.0  | 1.71 | 0.963 | -27.9  | 0.77  | 8.68  | Frequency at 4.0V/135 mA.              |
| 9.0  | 1.89 | 0.991 | -18.2  | 0.96  | 6.57  | · ·                                    |
| 10.0 | 2.07 | 0.998 | -9.2   | 1.58  | 4.51  |                                        |

Notes:

 F<sub>min</sub> values at 2 GHz and higher are based on measurements while the F<sub>min</sub> below 2 GHz have been extrapolated. The F<sub>min</sub> values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.

|       |       |                        |      |                        |       | -, DS | -/ DS                  |      |         |     |
|-------|-------|------------------------|------|------------------------|-------|-------|------------------------|------|---------|-----|
| Freq. |       | <b>S</b> <sub>11</sub> |      | <b>S</b> <sub>21</sub> |       |       | <b>S</b> <sub>12</sub> |      | S,,,    |     |
| GHz   | Mag.  | Ang.                   | dB   | Mag.                   | Ang.  | dB    | Mag.                   | Ang. | Mag.    | An  |
| 0.1   | 0.926 | -80.9                  | 33.5 | 47.17                  | 135.8 | -35.9 | 0.016                  | 51.6 | 0.389   | -96 |
| 0.2   | 0.891 | -121.5                 | 29.9 | 31.192                 | 114.3 | -33.2 | 0.022                  | 34.6 | 0.447   | -13 |
| 0.3   | 0.882 | -142.5                 | 27.0 | 22.457                 | 102.7 | -32.0 | 0.025                  | 26.7 | 0.471   | -14 |
| 0.4   | 0.879 | -155.4                 | 24.8 | 17.36                  | 94.8  | -31.7 | 0.026                  | 22.2 | 0.482   | -1  |
| 0.5   | 0.885 | -169.7                 | 21.7 | 12.12                  | 88.9  | -32.8 | 0.023                  | 19.7 | 0.551   | -12 |
| 0.6   | 0.886 | -175.4                 | 20.1 | 10.145                 | 85    | -32.4 | 0.024                  | 19   | 0.555   | -12 |
| 0.7   | 0.886 | -180                   | 18.8 | 8.743                  | 81.6  | -32.4 | 0.024                  | 18.6 | 0.557   | -12 |
| 0.8   | 0.886 | 176.1                  | 17.7 | 7.695                  | 78.4  | -32.0 | 0.025                  | 18.5 | 0.557   | 17  |
| 09    | 0 885 | 172 5                  | 16.8 | 6 883                  | 75 3  | -317  | 0.026                  | 18/  | 0 5 5 5 | 17  |

ATF-53189 Typical Scattering and Noise Parameters at 25°C,  $V_{x} = 4.0V$ ,  $I_{x} = 75$  mA

