

Warranty
Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax will,
at its option, repair, replace, or refund the purchase price. Simply call our sales department for an RMA number, write it on the label and
return the product with a description of the problem. We will return your product, or its replacement, using the same shipping method used
to ship the product to Parallax (for instance, if you ship your product via overnight express, we will do the same).

This warranty does not apply if the product has been modified or damaged by accident, abuse, or misuse.

14-Day Money-Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a refund. Parallax will
refund the purchase price of the product, excluding shipping/handling costs. This does not apply if the product has been altered or
damaged.

Copyrights and Trademarks
Copyright © 2002 by Parallax, Inc. All rights reserved. Javelin and PBASIC are trademarks of Parallax, Inc., and BASIC Stamp is a
registered trademark or Parallax, Inc. Windows is a registered trademark of Microsoft Corporation. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. HyperTerminal is a registered trademark of
Hilgraeve. Palm is a registered trademark of 3COM. Other brand and product names are trademarks or registered trademarks of their
respective holders.

Disclaimer of Liability
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs of recovering,
reprogramming, or reproducing any data stored in or used with Parallax products.

Internet Access
We maintain Internet systems for your convenience. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

Web: http://www.parallaxinc.com
 http://www.stampsinclass.com
 http://www.javelinstamp.com

Internet Javelin Stamp Discussion List
We maintain a Javelin Stamp discussion list for people interested in Javelin Stamps. Many people subscribe to the list, and all questions
and answers to the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss Javelin Stamp issues. To subscribe to the
Javelin Stamps List, visit the Tech Support section of the Parallax, Inc website. This manual is valid with the following software and
firmware versions: Javelin Stamp IDE v2.0, Javelin Stamp firmware v$50

The information herein will usually apply to newer versions but may not apply to older versions. New software can be obtained free on our
ftp and web site (ftp.parallaxinc.com, www.parallaxinc.com). If you have any questions about what you need to upgrade your product,
please contact Parallax.

Contacting Parallax, Inc.
If you need to contact a Parallax sales or technical support representative, you can do so by telephone, FAX, or e-mail:

Telephone: Toll Free Sales (888) 512-1024
 Technical Support (916) 624-8333
 FAX (916) 624-8003

e-mail General info@parallaxinc.com
 Sales sales@parallaxinc.com
 Technical javelintech@parallaxinc.com

Table of Contents

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page i

Preface...xiii
Manual Organization..xiii
Java Programmers – READ THIS... xiv
BASIC Stamp Enthusiasts – READ THIS .. xv
Manual Conventions .. xv
Resources and Technical Support .. xvi
Free Downloads from www.javalinstamp.com .. xvi
Acknowledgements ... xvi

1: Introduction..1
The Javelin Stamp and Its Features ..1
Programming Language - JavaTM for the Javelin Stamp..2
Javelin Stamp Integrated Development Environment ..2
Virtual Peripherals..3

Background VPs...3
Foreground VPs ...3

How the Javelin Stamp Works ...3
Javelin Stamp Hardware ..4
Equipment and System Requirements...5
Useful Hardware ..6

2: Javelin Quick Start ..11
Hardware Setup ...11
Installing the Javelin Stamp IDE ..15
Running the Javelin Stamp IDE and Loading a Test Program...18
Debugging Environment...21
Online Help ..25
I/O Example ...25
Did That Work? – Trouble Shooting...27
Where to Next? ..30

3: Beginners Guide to Embedded Java Programming...31
The Class Wrapper and Main Method ...31
Declaring Constants, Variables, and Arrays ..32
Performing Calculations ...34
Making Decisions...35
Repetitive Operations...37
Displaying Messages from the Javelin...40
Sending Messages to the Javelin ..43
Creating a Method ...44
Creating and Using a Library Class ...48

4: Application Examples – Circuts and Programs..51
Circuits and Example Code..51
About Solderless Breadboards ..51

Table of Contents

 Page ii • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Pushbutton and LED Revisited.. 52
Digital to Analog Conversion ... 54
Analog to Digital Conversion ... 55
Measuring Resistive and Capacitive Elements.. 55
Controlling a Servo with a Background PWM Object .. 57
Communicating with Peripheral ICs .. 59
Communicating with Other Computers.. 64
Communicating with Peripheral Devices ... 67

5: Using the Javelin Stamp IDE ... 71
Starting the IDE ... 71
Setting Global Options... 71
Starting a Project ... 72
Building your Program... 76
Dealing with Errors .. 76
Using the Debugger to Look Inside the Javelin ... 78
An Example Debugging Session ... 81
Editing Text.. 83
Toolbars and Menubars... 83
Class Path Considerations .. 84
Working with Packages ... 84
Working with Projects .. 85

6: Javelin Stamp Programmers Reference ... 87
Java Differences.. 87
Getting Started .. 87
Variables, Types, and Constants... 89

Constants... 90
Number Bases ... 91
Expressions ... 91
Special Operators .. 93
Comments.. 95
Control Flow... 95
Classes and Objects .. 97
Methods and Parameters... 99
Where are the Pointers? .. 101
Arrays .. 103
Strings.. 104
Extending Classes ... 105
Basic Type Classes ... 108
Numeric Conversions... 109
Statics .. 109
Abstraction... 109

Table of Contents

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page iii

Exceptions..110
Packages and CLASSPATH ..112

Online Resources ..114
Javelin Stamp Keyword Reference ..114

abstract...114
boolean...114
break ..115
byte...115
case..116
catch...116
char ..116
class ...116
continue..116
default...117
do ...117
else...117
extends...117
final...117
finally ..118
for ...118
if..119
import ...120
int..121
new...121
null..122
package..122
private, protected, public ..123
return ..124
short ...125
static ...125
super ..126
switch ...127
this..127
throw, throws ..128
try ...128
void...130
while ...130

Javelin Stamp Operator Reference..130
[] ..130
++, --...131
(type) ..131

Table of Contents

 Page iv • Javelin Stamp Manual v1.0 • www.parallaxinc.com

+, -, *, /, %, ().. 132
<<, >>, >>> .. 132
<, >, <=, >=, ==, != ... 133
&, |, ^.. 134
&&, || .. 134
~, !.. 134
?:.. 134
instanceof .. 135

Unused Keywords ... 136
Unsupported Reserved Words:.. 136

7: Working with Objects ... 137
What's an Object? ... 137

Encapsulation .. 138
Polymorphism .. 139
Class Relationships ... 140
An Object Oriented Example ... 140
Decoupling the Code ... 142
Virtual Peripherals.. 145
A Timer Example ... 146
Object-Oriented Opportunity .. 147

8: Object Reference .. 149
The java.lang Package .. 149

Boolean.. 149
Error... 150
Exception ... 150
IndexOutOfBoundsException... 151
Math... 151
NullPointerException.. 151
Object .. 151
OutOfMemoryError .. 152
RuntimeException.. 152
String ... 152
StringBuffer .. 154
System... 155
Throwable .. 155

The java.io Package .. 155
The java.util Package .. 156

Random ... 156
The stamp.util Package ... 156

Expect .. 156
List ... 157

Table of Contents

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page v

LinkedList ...157
LinkedListItem..158

9: Javelin Stamp Hardware Reference...159
ADC ...159
Button...160
CPU ...163

carry ...164
count...164
delay...165
installVP ...165
message...166
nap ...166
pulseIn..167
pulseOut ...168
rcTime ..169
readPin ...171
readPort..172
removeVP...173
setInput...174
shiftIn..174
shiftOut ...177
writePin...180
writePort ...180

DAC ...181
EEPROM ...182
Memory ..184
PWM ..184
Terminal ...185
Timer..187
Uart ..188

10: Technical Details ...191
Summary of Java Differences ..191

Single Thread ...191
No Garbage Collection ...191
Subset of Primitive Data Types ..192
Subset of Java Libraries ...193
Strings are ASCII..194
No Interfaces ..194
One Dimensional Arrays...194

Understanding the Javelin Stamp’s Memory Management..195
Memory and Variable Types ..197

Table of Program Listings

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page vii

PROGRAM LISTING 2.1 - HELLO WORLD! ...18
PROGRAM LISTING 2.2 - COUNT DOWN...23
PROGRAM LISTING 2.3 - FLASH LED WITH PUSHBUTTON ...26
PROGRAM LISTING 3.1 - HELLO WORLD REVISITED ...31
PROGRAM LISTING 3.2 - DISPLAY VARIABLES ..32
PROGRAM LISTING 3.3 - GLOBAL VARIABLES...33
PROGRAM LISTING 3.4 - DISPLAY PRIMITIVE TYPES ...33
PROGRAM LISTING 3.5 - EXAMPLE ARRAY...34
PROGRAM LISTING 3.6 - MATH EXAMPLE ..35
PROGRAM LISTING 3.7 - DECISION EXAMPLE...36
PROGRAM LISTING 3.8 - WHILE LOOP EXAMPLES ..38
PROGRAM LISTING 3.9 - FOR LOOPS ..40
PROGRAM LISTING 3.10 - ASSORTED MESSAGES ..42
PROGRAM LISTING 3.11 - CAPITALIZE ...43
PROGRAM LISTING 3.12 - METHOD EXAMPLE ..47
PROGRAM LISTING 3.13 - LIBRARY CLASS: LIBRARY FILE...48
PROGRAM LISTING 3.14 - LIBRARY CLASS: EXECUTABLE USES LIBRARY FILE ...49
PROGRAM LISTING 4.1 - LED PUSH BUTTON...53
PROGRAM LISTING 4.2 - MAKE VOLTAGE ..54
PROGRAM LISTING 4.3 - ADC TEST..55
PROGRAM LISTING 4.4 - PHOTO RESISTOR ...56
PROGRAM LISTING 4.5 - BASIC SERVO CONTROL ..58
PROGRAM LISTING 4.6 - SIMPLE DS1620 ...61
PROGRAM LISTING 4.7 - SHIFT DS1620 ...62
PROGRAM LISTING 4.8 - BI-DIRECTIONAL COMMUNICATION WITH HYPERTERMINAL66
PROGRAM LISTING 4.9 - MODEM TEST..67
PROGRAM LISTING 5.1 - MY TEST CLASS (DEALING WITH ERRORS) ...76
PROGRAM LISTING 6.1 - CALCULATE...90
PROGRAM LISTING 6.2 - FOR DEMO ..95
PROGRAM LISTING 6.3 - SWITCH DEMO ..97
PROGRAM LISTING 6.4 - CONSTRUCT ..99
PROGRAM LISTING 6.5 - LIST..101
PROGRAM LISTING 6.6 - AN ARRAY ..103
PROGRAM LISTING 6.7 - LIBRARY CLASS EXAMPLE..110
PROGRAM LISTING 6.8 - EXCEPTIONS EX1..111
PROGRAM LISTING 6.9 - EXCEPTIONS EX2..111
PROGRAM LISTING 6.10 - SCALE ERROR (EXTENDS EXCEPTION) ...112
PROGRAM LISTING 7.1 - SEND MORSE CODE EXAMPLE 1 ..140
PROGRAM LISTING 7.2 - SEND MORSE CODE EXAMPLE 2 ..142
PROGRAM LISTING 7.3 - CHARACTER CONVERT ..144
PROGRAM LISTING 7.4 - CONVERT NUMBERS TO MORSE CODE..144

Table of Program Listings

 Page viii • Javelin Stamp Manual v1.0 • www.parallaxinc.com

PROGRAM LISTING 7.5 - SIMPLE TIMER DEMO .. 146
PROGRAM LISTING 9.1 - ADC DEMO.. 160
PROGRAM LISTING 9.2 - BUTTON DEMO ... 162
PROGRAM LISTING 9.3 - PULSE CLASS 1 .. 168
PROGRAM LISTING 9.4 - USING SHIFTOUT ON 75XX595 SHIFT REGISTER.. 179
PROGRAM LISTING 9.5 – EEPROM TEST .. 183
PROGRAM LISTING 9.6 - PASSWORD GATE ... 186