| GHz  | Mag.  | Ang.   | dB    | Mag.   | Ang.   | dB    | Mag.  | Ang.   | Mag.  | Ang.   | dB   |
|------|-------|--------|-------|--------|--------|-------|-------|--------|-------|--------|------|
| 0.1  | 0.926 | -80.9  | 33.5  | 47.17  | 135.8  | -35.9 | 0.016 | 51.6   | 0.389 | -96    | 34.7 |
| 0.2  | 0.891 | -121.5 | 29.9  | 31.192 | 114.3  | -33.2 | 0.022 | 34.6   | 0.447 | -131.4 | 31.5 |
| 0.3  | 0.882 | -142.5 | 27.0  | 22.457 | 102.7  | -32.0 | 0.025 | 26.7   | 0.471 | -147.6 | 29.5 |
| 0.4  | 0.879 | -155.4 | 24.8  | 17.36  | 94.8   | -31.7 | 0.026 | 22.2   | 0.482 | -157   | 28.2 |
| 0.5  | 0.885 | -169.7 | 21.7  | 12.12  | 88.9   | -32.8 | 0.023 | 19.7   | 0.551 | -172.5 | 27.2 |
| 0.6  | 0.886 | -175.4 | 20.1  | 10.145 | 85     | -32.4 | 0.024 | 19     | 0.555 | -176   | 26.3 |
| 0.7  | 0.886 | -180   | 18.8  | 8.743  | 81.6   | -32.4 | 0.024 | 18.6   | 0.557 | -178.8 | 25.6 |
| 0.8  | 0.886 | 176.1  | 17.7  | 7.695  | 78.4   | -32.0 | 0.025 | 18.5   | 0.557 | 178.7  | 24.9 |
| 0.9  | 0.885 | 172.5  | 16.8  | 6.883  | 75.3   | -31.7 | 0.026 | 18.4   | 0.555 | 176.5  | 24.2 |
| 1.0  | 0.887 | 169.3  | 15.9  | 6.209  | 72.4   | -31.7 | 0.026 | 18.3   | 0.554 | 174.4  | 23.8 |
| 1.5  | 0.884 | 155.1  | 12.5  | 4.212  | 58.8   | -30.5 | 0.03  | 17.8   | 0.548 | 165.1  | 21.5 |
| 2.0  | 0.884 | 142.1  | 10.1  | 3.21   | 45.7   | -29.1 | 0.035 | 15.6   | 0.538 | 156.3  | 19.2 |
| 2.5  | 0.88  | 129.1  | 8.4   | 2.618  | 32.5   | -28.0 | 0.04  | 11.2   | 0.532 | 147.4  | 16.2 |
| 3.0  | 0.875 | 115.5  | 7.0   | 2.246  | 18.9   | -27.1 | 0.044 | 4.9    | 0.532 | 139    | 14.4 |
| 3.5  | 0.882 | 106.2  | 6.1   | 2.018  | 8.1    | -26.7 | 0.046 | -1.1   | 0.549 | 130.5  | 13.8 |
| 4.0  | 0.889 | 96.8   | 5.1   | 1.791  | -2.8   | -26.6 | 0.047 | -7.1   | 0.567 | 122    | 13.0 |
| 5.0  | 0.903 | 78.1   | 2.5   | 1.337  | -24.5  | -26.0 | 0.05  | -19    | 0.603 | 105.1  | 11.1 |
| 6.0  | 0.917 | 59.4   | -1.1  | 0.882  | -46.2  | -25.5 | 0.053 | -31    | 0.638 | 88.1   | 8.2  |
| 7.0  | 0.947 | 43.5   | -3.6  | 0.658  | -65.5  | -26.2 | 0.049 | -42.2  | 0.681 | 75.1   | 7.9  |
| 8.0  | 0.959 | 31.7   | -6.0  | 0.501  | -83.3  | -26.7 | 0.046 | -53.9  | 0.725 | 61.6   | 7.2  |
| 9.0  | 0.941 | 23.4   | -8.6  | 0.37   | -98.9  | -28.4 | 0.038 | -65.8  | 0.77  | 48.2   | 4.0  |
| 10.0 | 0.946 | 14.1   | -10.7 | 0.292  | -114.3 | -29.6 | 0.033 | -82.9  | 0.805 | 36.9   | 3.3  |
| 11.0 | 0.936 | 3.1    | -12.5 | 0.236  | -131.4 | -33.2 | 0.022 | -116.4 | 0.826 | 27.2   | 1.7  |
| 12.0 | 0.914 | -3.7   | -14.2 | 0.194  | -146   | -37.7 | 0.013 | -159.1 | 0.843 | 17.2   | -0.7 |
| 13.0 | 0.951 | -14.9  | -16.2 | 0.154  | -166.9 | -37.7 | 0.013 | 104.3  | 0.843 | 8      | -0.3 |
| 14.0 | 0.948 | -19.8  | -18.3 | 0.121  | -175.3 | -39.2 | 0.011 | 56.9   | 0.85  | 1.2    | -2.9 |
| 15.0 | 0.937 | -21.1  | -19.0 | 0.112  | 176.1  | -40.9 | 0.009 | 79.5   | 0.877 | -4.2   | -3.5 |
| 16.0 | 0.949 | -24.5  | -19.7 | 0.104  | 167.9  | -43.1 | 0.007 | 74.4   | 0.878 | -8.2   | -3.2 |
| 17.0 | 0.947 | -32.9  | -18.6 | 0.118  | 154.7  | -37.7 | 0.013 | 117.9  | 0.887 | -13.1  | -1.6 |
| 18.0 | 0.906 | -45.1  | -17.8 | 0.129  | 138.1  | -33.6 | 0.021 | 111.8  | 0.862 | -21.1  | -4.1 |

MSG/MAG

| Freq | Fmin | Gamr  | na Opt | Rn/50 | Ga    | 40                                     |
|------|------|-------|--------|-------|-------|----------------------------------------|
| GHz  | dB   | Mag   | Ang    | -     | dB    | 30 MSG                                 |
| 0.5  | 0.32 | 0.175 | 127.6  | 0.05  | 26.45 | · · · · · · · · · · · · · · · · · · ·  |
| 0.9  | 0.41 | 0.224 | 143.8  | 0.04  | 21.98 |                                        |
| 1.0  | 0.43 | 0.235 | 148.3  | 0.03  | 21.50 |                                        |
| 1.5  | 0.49 | 0.306 | 173.6  | 0.03  | 18.55 |                                        |
| 2.0  | 0.56 | 0.375 | -163.6 | 0.03  | 16.33 | S21                                    |
| 2.4  | 0.61 | 0.428 | -147.2 | 0.04  | 15.18 | ĝ -10                                  |
| 3.0  | 0.69 | 0.507 | -125.3 | 0.08  | 13.86 | 2 10                                   |
| 3.5  | 0.75 | 0.569 | -109.3 | 0.14  | 12.68 | -20                                    |
| 5.0  | 0.95 | 0.738 | -72.0  | 0.20  | 10.81 | -30                                    |
| 5.8  | 1.05 | 0.814 | -57.4  | 0.24  | 10.64 | 0 2 4 6 8 10 12 14 16 18               |
| 6.0  | 1.08 | 0.831 | -54.2  | 0.24  | 9.97  | FREQUENCY (GHz)                        |
| 7.0  | 1.21 | 0.907 | -40.5  | 0.30  | 9.25  | Figure 38. MSG/MAG & $ S21 ^2$ vs. and |
| 8.0  | 1.34 | 0.961 | -29.3  | 0.60  | 7.78  | Frequency at 4.0V/75 mA.               |
| 9.0  | 1.47 | 0.992 | -19.3  | 0.71  | 6.96  |                                        |
| 10.0 | 1.60 | 0.996 | -8.9   | 1.01  | 4.46  |                                        |

#### Notes:

 F<sub>min</sub> values at 2 GHz and higher are based on measurements while the F<sub>min</sub> below 2 GHz have been extrapolated. The F<sub>min</sub> values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.

ATF-53189 Typical Scattering and Noise Parameters at 25°C,  $V_{DS} = 5.0V$ ,  $I_{DS} = 135$  mA