Table of Figures

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page ix

FIGURE 1.1 JAVELIN (TOP VIEW) ...1
FIGURE 1.2 JAVELIN BLOCK DIAGRAM ...4
FIGURE 1.3 JAVELIN STAMP DEMO BOARD FEATURES...7
FIGURE 2.1 CONNECTING POWER AND SERIAL CABLE TO JAVELIN STAMP DEMO BOARD ...12
FIGURE 2.2 JAVELIN STAMP MECHANICAL DRAWINGS AND PIN MAP ...13
FIGURE 2.3 JAVELIN STAMP COM PORT CONNECTION AND RECOMMENDED POWER CONNECTIONS14
FIGURE 2.4 ALTERNATE POWER SUPPLY CONNECTION DIAGRAM (NOT RECOMMENDED)..14
FIGURE 2.5 PARALLAX CD BROWSER ...16
FIGURE 2.6 JAVELIN STAMP SETUP SCREENS..17
FIGURE 2.7 RUNNING THE JAVELIN STAMP IDE FROM THE WINDOWS START MENU. ...19
FIGURE 2.8 THE JAVELIN STAMP IDE. ...20
FIGURE 2.9 MESSAGES FROM JAVELIN WINDOW ..21
FIGURE 2.10 IDE DEBUGGER..22
FIGURE 2.11 IDE, DEBUGGER, AND MESSAGES FROM JAVELIN WINDOWS ALL IN USE...24
FIGURE 2.12 ONLINE HELP AND DOCUMENTATION..25
FIGURE 2.13 SCHEMATIC AND BREADBOARD EXAMPLE FOR PROGRAM LISTING 2.3..26
FIGURE 2.14 IF YOU MADE A MISTAKE. ...28
FIGURE 2.15 DEBUGGER PAGE OF THE GLOBAL OPTIONS WINDOW...29
FIGURE 4.1 JAVELIN STAMP DEMO BOARD SOLDERLESS BREADBOARDS ...52
FIGURE 4.2 CIRCUIT FOR USE WITH DAC OBJECT...54
FIGURE 4.3 CIRCUIT FOR USE WITH ADC OBJECT...55
FIGURE 4.4 CIRCUIT FOR USE WITH RCTIME ..56
FIGURE 4.5 CIRCUIT FOR USE WITH DAC OBJECT...58
FIGURE 4.6 ENTERING MESSAGES INTO THE TERMINAL WINDOW ...58
FIGURE 4.7 DS1620 CIRCUIT..61
FIGURE 4.8 COM PORT CONNECTIONS ...65
FIGURE 5.1 GLOBAL OPTIONS FOR IDE ...71
FIGURE 5.2 ERROR MESSAGES..78
FIGURE 5.3 JAVELIN STAMP IDE AND DEBUGGER ..80
FIGURE 5.4 STEPPING THROUGH CODE..82
FIGURE 5.5 CLASS PATH SETTINGS ..84
FIGURE 9.1 CIRCUIT FOR USE WITH ADC VP ..159
FIGURE 9.2 CIRCUIT FOR USE WITH BUTTON ..160
FIGURE 9.3 CIRCUIT FOR USE WITH BUTTON EXAMPLE ...162
FIGURE 9.4 PULSEIN MEASUREMENTS ...168
FIGURE 9.5 PULSEOUT PULSES ...169
FIGURE 9.6 RCTIME CIRCUITS FOR RECOMMENDED ..169
FIGURE 9.7 SHIFTIN PRE/POST_CLOCK_LSB/MSB...175
FIGURE 9.8 SHIFTOUT PRE/POST_CLOCK_LSB/MSB..177
FIGURE 9.9 SHIFTOUT EXAMPLE USING THE 74HC595 ..179
FIGURE 9.10 CIRCUIT FOR USE WITH DAC OBJECT...181

Table of Figures

 Page x • Javelin Stamp Manual v1.0 • www.parallaxinc.com

FIGURE 9.11 PULSE TRAIN GENERATED BY PWM OBJECT.. 185

Table of Tables

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page xi

TABLE 1.1: JAVELIN HARDWARE SPECIFICATIONS ..5
TABLE 1.2: JAVELIN STAMP STARTER KIT..8
TABLE 1.3: RECOMMENDED PARTS NOT INCLUDED ..9
TABLE 2.1: PROBLEMS AND ERROR MESSAGES...27
TABLE 5.1: JAVELIN TEMPLATES ...73
TABLE 5.2: FILE MENU COMMANDS...83
TABLE 5.3: EDIT MENU COMMANDS ..83
TABLE 6.1: FUNDAMENTAL DATA TYPES..89
TABLE 6.2: ESCAPE SEQUENCES..91
TABLE 6.3: BASIC JAVA OPERATORS...92
TABLE 6.4: ORDER OF OPERATIONS ...93
TABLE 6.5: OBJECT METHODS..105
TABLE 9.1: SHIFTIN MODE ARGUMENTS ..176
TABLE 10.1: PRIMITIVE DATA TYPES SUPPORTED BY THE JAVELIN STAMP...193

Preface

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page xiii

Manual Organization
This manual was written under the assumption that the reader’s level of experience could be anywhere between
beginner and advanced embedded JavaTM aficionado. We recommend that you start from the beginning and
work your way through this manual sequentially, especially if you are new to both circuits and Java. Make sure
to try all the examples and understand how they work before moving on to the next. For those of you who do
not fall at either end of the spectrum, below is a condensed table of contents with comments regarding the
intended audience and uses of each chapter.

Preface

General information - discusses Javelin Stamp’s features, this manual’s format and conventions,
resources and acknowledgements.

1: Introduction

General information - about the Javelin, its uses, equipment it can be used with, specifications,
software, etc.

2: Javelin Quick Start

Recommended for all – includes step by step instructions for software installation, hardware setup,
trouble shooting, a couple of example programs, an example circuit, and a software tour.

3: Beginners Guide to Embedded JavaTM Programming

Recommended for Java newcomers and BASIC Stamp users - if you’ve never programmed in Java
before, read this, and try the examples!

4: Application Examples – Circuits and Programs

Recommended for embedded newcomers and BASIC Stamp users – provides good examples for
BASIC Stamp users to make the transition to Java based hardware design, and helps those new to
circuit based programming projects get their feet wet.

5: Using the Javelin Stamp IDE

Recommended for all – the Javelin Stamp IDE is a powerful tool with many useful features.

6: Javelin Stamp Programmers Reference

If you are a Java programmer, pay close attention to the differences between Java for the Javelin and
Java on your PC. For beginners, this is a good way to learn programming in Java.

Preface

 Page xiv • Javelin Stamp Manual v1.0 • www.parallaxinc.com

7: Working with Objects

Recommended if you are still learning Java – by this point, if you were new to Java at the beginning of
this manual, you are now well into the learning curve.

8: Object Reference

Recommended for all – whether you are an experienced Java programmer or you just finished Chapter
7, this chapter explains the Java library classes available for use with the Javelin.

9: Javelin Stamp Hardware Reference

Recommended for all – explains all the hardware related library classes and methods. If it has to do
with a VP, a peripheral or an external circuit, the information is here.

10: Technical Details

Appendix material.

Java Programmers – READ THIS
The Javelin Stamp is a small yet powerful controller that makes use of a subset of Java 1.2. The Javelin Stamp
has firmware enhancements (called Virtual Peripherals or VPs) that emulate, or virtualize, hardware devices
such as UARTs, timers, A/D converters, D/A converters, and more. These VP’s have been painstakingly
optimized, and they take the form of native methods that make it easy to interface with just about any circuit or
peripheral device. Many of these firmware features are similar to those that lead the BASIC Stamp’s
popularity, and others have long been on BASIC Stamp users’ wish lists.

The flip side of the Virtual Peripheral firmware features is that they have been incorporated into the Javelin
Stamp at the expense of Java purity. You will find the experience of developing applications with the Javelin
Stamp uniquiely different from developing applications on a PC. To get to the rewards of a rapid prototype of
your product design or project with minimal stumbling, we recommend above all that you try the many
programming and circuit examples in this text. Before getting started on the examples, take a few minutes to
review the reading list below. It will acquaint you with the scope of Javelin Stamp projects and help you avoid
some of the programming pitfalls you might otherwise encounter.

Suggested reading for Java Programmers:

Section Page
The Javelin Stamp and Its Features 1
Programming Language - JavaTM for the Javelin Stamp 2
Summary of Java Differences 191
Javelin Stamp Integrated Development Environment 2

Preface

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page xv

Virtual Peripherals

3

Background VPs 3
Foreground VPs 3
How the Javelin Stamp Works 3

BASIC Stamp Enthusiasts – READ THIS
As with the Java Programmers who were addressed in the previous section, programming the Javalin Stamp is
also likely to be very different from what you, the BASIC Stamp Enthusiast, are expecting. This manual has
LOTS of example programs and circuits to help you transition from PBASIC to the Java subset used to program
the Javelin Stamp. Especially if you are unfamiliar with Java, we strongly recommend that you work through
the examples in this text sequentially. The majority of this manual’s organization was established with you in
mind, so, if you have not already done so, please take a look at the Manual Orginazation section at the
beginning of this preface. If you are like the rest of us at Parallax, you probably can’t wait to get started, so
have fun with Chapter 2: Javelin Quick Start.

Manual Conventions
Below is a list of typographical conventions used in this manual:

 Monospaced is used for:

• Words that are part of the language syntax when they are part of a sentence.
• Fragments of programs. The code snippet below is an excerpt from a program, but it cannot

be run on its own. It has to appear in either a complete program or a complete class file, both
of which are discussed next:

System.out.println(“Not a complete program.”);

A gray box is used for:
• Complete programs that can be entered into the Javelin Stamp IDE and executed on a

Javelin Stamp, for example:

import examples.manual_v1_0.*;
public class CompleteProgram{
public static void main() {
CompleteClassFile example = new CompleteClassFile();

System.out.println("Now, it's in a complete program.");
example.displaySameMessageAgain();

}
}

• Complete class files that can be instantiated by other programs. Here is an example:

Preface

 Page xvi • Javelin Stamp Manual v1.0 • www.parallaxinc.com

package examples.manual_v1_0;
public class CompleteClassFile {
public static void displaySameMessageAgain() {

System.out.println("Now, it's in a complete class file");
}

}

Resources and Technical Support
The inside cover of this manual has three sections pertaining to resources:

• Internet Access
• Internet Javelin Stamp Discussion List
• Contacting Parallax

Follow the Tech Support link at www.javelinstamp.com for the latest in tech
support contact info, discussion group links, manual errata, answers to
frequently asked questions, and more!

Free Downloads from www.javalinstamp.com
You can always get the latest revisions and updates of the following from www.javalinstamp.com:

• Javelin Stamp Manual
• Javelin Stamp IDE
• Application Notes
• Library Files

Acknowledgements
Chris Waters and Celsius Research provided the Javelin Stamp firmware and reference design. This manual
was developed using information and research provided by Al Williams Consulting. Each and every employee
at Parallax has made some contribution to the Javelin Stamp project, so as always, thanks to the entire Parallax
staff.

1: Introduction

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 1

The Javelin Stamp and Its Features
The Javelin Stamp is a single board computer that’s designed to function as an easy-to-
use programmable brain for electronic products and projects. As shown in Figure 1.1,
it’s about the size and shape of a commemorative postage stamp. It is programmed using
software on a PC and a subset of Sun Microsystems Java® programming language. After
the program is downloaded to the Javelin, it can run the program without any further help
from the PC. The Javelin can be programmed and re-programmed up to one million
times.

We hope you enjoy working with your new Javelin Stamp as much as we have while
preparing this manual. The Javelin Stamp is somewhat of a departure from Parallax’s
BASIC Stamps. Most notably, the Javelin is programmed using a subset of the Java
programming language. Some of the other features that set the Javelin apart from BASIC
Stamps are:

• The instruction codes for the Javelin are fetched and executed from a parallel SRAM
instead of a serial EEPROM.

• The Javelin has 32k of RAM/program memory with a flat architecture. No more
program banks, and no more tight squeezes with variable space.

• The Javelin has built in Virtual Peripherals (VPs) that take care of serial communication,
pulse width modulation and tracking time in the background.

• Serial communication is buffered as a background process. When writing programs, all
you have to do is periodically check the buffer.

• The Javelin Stamp Integrated Development Environment (Javelin Stamp IDE) software is
a significant departure from a simple Editor and messages window combination. When
used with the Javelin connected to a PC by a serial cable, this software can be used as a
highly integrated in-circuit debugging system that allows you to run code, set breakpoints
and view variable values, memory usage, I/O pin states and more. There is also no need
for emulators; the Javelin can be placed directly into the circuit and debugged there.

• Delta-sigma A/D conversion.
• D/A conversion is accomplished in the background as a continuous pulse train delivered

by an I/O pin. The pulse width modulation VP can also be used for generating pulse
trains, frequencies, and D/A conversions in the background while your foreground code
is free to perform other tasks

Those of you who appreciate the simplicity and ease of use of the BASIC Stamps need not worry; the Javelin
Stamp has many features that BASIC Stamp users have come to depend on in their projects and designs. Here
is a list of features built into the Javelin with BASIC Stamp users in mind:

Figure 1.1 Javelin

(top view)

1: Introduction

 Page 2 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

• Synchronous serial communication (shiftIn/shiftOut)
• The ability to both send and measure discrete pulses (pulseIn/pulseOut)
• Frequency counting (count)
• Simple and intuitive methods for reading from and writing to I/O pins
• Measurement of RC charge and discharge times (rcTime)

BASIC Stamps have been used for everything from lessons in basic computer programming and electronics, all
the way up to aerospace subsystem designs. We expect to see the Javelin used in a similar manner. However,
by making use of the Javelin’s new features, it can be used to tackle some more demanding designs that used to
require larger processors.

Programming Language - JavaTM for the Javelin Stamp
The Javelin’s programming language supports many of the Java languages most useful features:

• Object Orientation - Inheritance, method overloading, polymorphism and static initializers.
• Exceptions - Try-catch-finally blocks and the ability to catch exceptions with a super-class.
• Strings – Programmed using many familiar Java commands.
• Custom Library Support - For many popular peripherals such as LCDs, temperature, AD,

communication ICs, and common Internet protocols such as ARP, UDP, and PPP.

Java
Differences

There are some differences between writing applications for your PC using Java 1.2 and
the subset of Java used by the Javelin. Experienced Java programmers should consult the
Summary of Java Differences section in Chapter 10.

Javelin Stamp Integrated Development Environment
Javelin Stamp Integrated Development Environment (Javelin Stamp IDE) offers the features that you would
commonly expect from a source-level debugger:

• Multiple breakpoints
• Stack backtrace
• Inspection of all variables and objects, both static and dynamically allocated
• Single-step, run, stop, reset
• Built-in bi-directional serial message terminal for System.out.println() and

Terminal.getChar() type debugging

The Javelin Stamp IDE is introduced in Chapter 2, and then discussed in more detail in Chapter 5. This IDE
makes real-time debugging so easy that a PC emulator is completely unnecessary. It is just as easy to develop
and debug on the Javelin module itself.

1: Introduction

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 3

Virtual Peripherals
The Javelin Stamp firmware supports a variety of Virtual Peripherals (VPs). The VPs are separated into two
separate categories, foreground and background. The background processes allow you to create UARTs, pulse
trains, and a timer. Once created, background VP objects run independently from the program. Since time-
sensitive tasks are taken care of by the VPs in the background, designs that used to be difficult become easy.
For example, serial communication does not stop just because the Javelin is measuring the duration of an
incoming pulse. The programmer simply needs to periodically check the serial buffer in the foreground code.
Below is a list of background and foreground VPs.