| Freq. |       | <b>S</b> <sub>11</sub> |       | S <sub>21</sub> |        |       | S <sub>12</sub> |        |       | S,,,   | MSG/MAG |
|-------|-------|------------------------|-------|-----------------|--------|-------|-----------------|--------|-------|--------|---------|
| GHz   | Mag.  | Ang.                   | dB    | Mag.            | Ang.   | dB    | Mag.            | Ang.   | Mag.  | Ang.   | dB      |
| 0.1   | 0.903 | -47.8                  | 32.5  | 42.048          | 152.7  | -37.7 | 0.013           | 66.6   | 0.466 | -39.6  | 35.1    |
| 0.2   | 0.889 | -84.2                  | 30.8  | 34.523          | 133.5  | -33.2 | 0.022           | 49.3   | 0.432 | -71.6  | 32.0    |
| 0.3   | 0.879 | -109.8                 | 28.9  | 27.96           | 119.5  | -31.4 | 0.027           | 37.6   | 0.404 | -94.7  | 30.2    |
| 0.4   | 0.874 | -127.8                 | 27.2  | 22.97           | 109.2  | -30.8 | 0.029           | 29.8   | 0.385 | -111.3 | 29.0    |
| 0.5   | 0.857 | -151.5                 | 24.6  | 17.06           | 98.2   | -31.4 | 0.027           | 21.2   | 0.388 | -146.6 | 28.0    |
| 0.6   | 0.856 | -160                   | 23.2  | 14.454          | 93.1   | -31.1 | 0.028           | 18.5   | 0.389 | -153.7 | 27.1    |
| 0.7   | 0.854 | -166.6                 | 22.0  | 12.541          | 88.7   | -31.1 | 0.028           | 16.7   | 0.39  | -158.9 | 26.5    |
| 0.8   | 0.853 | -172                   | 20.9  | 11.079          | 84.9   | -30.8 | 0.029           | 15.4   | 0.388 | -163.2 | 25.8    |
| 0.9   | 0.852 | -176.7                 | 19.9  | 9.935           | 81.4   | -30.8 | 0.029           | 14.3   | 0.386 | -166.6 | 25.3    |
| 1.0   | 0.854 | 179.1                  | 19.1  | 8.984           | 78.1   | -30.5 | 0.03            | 13.6   | 0.383 | -169.5 | 24.8    |
| 1.5   | 0.852 | 162                    | 15.7  | 6.117           | 63.7   | -29.9 | 0.032           | 11     | 0.373 | 179.1  | 22.8    |
| 2.0   | 0.851 | 147.6                  | 13.4  | 4.662           | 50.4   | -29.4 | 0.034           | 8.7    | 0.361 | 170.2  | 21.4    |
| 2.5   | 0.846 | 133.8                  | 11.6  | 3.798           | 37.4   | -28.6 | 0.037           | 5.3    | 0.352 | 161.7  | 18.8    |
| 3.0   | 0.844 | 119.8                  | 10.3  | 3.257           | 24.2   | -28.0 | 0.04            | 0.6    | 0.35  | 153.9  | 16.8    |
| 3.5   | 0.854 | 110                    | 9.3   | 2.934           | 13.4   | -27.7 | 0.041           | -4.1   | 0.371 | 145.2  | 16.1    |
| 4.0   | 0.864 | 100.1                  | 8.3   | 2.611           | 2.5    | -27.5 | 0.042           | -8.8   | 0.392 | 136.6  | 15.3    |
| 5.0   | 0.883 | 80.3                   | 5.9   | 1.965           | -19.1  | -26.9 | 0.045           | -18.3  | 0.433 | 119.2  | 13.3    |
| 6.0   | 0.903 | 60.6                   | 2.4   | 1.319           | -40.8  | -26.6 | 0.047           | -27.7  | 0.475 | 101.9  | 10.5    |
| 7.0   | 0.939 | 44                     | -0.1  | 0.989           | -60.9  | -27.1 | 0.044           | -37.9  | 0.536 | 88.4   | 10.2    |
| 8.0   | 0.957 | 31.7                   | -2.4  | 0.756           | -79.4  | -27.7 | 0.041           | -49    | 0.601 | 73.8   | 9.8     |
| 9.0   | 0.941 | 23                     | -5.0  | 0.562           | -96.1  | -29.1 | 0.035           | -61.5  | 0.666 | 58.9   | 6.5     |
| 10.0  | 0.948 | 13.6                   | -7.1  | 0.441           | -112   | -30.8 | 0.029           | -79.3  | 0.72  | 46.2   | 5.8     |
| 11.0  | 0.941 | 2.5                    | -9.0  | 0.353           | -129.2 | -34.0 | 0.02            | -117.6 | 0.757 | 35.7   | 4.4     |
| 12.0  | 0.919 | -4.4                   | -10.8 | 0.29            | -143.9 | -38.4 | 0.012           | -172.8 | 0.785 | 25.2   | 1.9     |
| 13.0  | 0.958 | -15.5                  | -12.7 | 0.231           | -163.8 | -34.9 | 0.018           | 105.3  | 0.796 | 15.4   | 3.1     |
| 14.0  | 0.951 | -20.1                  | -14.8 | 0.183           | -174.6 | -35.4 | 0.017           | 74.4   | 0.814 | 7.9    | 0.2     |
| 15.0  | 0.942 | -21.1                  | -15.9 | 0.16            | 175.9  | -35.4 | 0.017           | 84     | 0.849 | 1.6    | -0.8    |
| 16.0  | 0.956 | -24.2                  | -16.7 | 0.147           | 166    | -34.0 | 0.02            | 81.8   | 0.855 | -2.7   | -0.2    |
| 17.0  | 0.957 | -31.9                  | -16.5 | 0.149           | 152.8  | -31.4 | 0.027           | 87     | 0.868 | -7.7   | 0.7     |
| 18.0  | 0.917 | -43.6                  | -16.1 | 0.156           | 134.6  | -28.4 | 0.038           | 77.6   | 0.851 | -14.6  | -2.5    |
| Fr    | ea    | Fmin                   |       | Gamma Opt       |        | Rn/50 | Ga              |        | 40    |        |         |