Background VPs
• UART (Full duplex, HW flow control, buffered)
• PWM
• 32-bit Timer
• 1-bit DAC
• Delta/Sigma ADC

Foreground VPs
• Pulse count
• Pulse width measurement
• Pulse generation
• RC Timer
• SPI master

These Virtual Peripherals are built into the Javelin Stamp’s firmware.
Although you can write library classes that make use of these VPs, the VPs
themselves cannot be modified or rewritten.

How the Javelin Stamp Works
The Javelin Stamp’s hardware architecture is shown in Figure 1.2. Programming and debugging is done via
communication with the serial port. The COM circuit takes care of the voltage conversions necessary for a TTL
device to talk with an RS232 port. The Java interpreter processes all serial port/COM circuit information.
Whether it’s byte codes, debugging data or serial messages, the interpreter processes the data and decides what
to do with it.

When a program is downloaded, the interpreter buffers the program bytecodes and writes them to the
EEPROM. Upon reset (or a power interruption), all the Javelin Stamp’s I/O pins are set to input. The
interpreter copies the bytecodes to the SRAM, then starts fetching bytecodes from the SRAM and executing
them. The bytecode instructions can be executed very rapidly because all data is transmitted along parallel data
busses instead of synchronous serial lines. A typical fetch and execute cycle involves a couple of read/write
cycles. During a read/write cycle, the interpreter loads some of the 15 bit address information into an address

1: Introduction

 Page 4 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

latch and writes the other portion directly to the SRAM. When the SRAM address is set, then the data is read or
written by the interpreter as needed.

The Javelin’s internal voltage regulation is done using a switching regulator. The switching regulator runs
cooler and is significantly more efficient than a linear regulator. It accepts voltages between 6 and 24 V, and
makes 5 V available for the Javelin Stamp with a total current budget of 150 mA. The passive components
including the input and output capacitors, switching diode and inductor are on the top side, and the switching IC
is on the bottom side of the board next to the EEPROM. The switching IC monitors the output voltage and
adjusts the switching duty cycle to the passive components to maintain a constant 5 V output.

Figure 1.2
Javelin Block

Diagram

Java
Interpreter

Address
Latch

32 KB
SRAM

32 KB
EEPROM

Switching
Regulator

IC

Com
CircuitSwitching Regulator

Passive Elements

Serial
Port

Data

Address

Address

Serial Data

Power / Ground / Feedback

Vss

VinVdd

 top bottom

Javelin Stamp Hardware
Table 1.1 shows the Javelin Stamp’s specifications. Note that the onboard voltage regulator can accept between
6 and 24 VDC and output up to 150 mA of current. Since the Javelin consumes approximately 60 mA, you have
90 mA available for other uses. Keep in mind that if you are utilizing the full 60 mA of total I/O pin
source/sink that only 30 mA is left over for powering peripheral devices using the Javelin’s Vdd pin. On the
other hand, if all the I/O pins are being used for input, 90 mA can be used drawn from the Javelin’s voltage
regulator output (Vdd) for peripherals. If in doubt, use an external 5 V regulator for your peripherals.

1: Introduction

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 5

Table 1.1: Javelin Hardware Specifications

Attribute Value
Module Footprint 24-pin DIP module
Package Measurements
(LxWxH) 1.2”x0.6”x0.4” (3.0x1.5x1.0 cm)

Operating Environment 0º - 70º C (32º - 158º F)
Microcontroller Ubicom SX48AC
RAM 32 kilobytes
EEPROM 32 kilobytes
Number of I/O pins 16

Voltage Supply
6 – 24 VDC (unregulated)
 - or -

5 VDC (regulated)
Voltage regulator current output 0 < Iout < 180 mA
Current Consumption 60 mA / 13 mA nap
Sink/Source Current per I/O 30 mA / 30 mA
Sink/Source Current per module 60 mA / 60 mA per 8 I/O pins
Sink/Source Current per Bank
Pins (0 – 7) and (8 - 15) 30 mA / 30 mA

Windows Editor/Debugger Javelin Stamp IDE

Equipment and System Requirements
To run the IDE and program the Javelin, you will need an IBM PC or compatible computer with the following:

• Windows 95, 98, ME, 2000, or XP.
• A CDROM or Internet connection.
• An available 9-pin serial port

Or – A USB port with an approved USB to serial adaptor. See www.javelinstamp.com for
information on products that have been tested and approved.
Or – A 25-pin serial port with a 25 to 9-pin adaptor.

The Javelin Stamp Starter Kit is discussed in detail in the following section: Useful Hardware. If you do not
have a Javelin Stamp Starter kit, you will need to acquire at least the following.

• Recommended DC Power Supply: 7.5 VDC, 1000 mA 2.1 mm, center-positive
Acceptable battery/DC Power Supply values range between 6 and 24 VDC. Minimum output
current rating depends on voltage. A 6 V supply can have an output current rating as low as 100
mA while higher voltage supplies may need higher output current ratings.

• Serial programming cable

1: Introduction

 Page 6 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Be sure to use a straight-through serial cable or adaptor. Do not try to use a null modem cable or
adaptor for downloading programs to the Javelin.

• Carrier board or serial cable and power supply connections
Parallax makes a variety of carrier boards for BASIC Stamps. The Javelin Stamp can be powered
and programmed using any of these carrier boards. You can also make your own connections for
supply voltage and serial cables. See the Hardware Setup section in Chapter 2.

Useful Hardware
The Javelin Stamp Starter kit is a great way to get started, especially if this is your first adventure into Javelin
based projects. Projects featured in Chapters 2, 4, and 9 make use of the carrier board and parts in this starter
kit. The Javelin Stamp Demo Board is the carrier board included in the kit, and its features are shown in Figure
1.3 and listed below.

1: Introduction

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 7

Figure 1.3
Javelin Stamp
Demo Board

Features

C3 C4

(c) 2002

TM

X1
Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

6-24
VDC

Reset

Pwr

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

1

U1

X4

9
8
7
6

4
3
2
1

X3

The Javelin Stamp Demo board (Figure 1.3) has the following features:

• Socket for the Javelin Stamp (Labeled U1).
• JIDE port for debugging, messages, and downloading programs from the PC into the Javelin Stamp.
• A power jack that can accept input voltage ranging from 6 to 24 VDC.
• A COM port that can be used to connect the Javelin Stamp to other computers. Alternately, you can

attach a null modem adaptor to this COM port and then connect the Javelin to peripherals such as serial
GPS units, mice, etc.

• Linear voltage regulator for prototype circuits.
• Small breadboard area for building, testing and prototyping circuits.

1: Introduction

 Page 8 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

• A power header (supplied by the liner voltage regulator). This header can be used to supply circuits
with power.

• A Javelin I/O header to connect your Javelin Stamp I/O pins to your circuit.
• COM Port I/O header. You can use jumper wires to connect Javelin Stamp I/O pins to the COM port

I/O header. Then you can write code to communicate with another serial device such as a computer or
peripheral that’s connected to the COM port.

• LED power indicator (labeled PWR).
• Reset pushbutton. Press and release to restart the program from its beginning.
• A servo port for connecting and controlling servo motors.

As mentioned earlier, the circuit examples in this manual feature parts you can find in the Javelin Stamp Starter
Kit. The parts are listed in Table 1.2. Table 1.3 lists parts that are also recommended but not included in the
kit.

Table 1.2: Javelin Stamp Starter Kit

Quantity Part Number Part Description
1 550-00019 Javelin Stamp Demo Board Rev A
1 JS1-IC Javelin Stamp Module Rev B
1 27957 Javelin Stamp Manual
1 800-00003 Serial Cable
1 800-00002 DB9 Null Modem Adapter Male to Male
1 604-00002 DS1620 Digital Thermometer
1 350-00009 Photoresistor
1 900-00001 Piezo Speaker
1 602-00009 74HC595 Output Shift Register
1 602-00010 74HC165 Input Shift Regster
3 400-00002 Tact Switch (Pushbutton)
2 350-00006 LED - Red - T1 3/4
8 350-00001 LED - Green - T 3/4
1 150-02210 RED - 220 - ¼ W - 5%
8 150-04710 RES - 470 - ¼ W - 5%
1 150-01020 RES - 1 k - ¼ W - 5%
3 150-01030 RES - 10 k - ¼ W - 5%
2 150-02230 RES - 22 k - ¼ W - 5%
2 200-01040 CAP - 0.1 µF - MonRad
2 201-01050 CAP - 1 µF - Elect.
1 201-01061 CAP - 10 µF - 16V - Elect.
1 800-00016 3" Jumper Wires (1 Bag of 10)
1 27000 Parallax CD

1: Introduction

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 9

Table 1.3: Recommended Parts not Included
 in the Javelin Stamp Starter Kit
Quantity Part Number Part Description
1 750-00009 7.5 VDC DC Power Supply
1 900-00005 Parallax Standard Servo

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 11

This chapter will guide you through getting started quickly with the Javelin Stamp. Later chapters will show
you more details about each feature you work with here. The easiest way to get started is to use the Javelin
Stamp Demo Board. However, if you want, you can use a carrier board of your own design using the
schematics in this chapter. This chapter’s topics include:

• Connecting the Javelin Stamp Hardware
• Installing the Javelin Stamp IDE
• “Hello World” program for the Javelin Stamp
• Online documentation
• An IDE Debugger example
• A “Hello Circuit” program for the Javelin Stamp
• Trouble-shooting tips

Hardware Setup
If you are using the Javelin Stamp Starter Kit or the Javelin Stamp Demo Board, getting the hardware set up
takes just a few steps:

� Plug your serial cable into an available COM port or COM port adaptor on your PC or laptop.
� Plug the 7.5 V DC Power Supply into a wall socket. DO NOT PLUG THE OTHER END INTO THE

CARRIER BOARD YET.

Next, use Figure 2.1 as your guide to the following:

� Plug your Javelin Stamp into the Javelin Stamp Demo Board. Double check the figure to make sure

you did not plug it in upside down. Once the Javelin’s pins are all lined up with the holes in the
socket, press down firmly with your thumb to make sure the Javelin is properly seated in its socket.

� Plug the serial cable into the DB9 connector labeled JIDE port on your Javelin Stamp Demo Board.
� Plug the 7.5 V DC Power Supply’s barrel jack into the 6-24 VDC plug on the Javelin Stamp Demo

Board.

2: Javelin Quick Start

 Page 12 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 2.1
Connecting

Power and Serial
Cable to Javelin

Stamp Demo
Board

C3 C4

(c) 2002

TM

X1
Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

6-24
VDC

Reset

Pwr

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

1

U1

X4

9
8
7
6

4
3
2
1

X3

9-pin male serial
cable plug

9-pin female serial
cable plug (not shown)
plugs into PC’s
serial port

NOTE: Serial cable is a “straight-through”
cable. Do not use a null-modem cable!

AC adaptor
barrel jack

AC adaptor plugged
into wall outlet not
shown

Done?

When you are done with this, you can skip to the Installing the Javelin Stamp IDE section.
The remaining material in this section details the electrical connections required for
powering the Javelin and connecting the serial cable to the communications pins without a
carrier board.

The Javelin Stamp’s pin map and mechanical drawing is shown in Figure 2.2. Throughout this text, the Javelin
Stamp’s pin labels will be referred to as shown on this diagram. Keep in mind that pin labels correspond to
numbered pins on the module. For example, the pins labeled Vin, Vss, and Vdd are used for connecting power
to the Javelin. You can use this pin map to discover that Vin, Vss, and Vdd are pins 24, 23, and 21 respectively.
Likewise, the general-purpose input/output pins (I/O pins) P0 through P15 correspond to pin numbers 5 through
20 in the figure. The active-low reset pin, RES, is pin 22, and the COM pins, SOUT, SIN, and ATN are pins 1
through 3 respectively.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 13

Figure 2.2
Javelin Stamp

Mechanical
Drawings and

Pin Map

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

1.
25

” (
31

.7
4

m
m

)

.62” (16 mm)

.1
”

(2
.5

4
m

m
)

1 Javelin

Rev
A

© 2001

1

2

3

4

5

6

7

9

8

10

11

12

24

23

22

21

20

19

18

16

17

15

14

13

SX48B
D/TQ

 Top Bottom

Figure 2.3 shows the recommended power supply circuit along with the recommended serial port wiring and
reset switch. The power supply connections involve Vin, Vss, and Vdd (pins 24, 23, and 21). Vin should be
connected to the positive terminal of the DC power source. Remember, this positive voltage must be between 6
and 24 VDC. Vss (pin 23) should be connected to the DC power source ground or the negative battery terminal.
Under this connection scheme, Vdd is a regulated 5 VDC output that can supply anywhere between 30 and 90
mA depending on the current demands placed on the Javelin’s I/O pins.

The recommended reset circuit shown in Figure 2.3 is a normally open pushbutton switch that, when pressed,
connects RES (pin 22) to ground. When RES is driven low by pressing the pushbutton, the Javelin goes into a
reset state. When the button is released, the Javelin starts whatever program it was running from the beginning.
When the pushbutton is not pressed, the RES input is floating. There is an internal pull-up resistor onboard the
Javelin that keeps RES at 5 V when the input is floating.

Sout, Sin, ATN, and Vss (pin 5 this time) of the Javelin are used for programming and debugging and are
connected to the computer’s serial port as shown Figure 2.3. Note that there is a loopback connection between
pins 6 and 7 on the computer’s serial port. This loopback is used to help the Javelin Stamp IDE auto detect the
COM port that the Javelin Stamp is connected to. If you do not use this loopback connection, you will have to
tell the software which serial port the Javelin is connected to. For information on how to do this, see Chapter 5:
Using the Javelin Stamp IDE.

IMPORTANT
Do not try to use a null modem adaptor or null modem cable for connecting
the PC to the programming port. You will not be able to program your
Javelin Stamp if you are not using a straight through serial cable. When
the cable is labeled serial cable, or serial extension cable, it is straight
through. If it is labeled null modem, it will not work for programming the
Javelin.

2: Javelin Quick Start

 Page 14 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Connect DSR and RTS for
automatic port detection.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

1

2

3

4

6

5

7

9

8

DSR

RTS

JS-IC
Module

PC Serial Port
1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

Note: The serial port is a 9-pin, or 25-pin, male
connector, usually on the back of the computer.
Use a 25-pin to 9-pin adapter when trying to
interface to a 9-pin cable.

1

Circuit A
Recomended

Vin should be a
DC input between
6 and 18 VDC.

The Javelin’s onboard
switching regulator can be
used to supply low power
circuits with regulated 5VDC.

Javelin Stamp Rev A

Vdd

Vss

Vin

Optional
PB Switch

see note 2

Figure 2.3 Javelin Stamp Com Port Connection and Recommended Power Connections

Figure 2.4 shows an alternate power supply scheme that can be used but is not recommended because of a 15 to
20 mA current draw penalty.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

JS-IC
Module

1
2
3
4
5
6
7
8
9

10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

1

Circuit B
Optional 5 VDC from

external voltage
regulator.

Leave Vin unconnected

Vss

X

Vdd

nc

Optional
PB Switch

Figure 2.4 Alternate power supply connection

diagram (not recommended)

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 15

Installing the Javelin Stamp IDE
The “IDE” in Javelin Stamp IDE, stands for Integrated Development Environment. The Javelin Stamp IDE is
the software you will use to write, compile and download programs to the Javelin. The Javelin Stamp IDE also
has a terminal window for sending messages to and receiving messages from the Javelin and a very powerful in-
circuit debugging tool. These features are introduced here and examined more closely in Chapter 5: Using the
Javelin Stamp IDE. For now we will focus on installing the software and taking it and the Javelin for a test
drive.

Installation is simple, especially if you go with the default install. Selecting the default install options and
installation path is especially useful if this is your first test drive of the Javelin Stamp. The two easiest ways to
run the Javelin Stamp IDE setup are:

• Run it from a Parallax CD dated March 2002 or later
• Download it from www.javelinstamp.com and run it from whatever folder you saved it to.

Each method is discussed below.

INSTALLATION
SHORTCUTS

Parallax CD Install: Run the install program and follow the recommended defaults. The
filename will be similar to this:

Javelin Stamp IDE Setup v1.2.0.exe
It’s located on the Parallax CD (March 2002 or newer) in this directory:

CD:\Software\Javelin_Stamps\

Web Download and Install: You can download the latest version of Javelin Stamp IDE
Setup from the Downloads | Software page of www.javelinstamp.com. Save it to any
folder and double click it to run.

If your install was successful, skip to the section entitled: Test Program

When you insert the Parallax CD into your CD drive, a browser similar to the one shown in Figure 2.5 will
appear. If it does not appear, run the welcome application from the CD’s root directory. Next, follow these
steps:

Click Software
Click the + next to the Javelin Stamps folder
Click the floppy diskette labeled Javelin Stamp IDE Setup
Click the Install button

2: Javelin Quick Start

 Page 16 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 2.5
Parallax CD

Browser

Figure 2.6 on the next page shows the windows you will see during the setup process, and each screen is
summarized below.

(a) Setup wizard introduction for the Javelin Stamp IDE software. Click Next.
(b) Information screen contains version history, notes, and other helpful information. Review and

then click Next.
(c) Destination directory. Especially if this is your first time using the Javelin, use the default

directory. If you decide to install to a directory other than the default directory, make sure to
consult the Class Path Considerations section in Chapter 5: Using the Javelin Stamp IDE. Click
Next when ready.

(d) Review your install path, and click Next to install or Back to make changes.
(e) Confirm file association. Click next if you are new to Java.

Java
Programmers

Uncheck the checkbox next to “Associate Javelin IDE with .java
extension” if you do not want the Javelin Stamp IDE to replace file
associations that your existing Java development suite has established.

(f) As the Javelin Stamp IDE is installed, there is a blue bar that will show the progress and then

automatically move to the next window after it reaches 100%.
(g) Setup is complete and successful message (not shown). Click the Finish button.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 17

(a) Introducing the setup wizard (b) IDE version information

(c) Destination directory (d) Confirm destination directory

(e) Confirm file association (f) Watch the pretty blue bar get longer

Figure 2.6 Javelin Stamp Setup screens

2: Javelin Quick Start

 Page 18 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Running the Javelin Stamp IDE and Loading a Test Program
The Javelin uses a language similar to Java but with special optimizations and features designed for embedded
systems. The Javelin Stamp IDE will compile and link your code. This software downloads the compiled
program to the Javelin. You can test your program, using the Javelin Stamp IDE to set breakpoints and
examine variables. You can also make changes and go back to re-test your program until it does what you want
it to do.

Once programmed, the Javelin remembers what it is supposed to do, so
after you are done debugging your program, the Javelin Stamp will not
need to remain connected to the PC – the Javelin Stamp will perform the
last program you loaded every time it powers up. You can reprogram the
Javelin Stamp up to1-million times.

The first example we’ll try is a simple “hello world” program (Program Listing 2.1 below). It will cause the
Javelin to send a message back through the programming cable to the PC. The Javelin Stamp IDE’s Messages
window will display the message when it is received.

Program Listing 2.1 - Hello World!
public class HelloWorld {

public static void main() {
System.out.println("Hello World!");

}
}

To run the Javelin Stamp IDE:

Click the Windows Start Button
Select Programs folder
Select Parallax, Inc folder
Select the Javelin Stamp IDE folder
Select and click Javelin Stamp IDE icon

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 19

Figure 2.7
Running the

Javelin Stamp
IDE from the

Windows Start
menu.

The Javelin Stamp IDE will look similar to the window shown in Figure 2.8. To get to the point where you are
ready to run the program, shown in the figure, follow these steps:

Enter the program exactly as shown.
Click the Save button.
Save the file as HelloWorld.java in your projects directory. The path for your projects directory is:

C:\Program Files\Parallax Inc\Javelin Stamp IDE\Projects\

IMPORTANT: Your filename must always match the class name shown in the program,
that’s why this file must be saved as HelloWorld.java. (Java is case-sensitive therefore
will distinguish the difference between lowercase and uppercase letters. Keep an eye out for
this when typing in filenames or entering programs.) This name must match the class name,
as well as the case of the letters, given in the line in the program that reads

public class HelloWorld{

Make sure your Javelin’s power supply and serial cables are connected.
Click the Program button.

2: Javelin Quick Start

 Page 20 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 2.8 The Javelin Stamp IDE.

If the program was entered correctly, a small Progress window will appear in front of the Javelin Stamp IDE
and display the following messages along with a graph of it’s progress:

• Linking Program
• Resetting Javelin
• Downloading Program
• Resetting Javelin

Next, the Messages from Javelin window shown in Figure 2.9 will appear. You can use this terminal window to
view messages from the Javelin in the upper windowpane or send messages to the Javelin in the lower “transmit
terminal”.

Trouble
Shooting

If you are having trouble getting the first program to run, turn to the section in this
chapter entitled: Did That Work? – Trouble Shooting.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 21

For the Javelin to receive messages, you have to program it to check for
messages. The Javelin Stamp IDE installer placed an example file called
TerminalTest.java in your projects directory. You can use this program to
experiment with bi-directional Javelin Stamp communication using the
Messages from Javelin window.

Figure 2.9
Messages

from Javelin
Window

Debugging Environment
Clicking the Debug Button in the Javelin Stamp IDE will open the IDE Debugger. This will be your best and
most used tool for program and in-circuit debugging. By clicking the Memory Usage tab, you can see the
display shown in the Figure 2.10. By clicking the Run button, you can make the Javelin send the PC another
“Hello World” message via the serial cable. The Messages from Javelin Window will re-appear.

If you lose the Debug window, simply select Show Debug Window from the
Debug menu. Similarly, if you lose the message window select Show
Message Window from the Debug menu.

View messages from
Javelin in the upper
windowpane.

Program the Javelin to
receive messages, then
send them to the Javelin
by clicking here (in the
transmit terminal) and
typing your message.

2: Javelin Quick Start

 Page 22 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 2.10
IDE Debugger

You can move around and resize your windows to a configuration that best
suits you. Then you can save this configuration by selecting Save Desktop
from the Project menu.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 23

Here’s another program to try with the Debugger:

Program Listing 2.2 - Count Down
import stamp.core.*;

public class CountDown {

static int myVar;

public static void main() {
System.out.println("Commencing Countdown:");
CPU.delay (10000);
for(myVar = 10; myVar >= 1; myVar--) {
CPU.delay(2000);
System.out.println(myVar);

}
System.out.println("Liftoff!");

}
}

Enter Program Listing 2.2 into the Javelin Stamp IDE.
Click the Debug button.

After the program loads, there should be two windows on your screen, the Javelin Stamp IDE and the
Debugger.

� Click the Run button in the Debugger window to see what the program does. The Messages from the

Javelin window will reappear and display a countdown from 10 to 1.
� Click the Reset button in the Debugger window to reset the program to its starting point.
� Click the gray left-hand margin in the Javelin Stamp IDE next to the CPU.delay(10000)

command to set a breakpoint. The delay command will be highlighted in red with a red dot in the gray
bar as shown in Figure 2.11.

� Set a second breakpoint, next to the System.out.println command.

2: Javelin Quick Start

 Page 24 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 2.11 IDE, Debugger, and Messages from Javelin Windows all in use.

� Click the Run button several times and note how the green “current command” bar highlights the

different breakpoints. You can also try the Step Over, Breakpoint toggle and Reset buttons. If you
want to see the library classes and methods used by System.out.println(), you can click Step
Over until you get to the command before the second breakpoint. Then, click Step Into. To get back
to CountDown.java, just click Run, and it will take you back to the first breakpoint.

The Debugger doesn’t just let you look at your program. You can also use it to look inside the Javelin as it
executes code. For example:

� Click the Static Variables tab in the Debugger.
� Click the + next to Static Fields
� Click the + next to CountDown
� Note the value of MyVar

While developing applications, keep in mind that this powerful tool is at your disposal. The debugger is
discussed in more detail in Chapter 5: Using the Javelin Stamp IDE.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 25

Online Help
If you installed the Javelin Stamp IDE to the default directory, you can view the online help by entering:

C:\Program Files\Parallax Inc\Javelin Stamp IDE\lib\index.html

into your web browser. You can also use the Javelin Stamp IDE to view Online Help:

� Click the Help button in the Javelin Stamp IDE

A web browser will appear with three links, two of which are www.parallaxinc.com and
www.javelinstamp.com. The other link is Online Help.

� Click the Online Help link

You can view the documentation on the library packages at your disposal as shown in Figure 2.12. You can
also toggle back and forth between your code and the online help by clicking the Source and Documentation
tabs in the lower left-hand corner of the Javelin Stamp IDE window.

Figure 2.12
Online Help and
Documentation

I/O Example
The real strength to the Javelin Stamp is its comprehensive I/O capabilities. With that in mind, why not try a
simple I/O program before you continue with the rest of this manual? The schematic in Figure 2.13(a) shows a

2: Javelin Quick Start

 Page 26 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

simple circuit with an LED and pushbutton. Since this is a “quick start” guide, an example of the circuit built
on the Javelin Stamp Demo Board is also shown in Figure 2.13(b). For those of you unfamiliar with building
circuits on a solderless breadboard, there is an introduction at the beginning of Chapter 4: Application
Examples – Circuits and Programs.

Figure 2.13
Schematic and

Breadboard
Example for

Program Listing 2.3

P0

Vdd

470

LED
PB Switch

Vss

Vdd

10 k

P1

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

 (a) Circuit (b) Breadboard

Program Listing 2.3 - Flash LED with Pushbutton
import stamp.core.*;

public class ButtonLED {

static boolean P0 = true;

public static void main() {

while(true) {
if (CPU.readPin(CPU.pins[1]) == false) { // If button pressed

P0 = !P0; // Negate P0
CPU.writePin(CPU.pins[0],P0); // LED [On]
CPU.delay(1000);

} // end if
else {

CPU.writePin(CPU.pins[0],true); // LED [Off]
} // end else

} // end while
} // end main

} // end class declaration

� Enter this program as shown and save it as ButtonLED.java.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 27

� Click the Program Button.

You’ll see the same downloading screen as before. When it completes the download, you can press the
pushbutton to cause the LED to flash on/off at 5 Hz. When the pushbutton is released, the LED will not flash
on/off.

Once the Javelin Stamp has been programmed, you can unplug it from your PC, turn the power off, move the
Javelin Stamp somewhere else, reconnect the power and it will start running the program automatically. You
only need the PC to program the Javelin Stamp. Once programmed, it will operate all by itself.

Did That Work? – Trouble Shooting
If the example worked as expected, great! You’re ready to move on to the next section. If the example did not
work, this section reviews some of the most common stumbling blocks and trouble shooting tips. Regardless of
whether it’s a compiler error or a download error, the error message will appear in a sub window in the IDE
shown in Figure 2.14. Table 2.1 shows a list of the common problems and their error messages. Each problem
and its solutions are discussed in this section.

Table 2.1: Problems and Error Messages

Problem Error Message
Compiler Errors [Error] HelloWorld.java…

Javelin Not Responding Error [IDE – 0056] Possible Javelin on COM 1 did not respond.
Error [IDE – 0054] Unable to find Javelin on any COM port.