| Freq | Fmin | Gamr  | na Opt | Rn/50 | Ga    | 40                                      |
|------|------|-------|--------|-------|-------|-----------------------------------------|
| GHz  | dB   | Mag   | Ang    | -     | dB    | 30 MSG                                  |
| 0.5  | 0.36 | 0.266 | 149.9  | 0.05  | 26.51 | · • • • • • • • • • • • • • • • • • • • |
| 0.9  | 0.46 | 0.315 | 162.4  | 0.04  | 22.79 |                                         |
| 1.0  | 0.49 | 0.327 | 165.6  | 0.04  | 22.09 |                                         |
| 1.5  | 0.59 | 0.388 | -172.7 | 0.04  | 18.92 |                                         |
| 2.0  | 0.69 | 0.448 | -153.0 | 0.04  | 17.04 | S21                                     |
| 2.4  | 0.77 | 0.495 | -138.6 | 0.06  | 15.87 | SG/                                     |
| 3.0  | 0.88 | 0.563 | -116.3 | 0.12  | 14.50 | ≥_10                                    |
| 3.5  | 0.98 | 0.617 | -104.9 | 0.21  | 13.11 |                                         |
| 5.0  | 1.28 | 0.764 | -70.5  | 0.31  | 11.19 | -20                                     |
| 5.8  | 1.44 | 0.830 | -56.5  | 0.37  | 10.10 | 0 2 4 6 8 10 12 14 16 18                |
| 6.0  | 1.48 | 0.845 | -53.4  | 0.38  | 10.08 | FREQUENCY (GHz)                         |
| 7.0  | 1.68 | 0.912 | -39.7  | 0.42  | 9.39  | Figure 39. MSG/MAG & $ S21 ^2$ vs. and  |
| 8.0  | 1.88 | 0.960 | -28.3  | 0.84  | 8.78  | Frequency at 5.0V/135 mA.               |
| 9.0  | 2.08 | 0.988 | -18.3  | 1.24  | 8.05  |                                         |
| 10.0 | 2.28 | 0.994 | -8.5   | 1.78  | 4.74  |                                         |

Notes:

F<sub>min</sub> values at 2 GHz and higher are based on measurements while the F<sub>min</sub> below 2 GHz have been extrapolated. The F<sub>min</sub> values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.

| ATF-53189 Typical Scattering and Noise Parameters at 25 | 5°C, V | $_{\rm DS} = 3.0V,$ | $I_{DS} = 135 \text{ mA}$ |
|---------------------------------------------------------|--------|---------------------|---------------------------|
|---------------------------------------------------------|--------|---------------------|---------------------------|

| Freq. |       | <b>S</b> <sub>11</sub> |       | <b>S</b> <sub>21</sub> |        |       | <b>S</b> <sub>12</sub> |        |       | <b>S</b> <sub>22</sub> | MSG/MAG |
|-------|-------|------------------------|-------|------------------------|--------|-------|------------------------|--------|-------|------------------------|---------|
| GHz   | Mag.  | Ang.                   | dB    | Mag.                   | Ang.   | dB    | Mag.                   | Ang.   | Mag.  | Ang.                   | dB      |
| 0.1   | 0.925 | -47.5                  | 32.6  | 42.873                 | 152.7  | -37.7 | 0.013                  | 66.6   | 0.435 | -44                    | 35.2    |
| 0.2   | 0.904 | -83.8                  | 30.9  | 35.157                 | 133.4  | -33.2 | 0.022                  | 49.4   | 0.425 | -78.6                  | 32.0    |
| 0.3   | 0.889 | -109.3                 | 29.1  | 28.44                  | 119.5  | -31.4 | 0.027                  | 37.7   | 0.416 | -102.6                 | 30.2    |
| 0.4   | 0.882 | -127.4                 | 27.4  | 23.35                  | 109.2  | -30.5 | 0.03                   | 29.8   | 0.41  | -119.1                 | 28.9    |
| 0.5   | 0.861 | -151.3                 | 24.7  | 17.223                 | 98.3   | -31.1 | 0.028                  | 21.4   | 0.433 | -151.6                 | 27.9    |
| 0.6   | 0.859 | -159.8                 | 23.3  | 14.586                 | 93.2   | -31.1 | 0.028                  | 18.7   | 0.437 | -158.2                 | 27.2    |
| 0.7   | 0.856 | -166.5                 | 22.0  | 12.655                 | 88.9   | -30.8 | 0.029                  | 17     | 0.439 | -163                   | 26.4    |
| 0.8   | 0.855 | -171.8                 | 21.0  | 11.183                 | 85.2   | -30.8 | 0.029                  | 15.7   | 0.438 | -167.1                 | 25.9    |
| 0.9   | 0.853 | -176.7                 | 20.0  | 10.027                 | 81.7   | -30.5 | 0.03                   | 14.8   | 0.436 | -170.4                 | 25.2    |
| 1.0   | 0.855 | 179.1                  | 19.1  | 9.067                  | 78.4   | -30.5 | 0.03                   | 14     | 0.435 | -173.3                 | 24.8    |
| 1.5   | 0.851 | 162.1                  | 15.8  | 6.179                  | 64.3   | -29.6 | 0.033                  | 11.4   | 0.425 | 175.3                  | 22.7    |
| 2.0   | 0.851 | 147.6                  | 13.5  | 4.713                  | 51.2   | -29.1 | 0.035                  | 8.9    | 0.413 | 166                    | 21.3    |
| 2.5   | 0.845 | 133.8                  | 11.7  | 3.846                  | 38.4   | -28.2 | 0.039                  | 5      | 0.403 | 157.1                  | 19.6    |
| 3.0   | 0.843 | 119.8                  | 10.4  | 3.299                  | 25.4   | -27.5 | 0.042                  | -0.1   | 0.401 | 148.8                  | 17.0    |
| 3.5   | 0.853 | 110                    | 9.5   | 2.972                  | 14.8   | -27.3 | 0.043                  | -5.1   | 0.419 | 140.2                  | 16.3    |
| 4.0   | 0.862 | 100.1                  | 8.4   | 2.645                  | 4.1    | -27.1 | 0.044                  | -10.2  | 0.438 | 131.6                  | 15.4    |
| 5.0   | 0.882 | 80.4                   | 6.0   | 1.99                   | -17.1  | -26.7 | 0.046                  | -20.2  | 0.475 | 114.3                  | 13.4    |
| 6.0   | 0.901 | 60.7                   | 2.5   | 1.336                  | -38.4  | -26.4 | 0.048                  | -30.3  | 0.512 | 97.1                   | 10.5    |
| 7.0   | 0.938 | 44.1                   | 0.1   | 1.006                  | -58    | -27.1 | 0.044                  | -40.8  | 0.565 | 84                     | 10.3    |
| 8.0   | 0.955 | 31.8                   | -2.3  | 0.771                  | -76    | -27.7 | 0.041                  | -51.6  | 0.622 | 70                     | 9.7     |
| 9.0   | 0.938 | 23.1                   | -4.8  | 0.576                  | -92.2  | -29.4 | 0.034                  | -64    | 0.681 | 55.7                   | 6.5     |
| 10.0  | 0.946 | 13.6                   | -6.9  | 0.453                  | -107.4 | -30.8 | 0.029                  | -82    | 0.729 | 43.6                   | 5.8     |
| 11.0  | 0.94  | 2.6                    | -8.8  | 0.364                  | -124.6 | -34.0 | 0.02                   | -121.6 | 0.76  | 33.5                   | 4.6     |
| 12.0  | 0.92  | -4.2                   | -10.4 | 0.302                  | -138.3 | -37.7 | 0.013                  | -176.6 | 0.785 | 23.3                   | 2.3     |
| 13.0  | 0.958 | -15.5                  | -12.4 | 0.241                  | -157.7 | -34.9 | 0.018                  | 105.2  | 0.794 | 13.8                   | 3.6     |
| 14.0  | 0.952 | -20.1                  | -14.4 | 0.191                  | -167.9 | -35.4 | 0.017                  | 74.2   | 0.81  | 6.6                    | 0.7     |
| 15.0  | 0.943 | -21.2                  | -15.5 | 0.167                  | -177   | -35.4 | 0.017                  | 85.1   | 0.844 | 0.5                    | -0.3    |
| 16.0  | 0.955 | -24.2                  | -16.2 | 0.154                  | 173.2  | -34.0 | 0.02                   | 83.1   | 0.849 | -3.7                   | 0.1     |
| 17.0  | 0.958 | -31.9                  | -16.0 | 0.159                  | 159.5  | -31.4 | 0.027                  | 89     | 0.861 | -8.5                   | 1.5     |
| 18.0  | 0.918 | -43.5                  | -15.7 | 0.165                  | 141.4  | -28.4 | 0.038                  | 79.5   | 0.843 | -15.5                  | -2.0    |