Javelin Not Detected Error [IDE – 0054] Unable to find Javelin on any COM port.

Compiler Errors

If you did not enter the program correctly (Java is case sensitive), the IDE might display an error message
below your program. In Figure 2.14, the word Class should have been typed class in lowercase letters.
You can double click the error message to get a hint from IDE as to what the error is. Notice how the word
“Class” is highlighted. This is because the Java Error message that appeared below the program was double
clicked.

Sometimes the majority of the code you typed will be highlighted when you click the compiler error. Check to
make sure you didn’t leave out one of the braces { }. Other times, there is more than one mistake. You might
find that the next time you click the Program button, a different compiler error is displayed. Keep on fixing the
errors. After each one is fixed, try clicking the Program button again. When all the errors are fixed, a “Compile
successful” message will appear briefly at the bottom of the Javelin Stamp IDE window. Once the program
syntax is correct, the Javelin will attempt to download the program.

2: Javelin Quick Start

 Page 28 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Keep in mind that one bad line of Java code can create lots of errors, so always look at the first error in the list.
After fixing that first error, try to run the program again (by clicking the Run button). It might run right away,
or you may see more errors.

Figure 2.14
If you made
a mistake.

Javelin Stamp Not Responding

If you get two messages, one of them stating that there is a possible Javelin found on COM 1, COM 2, etc, and
the second stating that there is no Javelin found on any COM port, check your power supply. If everything
compiles without errors, but you still have a communication problem, you’ll see the progress indicator change
to “Linking Program” and then “Resetting Javelin Stamp” – but then you’ll see an error message (such as,
“Javelin Stamp not found on serial port” or “Error reading from the serial port (timeout)”.

In some cases a BASIC Stamp or other device may be connected to one of your other serial ports. The software
may interpret these devices as Javelins that are not responding. You can instruct the software to look on a
particular COM port by clicking the IDE’s Options button. The Window shown in Figure 2.14 will appear.
Next, click the Debugger tab. You can choose from the known COM ports by clicking the serial port field.
There is a button with “...” on it next to the Serial Ports field. If you want to add a serial port to the list, click
this button. Then enter the number into the Com# field and click add. You can also delete a COM port by
clicking one of the known ports buttons in the list, then clicking Delete.

2: Javelin Quick Start

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 29

Figure 2.15
Debugger page of
the Global Options

window

Javelin Not Detected

If the Javelin Stamp IDE did not detect a Javelin on any of the known COM ports, try the following:

• Make sure your serial cable is properly connected to your Javelin/carrier board and to your computer’s
serial port.

• Verify that you are not using a null modem cable or adaptor.
• If you are using the Javelin Stamp Demo Board, make sure your serial cable is connected to the port

labeled “JIDE port”.
• Make sure other software such as a BASIC Stamp Editor/Debug Terminal is using the COM port.
• If you have more than one COM ports on your computer, try connecting your Javelin Stamp to a

different COM port. Make sure the Debugger shown in Figure 2.15 is set to either auto or to the
correct port.

• If you have a Palm or other PDA, see below.

If You Use a
Palm or PDA

Some software – notably hot sync programs for Palm computers and other handheld PDA’s
– will hold the serial port open even when you are not actively using it.

• If you are using Microsoft’s ActiveSync with your PDA you may also have a
conflict. If your PDA is on a USB port, you will need to right click on the
ActiveSync icon in your task bar. Then select Connection Settings and make sure
you disable the COM port.

• If your PDA uses a serial cable and you’re using MS ActiveSync you can try

specifically selecting a specific COM port by using the same method as above. If
you still have problems, disable or exit the software.

Another thing to consider if your Javelin Stamp is not detected is that many older computers can’t use COM1
and 3 (or COM2 and 4) at the same time. If you use a modem, for example, try disconnecting from the Internet

2: Javelin Quick Start

 Page 30 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

(or other online service) and see if that helps. A serial mouse can also cause a problem since they are always in
use by Windows. If you have a mouse on COM1, COM3 may not be available for the Javelin’s IDE or any
other program.

If you are using any adapters, unusual devices, or odd cables on the serial port, you should double check to
make sure the cable you’re using connects straight through and passes at least the TX, RX, DTR, and GND
signals Figure 2.3. If possible, try using a computer that will not require any special adapters and remove all
unusual hardware connected to the serial port.

One final thing to recheck is power. Be certain that you have the Javelin Stamp adequately powered. If you
don’t, the Javelin Stamp IDE will not be able to communicate with it, and will report an error similar to a
communications error.

If you tried all the suggestions in this section, and your Javelin still did not run the program, try one more thing:
Install the software on a different PC, connect the Javelin and attempt to run the program. If this solves the
problem, there may be some peculiarity in the BIOS settings of the first PC.

If all else fails, there are many ways to contact Parallax Technical Support for assistance; see inside cover for
details.

Where to Next?
Now that you have a working system, you can take several paths to further your understanding of the Javelin
Stamp. If you are fairly new to both Java and circuits, continue to the next chapter and follow through the
chapters sequentially. BASIC Stamp programmers are also encouraged to take the same path because Chapter 3
is a first introduction to Java programming, and Chapter 4 circuit examples and Java examples to make them
work. If you are an experienced Java programmer, skip to Chapter 4.

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 31

This chapter contains explanations and examples to get you started, even if you have never programmed in Java
before. Make sure to read the explanations and use your Javelin to run the example programs. Remember that
all example programs in this manual are available for download from the www.javelinstamp.com web site and
also come with a standard Javelin Stamp IDE install in the projects\examples\manual_v_1_0\
directory. Keep in mind that this is a starting point, and that many of the concepts and techniques introduced
here are discussed in more detail in Chapters 6 through 8. Also, keep in mind that you can use this manual’s
table of contents and index to look up and learn more about the keywords, terms, and concepts introduced in
this chapter.

The Class Wrapper and Main Method
There are several elements that must be present for a Java program to run:

• The program must be contained within a class definition
• The program must contain a main method
• Java commands are ended by semicolons

Think of the class definition as a wrapper for your program. After your class declaration public class
ClassName, you must place an opening brace {. At the very end of the class, must also be a closing brace }.
Your entire program, shown here as … is contained between these two braces.

public class HelloWorld {

...
}

The main method must appear within the opening and closing braces of the class definition. It is declared using
the Java keywords public static void main(). As with the class definition, the main method has its
own opening and closing braces, and within these braces you can place Java commands.

public static void main() {
...

}

Here is an example of an executable Java file with two commands within its main method.

Program Listing 3.1 - Hello World Revisited
public class HelloWorldAgain {

public static void main() {
System.out.println("Hello world!");
System.out.println("Hello world again!");

}
}

3: Beginners Guide to Embedded Java Programming

 Page 32 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Always remember that the class name must match the program file name, and that both are case sensitive. Case
sensitive means that capitalization matters. If you name your program HelloWorld but declare the class to be
helloWorld, the compiler will give you error messages, and you cannot run the program until they are fixed.

Declaring Constants, Variables, and Arrays
Most programs work with two different types of quantities: variables and constants. Variables are numbers or
characters that your program reads from an external source, computes, or changes in some way during
execution. Constants are known at the time you write the program and never change.

Let’s try declaring some variables of type int. In normal PC based Java, an int variable is 32-bits; in the
Javelin Stamp, an int is 16-bits. A 16-bit int can be used to store signed integers between –32,768 and
32,767. To create an integer, you could write:

int abc;

However, the integer’s contents are unknown until you assign a value to it:

abc = 10;

You can also declare an int variable and assign its value all in one step:

int xyz = 20;

To make a constant, simply use the final keyword with a variable declaration that includes an assignment.
This prevents you from accidentally modifying the constant and also allows the compiler to generate code more
efficiently since it knows the constant can’t change. Here is an example constant:

final int invalidFlag = -1;

Program Listing 3.2 - Display Variables
public class DisplayVariables{

public static void main(){
int abc;
abc = 10;
System.out.println(abc);
int xyz = 20;
final int invalidFlag = -1;

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 33

System.out.println(xyz);
System.out.println(invalidFlag);

}
}

We have already seen one method, the main() method. Additional methods that perform specific tasks can be
added to a program, and they are introduced later in this chapter. If a variable is declared inside the main
method, another method can not use that variable. Likewise, if a variable is declared inside a special purpose
method, other special purpose methods and the main() method cannot use that variable either. In Javanese,
the “scope” of such a variable is called “local”.

You can also declare a “global” or “class” variable, which is visible to all methods within the class. Instead of
declaring the variable inside a method, you have to declare it outside of any method, but within the class. You
also have to use the static keyword. Program Listing 3.3 shows an example of a class variable declaration.
This will make the variable accessible to any method within the class.

Program Listing 3.3 - Global Variables
import stamp.core.*;

public class GlobalVariable {

static int myVar = 20;

public static void main() {
System.out.println(myVar);

}
}

The Javelin Stamp supports the following fundamental (primitive) data types: boolean, byte, char, int,
and short. You will see some of them used in the examples in this chapter, and they are discussed in more
detail in Chapter 6. Program Listing 3.4 declares and displays an example of each of these types.

Program Listing 3.4 - Display Primitive Types
public class DisplayPrimitiveTypes{

static boolean logicValue = true;
static char character = 'a';
static short number = 900;
static int anotherNumber = -2000;

public static void main(){
System.out.println(logicValue);
System.out.println(character);
System.out.println(number);
System.out.println(anotherNumber);

}

3: Beginners Guide to Embedded Java Programming

 Page 34 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

}

You can also declare arrays of primitive data types. Program Listing 3.5 declares and displays values from an
int array.

Program Listing 3.5 - Example Array
public class ExampleArray{

static int [] storeNumbers = {5000,4000,3000,2000,1000};

public static void main(){
for (int i = 0; i <= 4; i++){
System.out.print(i);
System.out.print(" ");
System.out.println(storeNumbers[i]);

}
}

}

Performing Calculations
Once you have variables, it is natural to want to perform calculations with them. You can form expressions
containing variables, constants, and literals. Consider this bit of code:

int result, temporary;
final int scale = 100;
temporary = 14*2+3;
temporary = temporary/10;
result = temporary*scale;

The first two lines define variables and constants. The 3rd line performs a computation completely with literal
numbers. In reality, the compiler will perform this computation at compile time. Since Java multiplies (and
divides) before it adds (or subtracts), the result will be 31 (not 70). See Table 6.4 for a complete list of the order
of operations.

The 4th line performs math with a variable “temporary” and the literal number, “10”. Notice that it is
common to use a variable to compute a new value for itself. This is so common that Java has a special way to
write an expression like this:

temporary/=10;

Of course, you can use terms like: *=, -=, and +=, and other Java operators too. See Chapter 6 for a complete
list.

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 35

The 5th line multiplies a variable and a constant and stores the result in a variable. You can write arbitrarily
complex expressions and use parenthesis to indicate grouping. So while it is a bit harder to read, you might have
written:

result=(14*2+3)/10*scale;

This would compute the exact same result. Try Program Listing 3.6 to see these computations. Also, try
experimenting with different values and note the results.

Program Listing 3.6 - Math Example
public class MathExample {

static int result, temporary;
final static int scale=100;

public static void main() {
temporary = 14*2+3;
System.out.println(temporary);
Temporary = temporary/10;
System.out.println(temporary);
Result = temporary*scale;
System.out.println(result);
Temporary /= 10;
System.out.println(temporary);
Result = (14*2+3)/10*scale;
System.out.println(result);

}
}

Making Decisions
One common task in programming is taking action based on the value of a variable or an expression. For
example, what if you wanted to print a message if a variable was greater than 100? You can do this with the if
statement:

if (x>100)

System.out.println("Limit exceeded!");

Notice that the test expression is in parenthesis. You can also test for equality (two equal signs; ==), less than
(<), less than or equal to and greater than or equal to (<= or >=), and not equal (!=). These operators all return
boolean values, either true or false. You can also put any expression that returns a boolean in the
parenthesis such as a boolean variable.

The statement after the parenthesis will only execute if the expression in parenthesis is true. If you want more
than one statement to be executed if the condition is true, you’ll need to surround the multiple statements with
braces:

3: Beginners Guide to Embedded Java Programming

 Page 36 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

if (x>100) {

System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}

It is allowable to use braces even if you have one statement. In fact, this is a good idea since you are less likely
to mistakenly add extra lines later and forget the braces.

You can use the else keyword to specify a statement (or block of statements in braces) to execute if the
condition is false. So:

if (x>100) {

System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}
else {

System.out.println("Process nominal.");
}

You may want to test several different conditions together. You can join boolean expressions with the &&
(logical and) and || (logical or) operators. You can also reverse the sense of a boolean expression with the !
(not) operator. This code fragment tests that x is greater than zero and also less than 100:

if (x>0 && x<100) System.out.println("In range");

For efficiency, the program will stop testing values as soon as it is certain what the end result is. For example,
suppose x is 0 in the above example. The program will test x>0. Since this is not true (the test is > not >=)
and the next expression is joined with an && operator, the program will immediately stop testing and go to the
next statement (not shown in the example). In this case, that isn’t very important, but if the second part of the
statement was a method call or had time consuming side effects this approach to evaluating boolean expressions
can really come in handy.

The logical or (||) operator, of course, quits evaluating expressions as soon as one of the expressions returns
true. You can write arbitrarily complex expressions and use parenthesis to indicate grouping:

if (x>0 && (x<100 || runFlag==false)) . . .

Program Listing 3.7 demonstrates how the if/else code discussed earlier behaves when it encounters a true
condition and when it encounters a false condition.

Program Listing 3.7 - Decision Example

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 37

public class DecisionExample{

static int x = 50;

public static void main(){

if (x>100) {
System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}
else {
System.out.println("Process nominal.");

}
System.out.println(" ");

x = 150;
if (x>100) {
System.out.println("Limit exceeded!");
System.out.println("Please press reset.");

}
else {
System.out.println("Process nominal.");

}
}

}

Repetitive Operations
One of the strengths of computers is that they can repeat steps over and over again. Java has many ways to
control program loops. This sections introduces the do…while and while loops followed by discussion of
the for loop and flow control using break and continue.

The do…while loop always executes once. At the end of each execution, the program decides if it should
execute the loop again or continue with further processing. A while loop decides before executing any code.
That means it is possible for a while loop to never execute if the condition required for it to execute is never
met.

Here is a do loop that counts to 10:

int i=0;
do {

System.out.println(i);
i=i+1;

} while (i<=10);

If you initialized the i variable at, say, 100, the loop would print 100, compute a new i (101) and then exit the
loop since 101 is not less than or equal to 10. Adding one to a variable is so common that Java has a shortcut
for it, the increment ++ operator. You can use the increment operator in place of i-i+1:

3: Beginners Guide to Embedded Java Programming

 Page 38 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

int i=0;
do {

System.out.println(i);
++i;

} while (i<=10);

The ++i expression adds one to the value of i. It also returns the new value for use in an expression (a fact the
code above doesn’t use). That means this could be written even more simply as:

int i=0;
do {

System.out.println(i);
} while (++i<=10);

Technically, since this loop only has one statement, the braces are not necessary. However, it is a good idea to
include them anyway to avoid future mistakes.

The same principles apply to a while loop:

int i=0;
while (i<=10) {

System.out.println(i);
++i;

}

In this case, the test occurs before the loop. You don’t want to use ++ in the loop since that would cause i to
equal 1 during the first loop execution (unless that’s what you wanted, but in this case you want it to match the
do loop). If you change this example so that i starts out at 100, nothing will print since the loop will never
execute. Program Listing 3.8 shows both loops doing the same thing, counting from 0 to 10.

Program Listing 3.8 - While Loop Examples
public class WhileLoopExamples {

public static void main() {

int i=0;
do {
System.out.println(i);

} while (++i<=10);

i = 0; // Reset the value of i
while (i<=10) {
System.out.println(i);
++i;

}

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 39

}
}

Java also supports a more powerful loop construct known as a for loop. The for loop has three parts or
clauses. The first clause executes code before the loop starts for the first time. The second clause tests for loop
completion. The third clause executes after every loop. Semicolons separate the clauses. So if you wanted to
count from 0 to 10 (as the above examples do) you might write:

int i;
for (i=0; i<=10; i++){

System.out.println(i);
}

You can even declare the variable in the first clause (as long as you only need it within the loop):

for (int i=0;i<=10;i++)

System.out.println(i);

The first clause defines the variable and sets it to zero. The second clause tests the variable and the third
increments the variable at the end of each loop. If you want to control more than one statement, you should use
braces as before (and you can use them even if you only have one statement in the loop).

There is nothing magic about the clauses – you can use any appropriate expression. For example, suppose you
wanted to increase the count by 2 each time instead of one. You could write:

for (i=0;i<=10;i=i+2)

System.out.println(i);

You can omit any of the clauses you don’t need. For example, you might write:

int i=0;
for (;i<=10;i++) System.out.println(i);

You can even write endless loops using any of the three loop primitives:

for (;;) { . . . }
do { . . . } while (true);
while (true) { . . . }

Sometimes you want to exit a loop early. You can do this with the break keyword. For example:

for (i=0;i<=10;i++) {
if (i == 3)

break;

3: Beginners Guide to Embedded Java Programming

 Page 40 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

System.out.print(i);
}
System.out.println(“Skipping 3 and above”);

The break statement works with any loop, not just for loops. Of course, you usually use break in
conjunction with if since an unconditional break would just terminate the loop unconditionally.

You can also cause a loop to proceed to the next iteration (if any) by using continue. Suppose you wanted
to count from 0 to 10, but you want to skip 5. There are many ways you might write this, here’s one way:

for (i=0;i<=10;i++) {

if (i==5) continue; // proceed to i=6
System.out.println(i);

}

Program Listing 3.9 demonstrates for loops and the break, and continue keywords.

Program Listing 3.9 - For Loops
public class ForLoops{

public static void main(){

int i;
for (i=0;i<=10;i++){
System.out.println(i);

}

for (int j=0;i<=10;i++) System.out.println(i);

for (i=0;i<=10;i=i+2) System.out.println(i);

i=0;
for (;i<=10;i++) System.out.println(i);

for (i=0;i<=10;i++) {
if (i == 3) break;
System.out.println(i);

}
System.out.println("Skipping 3 and above");

for (i=0;i<=10;i++) {
if (i==5) continue; // proceed to i=6
System.out.println(i);

}
}

}

Displaying Messages from the Javelin

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 41

Many of the earlier examples have demonstrated how you can use System.out.println to print a line to
the Javelin debug window. You can also use System.out.print to print data without appending a new
line. For example, consider this program:

public static void main() {

System.out.print("Hello ");
System.out.println("World");

}

The first statement prints “Hello” but does not start a new line. The second statement prints “World” directly
following the first text and then starts a new line.

The print and println statements will accept most data types (for example, integers) and perform the
necessary conversion to a String. So this small program is legitimate:

public static void main() {

for (int i=0;i<10;i++) System.out.print(i);
}

Of course, there are times you might want to print the ASCII representation of a number (65, for example is a
capital A). You can do this by casting the integer variable to a character, using (char) before the variable:

for (int i=65;i<70;i++) System.out.println((char)i);

Although it’s not recommended for anything but a few initialization commands, in simple cases you can use the
+ (concatenation) operator to string items together, as in this example:

int t=100;
System.out.println("The threshold is " + t + " degrees.");

CAUTION

The Javelin does not support garbage collection and the compiler will create strings
that the Javelin can never recover. If you use a command that uses the +
(concatentaion) operator within a loop, you will run out of memory very quickly.

The above snippet has been re-written with separate print lines to achive the same result without having to
worry about the lack of garbage collection.

int t=100;
System.out.print(“The threshold is “);
System.out.print(t);
System.out.println(“ degrees.”);

Another approach is to use a StringBuffer object:

3: Beginners Guide to Embedded Java Programming

 Page 42 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

StringBuffer buf=new StringBuffer(32); // 32 byte string
buf.append("The temperature is ");
buf.append('7');
buf.append('0');
buf.append(" degrees");
System.out.println(buf.toString());

In this way, you can use the buf variable again (unlike the compiler-generated temporary in the first example,
which is not reused).

You can also use the CPU.message method to send a character array to the Messages from Javelin window.
This requires fewer resources than the System.out.print method, but it is also less flexible since this
method only accepts a character array. Here’s an example:

String test="Parallax Javelin";
CPU.message(test.toCharArray(),test.length());

Notice that a String is not a character array, so the toCharArray call is required to perform the
conversion. The second argument to message is the length of the array (which in this case is the same as the
length of the String).

The CPU.message call does not automatically start a new line. You can include a new line (“\n”) in the
string to force a new line, as in this example:

String test="\nParallax Javelin\nWow!";
CPU.message(test.toCharArray(),test.length());

Notice that the System and CPU objects are static. You don’t need to create these objects before using
them. They are always present. However, if you don’t use an import stamp.core.* or similar statement,
you’ll have to refer to the CPU object by its full name: stamp.core.CPU.

Keep in mind that the debug terminal only exists when the Javelin is physically connected to the PC. If the
Javelin is running while disconnected from the PC, these messages are not displayed. Program Listing 3.10
shows these examples in action.

Program Listing 3.10 - Assorted Messages
import stamp.core.*;

public class AssortedMessages{

public static void main() {

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 43

for (int i=0;i<10;i++){
System.out.print(i);

}

for (int i=65;i<70;i++) System.out.println((char)i);

StringBuffer buf=new StringBuffer(32); // 32 byte string
buf.append("The temperature is ");
buf.append('7');
buf.append('0');
buf.append(" degrees");
System.out.println(buf.toString());

String test="Parallax Javelin";

CPU.message(test.toCharArray(),test.length());

test="\nParallax Javelin\nWow!";
CPU.message(test.toCharArray(),test.length());

}
}

Sending Messages to the Javelin
Sending messages to the Javelin Stamp was first introduced in the Running the Javelin Stamp IDE and Loading
a Test Program section of Chapter 2, see Figure 2.9. The Terminal allows you to either read a character, or
determine if any characters are waiting to be read. Here is a simple example that just waits for you to press any
key. The program doesn’t care which character you press, so it doesn’t record the value:

public static void main() {

System.out.println("Press any key to continue");
Terminal.getChar();
for (int i=1;i<=10;i++) System.out.println(i);
System.out.println("Press any key to exit");
Terminal.getChar();

}

Program Listing 3.11 reads characters and converts them to uppercase. Remember that the messages from
Javelin window can be used for bi-directional communication. Figure 2.9 in Chapter 2 shows the transmit
terminal at the bottom of the Messages from Javelin Window. After running Program Listing 3.11, simply click
the transmit terminal. Next, try typing a few characters. The characters will appear in the transmit terminal,
and they will also be echoed in the messages window above. Immediately after each echoed character, you will
also see the Javelin Stamp’s converted character.

Program Listing 3.11 - Capitalize
import stamp.core.*;
public class Capitalize {

3: Beginners Guide to Embedded Java Programming

 Page 44 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

public static void main() {
char c;
System.out.println("Begin");
do {
c=Terminal.getChar(); // Get character from keyboard
if (c>='a' && c<='z') { // Test if it’s not a capital

int tmp=(int)c; // Create and assign ‘tmp’ the char c as an int
tmp=tmp-32; // Convert lower case to upper by subtracting 32
c=(char)tmp; // Assign int tmp into char c

} // end if
System.out.print(c); // Output character

} while (c!=27); // Do the above until escape key is pressed
} // end main

} // end Capitalize

There is never a need to create a terminal object, it is always available. You must import stamp.core or use
the full name stamp.core.Terminal. Keep in mind that the debug terminal only exists when the Javelin
is connected to the PC. If the Javelin is running while disconnected from the PC, a debug window will not be
available to you to accept input.

The getChar method stops your program’s execution until a key is ready
for reading. The Terminal.byteAvailable() method returns true
if there is at least one character waiting to be read. This method allows you
to decide whether or not to perform other processing while waiting for
keyboard input.

Creating a Method
Once you start writing programs, you’ll find there are things you want to use over and over in your program, but
you don’t want to keep rewriting the same program steps. Not only is rewriting the same steps tedious, it is not
a very efficient use of the Javelin’s resources. The solution for this problem is to use methods.

Any method must be within a class, and not within another method. So, your program might look like this:

import stamp.core.*;
public class MyExample {

// Custom methods could go here

public static void main() {
// Your main program
// contains code that makes use of your custom methods.

}

// Custom methods could go here
}

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 45

The simplest method is one that performs a task, but does not expect information or returns any information.
The void before the name of the method means that the method is not returning information, and the empty
parentheses () indicates that the method does not expect to receive any information either.

static void startMessage(){
System.out.println("This program performs some calculations.");

}

A command inside the main method can then “call” this method, for example:

public static void main (){
…
startMessage();
…

}

A method can also receive information and act on it, but not return anything. Here is a method that receives a
number, multiplies it by 5, and then displays it. Note that a variable is declared to receive the value.

static void display5X(int i){
i = i * 5;
system.out.println(i);

}

A command in the main method that wants to display 5 X 5 could then send a 5 to the display5X method by
placing a 5 inside the parentheses of the method call:

public static void main (){
…
display5X(5);
…

}

A method can send back a value without receiving one. In this case, the method itself is declared to be an int
value, but the parentheses are empty. If a method is sending back a value, it must do so using the return
keyword.

static int sendBackValue(){
i = 20;
return i;

}

A command in the main method that wants to receive this value can do so by setting a variable equal to the
method call.

3: Beginners Guide to Embedded Java Programming

 Page 46 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

public static void main (){

…
int x;
x = sendBackValue();
…

}
A method can both receive and return a value as shown here. Note that only one local variable was declared for
the incoming variable. In this case, the method multiplies the value it receives by 9 and returns the answer.

static int performOperation(int j){
j = 9*j;
return j;

}

A command in the main method that wants to send this method a value (such as 7) and receive the answer
would look like this:

public static void main (){
…
int y;
y = performOperation(7);
…

}

A method can receive more than one value. Here is a method that averages five numbers:

public static int avg(int n1, int n2, int n3, int n4, int n5) {

return (n1+n2+n3+n4+n5)/5;
}

Notice that the method is named avg and it expects five arguments and returns the avereage, an int value.
The parentheses in the return statement’s expression are required because Javelin would otherwise divide
before adding.

You don’t necessarily have to set a variable equal to the method to capture the value. For example, a command
in your main method, or another method in the same class, can simply use println to display the value
returned by the avg method:

System.out.println(avg(10,13,99,7,12));

You can also provide variables or expressions:

System.out.println(avg(10+x,13/y,z1,z2,12));

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 47

You can even combine this method with other items in expressions:

sigmaT=avg(a,b,c,d,e) + 100/x;

Program Listing 3.12 demonstrates the use of some of the methods and method calls just discussed.