| Freq | req Fmin | q Fmin | Gamr   | Gamma Opt | Rn/50 | Ga                                              | 40 |
|------|----------|--------|--------|-----------|-------|-------------------------------------------------|----|
| GHz  | dB       | Mag    | Ang    | -         | dB    | 30 MSG                                          |    |
| 0.5  | 0.34     | 0.225  | 146.2  | 0.05      | 26.30 |                                                 |    |
| 0.9  | 0.43     | 0.282  | 157.0  | 0.04      | 22.19 |                                                 |    |
| 1.0  | 0.45     | 0.296  | 160.2  | 0.04      | 22.07 |                                                 |    |
| 1.5  | 0.53     | 0.362  | -177.0 | 0.03      | 19.00 |                                                 |    |
| 2.0  | 0.61     | 0.427  | -156.3 | 0.03      | 17.13 | S21                                             |    |
| 2.4  | 0.68     | 0.478  | -141.3 | 0.05      | 15.89 | SG SG                                           |    |
| 3.0  | 0.78     | 0.551  | -121.1 | 0.09      | 14.59 | ≥<br>-10                                        |    |
| 3.5  | 0.86     | 0.608  | -106.2 | 0.17      | 13.17 |                                                 |    |
| 5.0  | 1.10     | 0.763  | -70.8  | 0.24      | 11.22 | -20                                             |    |
| 5.8  | 1.24     | 0.832  | -56.6  | 0.28      | 10.16 | 0 2 4 6 8 10 12 14 16 1                         |    |
| 6.0  | 1.27     | 0.848  | -53.5  | 0.30      | 9.93  | FREQUENCY (GHz)                                 |    |
| 7.0  | 1.43     | 0.915  | -39.7  | 0.38      | 9.57  | Figure 40. MSG/MAG &  S21  <sup>2</sup> vs. and |    |
| 8.0  | 1.60     | 0.964  | -28.4  | 0.74      | 8.78  | Frequency at 3.0V/135 mA.                       |    |
| 9.0  | 1.76     | 0.991  | -18.5  | 0.95      | 7.27  |                                                 |    |
| 10.0 | 1.93     | 0.995  | -8.6   | 1.55      | 3.39  |                                                 |    |