Program Listing 3.12 - Method Example
public class MethodExample{

static int sigmaT, a = 1, b = 1, c = 3, d = 4, e = 5;

static void startMessage(){
System.out.println("This program performs some calculations.");

}

static void display5X(int i){
i = i * 5;
System.out.println(i);

}

static int sendBackValue(){
int i = 20;
return i;

}

static int performOperation(int j){
j = 9*j;
return j;

}

public static int avg(int n1, int n2, int n3, int n4, int n5) {
return (n1+n2+n3+n4+n5)/5;

}

public static void main(){
startMessage();
display5X(10);
int x;
x = sendBackValue();
System.out.println(x);
int y;
y = performOperation(7);
System.out.println(y);
System.out.println(avg(10,13,99,7,12));
SigmaT = avg(a,b,c,d,e) + 100/x;
System.out.println(sigmaT);

}
}

3: Beginners Guide to Embedded Java Programming

 Page 48 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Creating and Using a Library Class
A method does not have to be in the same file as the program you are writing. You can call a method from your
main method that exists in a separate file. That method can call a method in yet another file, and so on… You
can also write classes that contain methods to perform various operations. Here is a simple library file that was
saved as LibraryFile.java in the projects\examples\manual_v1_0 folder. It has no main
methods, just two methods that some other program can call.

Program Listing 3.13 - Library Class: Library File
package examples.manual_v1_0;

public class LibraryFile{

public static void countToTen(){
for (int i = 0; i<=10; i++){
System.out.println(i);

}
}

public static void countToTwenty(){
for (int i = 0; i <= 20; i++){
System.out.println(i);

}
}

}

Program Listing 3.13 is an example program that you can run that uses the coutnToTen() method in
LibraryFile.java. The programmer has to do a few different things to make the methods in LibraryFile
available. Before the class declaration, there is a compiler directive that tells the Java compiler to import all the
files in the examples.manual_v1_0.* folder.

import examples.manual_v1_0.*;

This means that any class in the examples.manual_v1_0 folder can be accessed without having to refer to the
class by path and name. This makes declaring a LibraryFile object easier because instead of writing:

static Projects.examples.manual_v1_0 myLib;

You can simply write:

static LibraryFile myLib;

This declaration creates an instance of a LibraryFile object named myLib. Now, you can use the methods
in the instance of LibraryFile.java named myLib. How? Just use the term myLib, followed by a dot, followed
by the method you want to call within LibraryFile.java. For example:

3: Beginners Guide to Embedded Java Programming

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 49

myLib.countToTen();

If LibraryFile had public constants and variables, they would also be at the programmer’s disposal using the
same technique. shows how to make a new LibraryFile object and call one of its methods.

Program Listing 3.14 - Library Class: Executable Uses Library File
import examples.manual_v1_0.*;

public class ExecutableUsesLibraryFile{

static LibraryFile myLib;

public static void main(){
System.out.println("Library file displays count to 10:");
myLib.countToTen();

}
}

The ability to access reuseable code in library files is one of Java’s most powerful features. Chapter 4 makes
extensive use of library files. The library files in the lib\stamp\core folder contain library files with
methods designed to make it easy to use the Javelin Stamp to read sensors, control circuit outputs, communicate
with peripherals, and more. This folder and its collection of library files is referred to as a package, the core (or
stamp.core) package in this case.

The core package is introduced in Chapter 4, and documented in Chapter 9. There are many other packages
available, such as java.lang, java.io, stamp.util, and so on. The library classes in these packages are discussed in
Chapters 7 and 8. The library files that come with the Javelin Stamp install are also documented in HTML
format and can be accessed following the Online Help link after clicking the Help button in the Javelin Stamp
IDE. You can also view Online Help by loading C:\Program Files\Parallax Inc\Javelin
Stamp IDE\lib\index.html into your web browser’s address field.

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 51

Circuits and Example Code
This chapter has a few circuits and example program listings for you to try. There are two other chapters in this
manual where you can find circuits and accompanying program listings:

• Chapter 2: Quick Start Guide
• Chapter 9: Javelin Stamp Hardware Reference

The beginning of Chapter 3 contains some recommendations for those new to Java on how to use the
explanations and examples. Similar recommendations apply for material in this chapter, and they are listed
below:

• All example programs in this manual are available for download from the www.javelinstamp.com web
site and also come with a standard install in the Projects\examples\manual_v_1_0\
directory.

• Many of the concepts and techniques introduced here are discussed in more detail in Chapters 6
through 9.

• You can use this manual’s table of contents and index to look up and learn more about the concepts
introduced in this chapter.

About Solderless Breadboards
If you haven’t built circuits on a solderless breadboard before, it’s easy once you know what’s underneath the
surface of the breadboard. Figure 4.1 (a) shows the top view of the breadboard and prototyping area on the
Javelin Stamp Demo Board while (b) shows the connections underneath the breadboard. Each row of five holes
on either side of the slot running through the center of the breadboard is electrically connected underneath. If
you want to connect two components together, just plug into the same row of five sockets.

4: Application Examples – Circuits and Programs

 Page 52 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 4.1 Javelin Stamp Demo Board Solderless Breadboards

X3

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Vm

 13 12

Black

Vdd VssVinVm

X3

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Vm

X4 X5

13 12

Black

Vdd VssVinVm

(a) Top View (b) Underneath View of

Connections

Also note the sockets to the left of the breadboard labeled P0, P1…P15. These give you access to the Javelin’s
16 general purpose I/O pins. The sockets above the breadboard are labeled Vdd, Vm, Vin, and Vss. Here is
what each of these labels stands for:

• Vdd = + 5 V, used as the positive supply terminal for most of the circuit examples shown in this
manual.

• Vm = motor voltage. You can connect this to either Vdd or Vin to supply the positive terminal for
your servo port (header labeled X5). If you are using the Javelin Stamp Starter Kit, which comes
with a 1000 mA supply, connect Vm to Vdd. If you are using a 6 V battery pack like the one that
comes with the Parallax, Boe-Bot, connect Vm to Vin.

• Vin = the positive terminal of the unregulated input voltage coming from the DC Power Supply or
battery pack. Be careful, DC Power Supplys labeled 9 V DC often deliver a much higher voltage,
like 12 or even 15 V when the current draw is low.

• Vss = Ground, 0 V, the negative supply terminal for the examples shown in this manual.

Pushbutton and LED Revisited
Program Listing 4.1 below revisits Figure 2.13 in Chapter 2. When the switch is pressed, the program lights the
LED for a predetermined time interval. The switch, on pin 1, connects to ground. There is a 10 k pull up

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 53

resistor between the pin and +5 V. Therefore, when the switch is open, the input reads as a one. Pushing the
switch causes the Javelin to read a zero.

Program Listing 4.1 - LED Push Button
import stamp.core.*;

public class LEDPushButton {

// Define Variables & Constants
final static int LED = CPU.pin0; // To control the L.E.D.
final static int SWITCH = CPU.pin1; // To control the Button
final static boolean ONSTATE = false; // Button Pressed Down
final static boolean OFFSTATE = true; // Button Normal State

public static void main() {
CPU.writePin(LED,OFFSTATE); // Turn LED off
while (true) { // Do loop forever
if (CPU.readPin(SWITCH)==ONSTATE) { // Was button pressed?

CPU.writePin(LED,ONSTATE); // Turn LED On
CPU.delay(25000); // Wait (while LED on)
CPU.writePin(LED,OFFSTATE); // Turn LED Off

} // end if
} // end while

} // end main
} // end LEDPushButton

Notice that instead of placing the pin constants in the program, LEDPushButton defines several constants
(marked with the final keyword). This allows you to easily change the 1I/O definitions. The ONSTATE and
OFFSTATE constants allow you to easily adapt the program to use a switch and LED that are active with a
logical 1 state.

The main program uses writePin to make sure the LED is off. There is no need to explicitly set the pin to an
output (or input). All pins are inputs when the Javelin resets. Any call to writePin (or other output methods)
will automatically turn the affected pin (or pins) into an output.

Next, the main program loops forever using while(true). This is not uncommon in embedded programs.
The program tests for the switch closure, and when it detects it, it lights the LED, pauses, and turns the LED off
again. The loop resumes waiting for another switch depression. Of course, if you hold the switch down, the
loop will immediately turn the LED on again. This happens so fast, that it will appear the LED stays on as long
as you hold the button down.

4: Application Examples – Circuits and Programs

 Page 54 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Digital to Analog Conversion
The Javelin can generate voltages on any of its output pins with the addition of some simple circuitry. The
Javelin doesn’t really generate a voltage. Instead, it generates a train of pulses that you can average with a
resistor and capacitor as shown in Figure 4.2.

Figure 4.2
Circuit for use

with DAC
object

Vss

1 uF

P14
1 k

Analog Output

This program creates an analog output on pin 14. Then it ramps the voltage up by calling update inside a
loop. A value of 0 generates a 0 voltage, and a value of 255 generates 5 V. Values in between generate a
proportionally different voltage.

Because of the delay, you can watch the voltage change on an ordinary voltmeter. If you have access to a fast
scope, reduce the delay value and watch the ramp on a scope.

Program Listing 4.2 - Make Voltage
import stamp.core.*; // Import Javelin’s classes

public class MakeVoltage { // class declaration

public static void main() { // main declaration
DAC dac = new DAC(CPU.pin14); // create new DAC object
while (true) { // do while loop forever
for (int i=0; i<255; i++) { // loop 0v to +5v

dac.update(i); // Update DAC with new voltage
CPU.delay(1000); // Delay

} // end for
for (int j=255; j>=0; j--) { // loop +5v to 0v

dac.update(j); // Update DAC with new voltage
CPU.delay(1000); // Delay

} // end for
} // end while

} // end main
} // end class declaration

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 55

Analog to Digital Conversion
Delta Sigma Analog to Digital Conversion is one of the more exciting new virtual peripherals on the Javelin. It
lets you read an analog voltage from any I/O pin using just a few passive components. Figure 4.3 shows the
circuit for use with Program Listing 4.3. You can connect any value between 5 V to 0 V, and the ADC object
will return a number between 0 and 255 corresponding with the input voltage. This number corresponds to the
duty cycle required to keep the voltage at P9 at the 2.5 V CMOS logic threshold.

Vss

1 uF

22 k
Analog Input

22 k
P8

P9

Figure 4.3 Circuit for use with ADC object

Program Listing 4.3 - ADC Test
import stamp.core.*;

public class ADCTest {

final static char CLS = '\u0010';
static int ADCValue;
static ADC voltMeasurer = new ADC(CPU.pin9, CPU.pin8);

public static void main() {

while(true){
CPU.delay(5000);
ADCValue = voltMeasurer.value();
System.out.print(CLS);
System.out.println("ADC value is: ");
System.out.println(ADCValue);

} // end while
} // end main

} // end class declaration

Measuring Resistive and Capacitive Elements
rcTime has been used by BASIC Stamps to measure resistive and capacitive values for over 10 Years now.
Resistive and capacitive sensors are very common, and rcTime offers an easy inexpensive way to get
measurements from these sensors. Reading an rcTime value depends on either R or C remaining constant
while the other component’s value (a sensor) varies. In Figure 4.4, the 1 µF capacitor is constant, and the

4: Application Examples – Circuits and Programs

 Page 56 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

photoresistor varies with light exposure. As the value of R varies with light, the value of R×C varies as well.
The fact that R×C varies is crucial, because it changes the speed at which the voltage at the capacitor’s lower
plate responds to changes. In this example, the Javelin Stamp is used to measure this response time. The
technique shown in the Program Listing 4.4 below is simple. It takes two commands to set up the rcTime
measurement:

CPU.writePin(CPU.pins[4],true);
CPU.delay(10);

These commands apply voltage to the circuit so that the voltage at the RC connection approaches 5 V.

Then, the command:

dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);

performs the measurement and saves it in the dischargeTime variable.
CPU.rcTime(10000,CPU.pins[4],false) changes P4 from an output to an input and starts tracking
time, waiting for the voltage at the capacitor’s lower plate to drop below the 2.5 V logic threshold. This amount
of time is proportional to R×C, and the math is discussed in the documentation for the rcTime() method in
Chapter 9.

Figure 4.4
Circuit for use
with rcTime

P4
220

Vdd

Vss

1.0 µF

Photo-
resistor

Program Listing 4.4 - Photo Resistor
import stamp.core.*;

public class PhotoResistor {

final static char CLS = '\u0010';
static int dischargeTime;
static int chargeTime;

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 57

public static void main() {

while(true){
System.out.print(CLS);
CPU.writePin(CPU.pins[4],true);
CPU.delay(10);
dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);
System.out.print("RC rise time is: ");
System.out.println(String.valueOf(dischargeTime));
CPU.delay(10000);

}
}

}

Controlling a Servo with a Background PWM Object
The PWM object can be used to vary the brightness of a lamp or LED (assuming the device doesn’t exceed the
Javelin’s drive capability). With appropriate drive electronics you can also use this command to control the
speed of a DC motor or the brightness of lights that are too large to drive directly. However, the Javelin
requires an external driver (like a transistor or FET) to handle the current required by a motor or a large light.

Sending Control Pulses to a Servo Motor
Many robotic and motion projects use servo motors to provide motive force. These motors are convenient since
they accept a digital logic input and all the power control electronics are onboard. Typically, these motors don’t
rotate. Instead, they move between two extremes. However, there are many ways to modify the servos to
achieve continuous rotation.

The servo’s digital input requires a pulse. The details may vary depending on the type of servo you have.
However, a typical servo requires a 1.5 ms high pulse to go to the center position (this corresponds to standing
still for a modified servo). You must supply a pulse roughly every 20 ms to tell the servo what position you
want or else the servo will not supply much force to hold its position (for most servos, at least). The range of
pulse widths for a typical hobby servo range from 1.0 to 2.0 ms. Pulses shorter than 1.5 ms will cause the shaft
to move in one direction away from the center and longer pulses will cause the shaft to rotate in the other
direction. If the servo runs continuously, short pulses will cause the shaft to rotate in one direction and long
pulses in the other. The more difference between the input pulse and the reference 1.5 ms pulse will affect the
speed of the motor in this case.