Notes:

F<sub>min</sub> values at 2 GHz and higher are based on measurements while the F<sub>min</sub> below 2 GHz have been extrapolated. The F<sub>min</sub> values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.

## Device Models, PCB Layout and Stencil Device

Refer to Avago's Web Site: http://www.avagotech.com/pages/en/rf\_microwave

## **Ordering Information**

| Part Number   | No. of Devices | Container       |
|---------------|----------------|-----------------|
| ATF-53189-TR1 | 3000           | 13″ Reel        |
| ATF-53189-BLK | 100            | Anti-static bag |

## **SOT89 Package Dimensions**







|         | DIMENS | SIONS IN MILLI | METERS | DIMENSIONS IN INCHES |       |       |
|---------|--------|----------------|--------|----------------------|-------|-------|
| SYMBOLS | MIN    | NOM            | MAX    | MIN                  | NOM   | MAX   |
| A       | 1.40   | 1.50           | 1.60   | 0.055                | 0.059 | 0.063 |
| L       | 0.89   | 1.04           | 1.20   | 0.0350               | 0.041 | 0.047 |
| b       | 0.36   | 0.42           | 0.48   | 0.014                | 0.016 | 0.018 |
| b1      | 0.41   | 0.47           | 0.53   | 0.016                | 0.018 | 0.030 |
| С       | 0.38   | 0.40           | 0.43   | 0.014                | 0.015 | 0.017 |
| D       | 4.40   | 4.50           | 4.60   | 0.173                | 0.177 | 0.181 |
| D1      | 1.40   | 1.60           | 1.75   | 0.055                | 0.062 | 0.069 |
| E       | 3.94   | -              | 4.25   | 0.155                | -     | 0.167 |
| E1      | 2.40   | 2.50           | 2.60   | 0.094                | 0.098 | 0.102 |
| e1      | 2.90   | 3.00           | 3.10   | 0.114                | 0.118 | 0.122 |
| S       | 0.65   | 0.75           | 0.85   | 0.026                | 0.030 | 0.034 |
| e       | 1.40   | 1.50           | 1.60   | 0.054                | 0.059 | 0.063 |

## **Device Orientation**





**Tape Dimensions** 



SECTION A - A

| Ao | = | 4.60 |
|----|---|------|
| Bo | = | 4.90 |

Ko = 1.90

#### DIMENSIONS IN MM

NOTES:

1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE  $\pm 0.2$ 

2. CAMBER IN COMPLIANCE WITH EIA 481

3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

#### Reel Dimensions – 13" Reel



For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes 5989-3893EN AV02-0051EN - March 19, 2013





Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

#### Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331