If you are building this circuit on the Javelin Stamp Demo Board, use a wire to tie Vm to Vdd on the power
header (X3). Then, plug the servo into the servo port labeled 12. Make sure that the black (ground) wire for the
servo lines up with the Black label next to the servo port.

4: Application Examples – Circuits and Programs

 Page 58 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Red

Black
Servo

White

Vdd

Vss

P12

Figure 4.5 Circuit for use with DAC object

It is easy to use the PWM class to control a servo. This class allows you to specify the on time and the off time
of a pulse. Program Listing 4.5 allows you to enter characters into the Messages from Javelin terminal to
control the position (or rotation) of a servo. When you run the program, the Messages from Javelin window
will appear and prompt you to enter one of three characters to adjust the servo’s position to either right, left, or
center. Click the field below the messages window and enter your characters there (See
Figure 4.6).

Figure 4.6
Entering

Messages into the
Terminal Window

Program Listing 4.5 - Basic Servo Control
import stamp.core.*;

public class ServoControl {

static PWM servo = new PWM(CPU.pin12,173,2304);

public static void main() {

System.out.println("Welcome to Servo Control: ");
System.out.println(" r - right");
System.out.println(" l - left");

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 59

System.out.println(" c - center");

while (true) {
switch (Terminal.getChar()) {
case 'r':

servo.update(130,2304);
break;

case 'l':
servo.update(220,2304);
break;

case 'c':
servo.update(173,2304);
break;

}
}

}
}

You can also use the PWM class in the same way you use the DAC class. The output voltage is proportional to
the ratio between the on time and the off time. Usually the DAC class is more convenient for this purpose.

Communicating with Peripheral ICs
The DS1620 (Figure 4.7) is a one of many ICs on the market that the Javelin Stamp can communicate with
using the CPU class shiftIn and shiftOut methods. This particular IC reports the temperature it
measures in ½-degrees Celsius increments. Program Listing 4.6 makes use of a DS1620 class that comes in the
stamp.peripheral.sensor.temperature package. Every library class listing has an HTML page that describes the
methods you can call from the code you are writing. To view this HTML page:

� Click the Help button in the Javelin Stamp IDE.
� Click the Online Help Link.

– or –

use your we browser to view:
C:\Program Files\Parallax Inc\Javelin Stamp IDE\lib\index.html

� Click the stamp.peripheral.sensor.temperature link.
� Click the DS1620 link.

The first datum on this HTML page is the path to the DS1620.java file. Program Listing 4.6 uses this
information to import this file using the compiler directive:

import stamp.peripheral.sensor.temperature.DS1620;

4: Application Examples – Circuits and Programs

 Page 60 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

The information in the constructor summary and constructor detail is used to declare a new DS1620 object:

DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);

Now, the methods of the DS1620 class, which are also described on the HTML page, are available to the
programmer. For example, the setTempLo() method is called using the command:

indoor.setTempLo(68,'F');

and the getTempF() method call is nested inside another method call that appends the temperature returned
to the end of a StringBuffer object named msg:

msg.append(indoor.getTempF());

So that you can see the shiftIn() and shiftOut() methods at work, Program Listing 4.7 performs the
temperature measurement without making use of a library class. The circuit is the same for both programs. Use
Figure 4.7 to build your circuit, and make the following I/O pin connections between the Javelin and the
DS1620:

• dataPin to P4
• clockPin to P5
• enablePin to P6

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 61

Figure 4.7
DS1620 Circuit

DS1620

1

2

3

4

8

7

6

5

DQ

CLK
/CONV

RST

GND

VDD

THIGH

TLOW

TCOM

dataPin

Vss

highThermostat

Vdd

1 k

clockPin

enablePin lowThermostat

combinedThermostat

Program Listing 4.6 - Simple DS1620
import stamp.core.*;
import stamp.peripheral.sensor.temperature.DS1620;

public class testDS1620_2 {

final static char HOME = 0x01;

public static void main() {

DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);
StringBuffer msg = new StringBuffer(128);

// set A/C thresholds
indoor.setTempLo(68,'F');
indoor.setTempHi(78,'F');

while(true) {
// get temps (build msg)
msg.clear();
msg.append(HOME);
msg.append(" F \nInside.... ");
msg.append(indoor.getTempF());
msg.append(" F \n\nA/C....... ");

// check A/C settings
if (indoor.tempLo())

msg.append("Heat");

4: Application Examples – Circuits and Programs

 Page 62 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

else if (indoor.tempOk())
msg.append("Off ");

else if (indoor.tempHi())
msg.append("Cool");

else
msg.append("? ");

System.out.println(msg.toString());
CPU.delay(10000);

}
}

}

Program Listing 4.6 communicates with a DS1620 without the use of a library class, and it demonstrates how
numeric values are sent back and forth between the Javelin Stamp and the DS1620 using the shiftIn() and
shiftOut() methods. Compared to Program Listing 4.6, Program Listing 4.7 really highlights how much
simpler and more powerful your code can be when you use a library class to do the job.

The segment of code below is from the dsTemp() method in Program Listing 4.7, and it is important because
it uses shiftIn() and shiftOut() to communicate bi-directionally with the DS1620. Before
communicating with the DS1620, its enablePin must be set to true. Then a command, hexadecimal AA
for report temperature, is sent to the DS1620 using the shiftOut() method. Next, the variable data is set
equal to the shiftIn() method. Since 9 bits of data are shifted in LSb-First into the 16-bit data variable,
the shift right operator >>7 is used to shift the data another 7-bits to the right. The extra shift is always
necessary when shifting in LSb-first or shifting out MSb-first. For more information on the shiftIn() and
shiftOut() methods, see Chapter 9.

CPU.writePin(enablePin,true);
CPU.shiftOut(dataPin,clockPin,8,CPU.POST_CLOCK_LSB,command);
data = ((CPU.shiftIn(dataPin,clockPin,9,CPU.SHIFT_LSB)>>7));
CPU.writePin(enablePin,false);

Program Listing 4.7 - Shift DS1620
import stamp.core.*;

public class ShiftDS1620 {

// declare I/O pins connected to DS1620

final static int dataPin = CPU.pin4;
final static int clockPin = CPU.pin5;
final static int enablePin = CPU.pin6;

// Home character used for placing the cursor in the Messages from Javelin Window

final static char HOME = 0x01;

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 63

// DS1620 codes for initialization and for requesting temperature measurement

final static int WRITE_CONFIG = 0x0C;
final static int WRITE_TL = 0x02;
final static int START_CONVERT = 0xEE;
final static int READ_TEMP = 0xAA;

static int DSValue, sign, i, data;
static int[] setup = {WRITE_CONFIG,WRITE_TL,START_CONVERT};

// Using a loop, the dsInit method (below) accesses values in the setup array
// (above). The shiftOut command is what clocks each value into the DS1620.

static void dsInit(int config[]) {
CPU.writePin(enablePin,false);
CPU.delay(10);
for (int i = 0; i < config.length; i++) {
CPU.writePin(enablePin,true);
CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT_LSB,config[i]);
CPU.writePin(enablePin,false);

} // end for
} // end dsInit

// The dsTemp method accepts commands from the main routine and uses
// the shiftOut() method to send this value to the DS1620. Then the shiftIn()
// method is used to shift in the temperature data from the DS1620. The
// positive or negative value is returned to the main routine.

static int dsTemp(int command){
CPU.writePin(enablePin,true);
CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT_LSB,command);
data = ((CPU.shiftIn(dataPin,clockPin,9,CPU.POST_CLOCK_LSB)>>7));
CPU.writePin(enablePin,false);

sign = data >> 8;
if (sign == 1) {
return -data;

}
else
return data;

} // end dsTemp

// The main routine calls the dsInit method to initialize the DS1620,
// then it gets the temperature value from the dsTemp method and displays it.

public static void main(){

dsInit(setup);
while (true){
System.out.print(HOME);
System.out.println ("Celsius temperature: ");
System.out.println(dsTemp(READ_TEMP)/2); // Divide by 2 for deg-C

4: Application Examples – Circuits and Programs

 Page 64 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

CPU.delay(5000);
} // end while

} // end main
} // end class declaration

Communicating with Other Computers
Using the built-in Uart virtual peripheral, it is easy to communicate with a PC or other microcontroller. Since
virtual peripherals always run in the background, you don’t have to constantly poll for serial input. If input
arrives while your program is doing something else, the virtual peripheral will buffer the data for you until you
decide to process it. Each Uart object handles communication in one direction, so for two-way
communications, you’ll need two Uart objects.

You can find more information about the Uart class in Chapter 9.

Figure 4.8(a) shows the connection diagram for a full duplex hardware flow controlled UART. You can
connect this to a serial cable via an RS232 transceiver like the MAX 233 or you can use the COM port
connections on the Javelin Stamp Carrier board as shown in Figure 4.8(b). Program Listing 4.8 will use this
connection to communicate with you through your PC’s HyperTerminal program. If you are using the Javelin
Stamp Carrier Board, make sure to connect the serial cable used by HyperTerminal to the port labeled COM
Port.

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 65

Figure 4.8 COM Port Connections

P1

P3

P2

P0

RS232
Transceiver

3

2

7

8

Javelin Stamp
I/O pins

(a) using an RS232 chip (b) using Javelin Stamp Demo Board

If you want to build your own driver circuit, use Figure 4.9 as a reference for the connections made in Figure
4.8. Keep in mind that this COM port is designed to connect to a computer’s COM port. If you want to
communicate with a peripheral instead of a PC, you will need to add a null modem adaptor. See the next
section entitled Communicating with Peripheral Devices for more information.

1234

6

5

79 8com
port

9
8
7
6

4
3
2
1

Vss

1
2
3
4
6
7
8
9

1
2
3
4
6
7
8
9

TTL Level Signals:
0 to 5 V

Rs232 Level Signals
+12 to -12 V

This COM port is connected
to a PC serial port using a
straight-though serial cable.

- OR -

It can be connected to a
peripheral (modem, mouse,
etc.) using a null modem
adaptor.

Sp237

Figure 4.9: Javelin Stamp Demo Board COM port Connection Diagram.

If you are using one cable for both HyperTerminal and Javelin Stamp IDE, you will need to close the Javelin
Stamp IDE after you load the program into the Javelin. Then, open HyperTerminal and start a new session. For
connection, choose Direct to the COM port you will be testing. Select Properties from the File menu, then
select the Configure icon from the Connect To tab. Choose the following settings:

4: Application Examples – Circuits and Programs

 Page 66 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

• Bits per second 9600
• Data bits 8
• Parity No
• Stop bits 1
• Flow control Hardware

When your Javelin Stamp is running Program Listing 4.8 and HyperTerminal is connected (select Call from the
Call menu), you can press and release the Javelin’s Reset button to restart the program. Then, follow the
prompts that appear in HyperTerminal for entering messages. If your JIDE port and COM port can be
connected to two separate serial ports on your PC, use Debug and take a look at the contents of the buffer fields
inside the UART objects.

Program Listing 4.8 - Bi-directional Communication with HyperTerminal
import stamp.core.*;

public class HyperTermCOM { // COM Port (9-pin serial)

final static int SERIAL_TX_PIN = CPU.pin0; // 2
final static int SERIAL_RTS_PIN = CPU.pin1; // 7
final static int SERIAL_CTS_PIN = CPU.pin2; // 8
final static int SERIAL_RX_PIN = CPU.pin3; // 3

static Uart txUart = new Uart(Uart.dirTransmit, SERIAL_TX_PIN, Uart.dontInvert,
SERIAL_RTS_PIN, Uart.dontInvert, Uart.speed9600,
Uart.stop1);

static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX_PIN, Uart.dontInvert,
SERIAL_CTS_PIN, Uart.dontInvert, Uart.speed9600,
Uart.stop1);

static StringBuffer buffer = new StringBuffer(128);
static char c;

static void bufferMessage(){
c = 0xff;
while (c != '\r'){
if(rxUart.byteAvailable()){

c = (char)rxUart.receiveByte();
buffer.append(c);

}
}

} // end bufferMessage

public static void main(){
do{
buffer.clear();
txUart.sendString("Type a message, the press enter: \n\r");

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 67

bufferMessage();
txUart.sendString("The message you sent was: \n\r");
txUart.sendString(buffer.toString());
txUart.sendString("\n\rDo you want to enter another message? (y/n) \n\r");
c = (char) rxUart.receiveByte();

} while(c == 'y' || c != 'n');
txUart.sendString("Goodbye!\n\r");

} // end main
} // end class declaration

Communicating with Peripheral Devices
You can use the Javelin Stamp to communicate with one or more asynchronous serial peripheral devices. Some
of the more interesting and useful serial devices that can be incorporated into embedded applications include:

• LCDs
• Mice
• Camera modules
• GPS units
• Phone modems

Without the null modem adaptor, the COM port on the Javelin Stamp Demo Board is designed to be connected
directly to a computer’s serial port. In this configuration the port will behave just like any other serial
peripheral device. If you want to connect the Javelin Stamp to a serial peripheral device, simply attach the null
modem adaptor to the Javelin Stamp Demo Board’s COM port, then attach the peripheral to the null modem
adaptor. This makes, the Javelin Stamp Demo Board’s COM port behave like a computer, and it can
communicate with a serial peripheral device.

� Connect a serial modem to the null modem adaptor included in the Javelin Stamp Starter Kit.
� Connect the null modem adaptor to the Javelin Stamp Demo Board’s COM port (not to the JIDE port)
� Use the previous example’s circuit (Figure 4.8).
� You can use Program Listing 4.9 to call the Javelin Stamp at Parallax.

txUart.sendString("ATDT19166240160\r");

Note: If you do not live within the 916 area code, a long distance toll charge will apply. A simple test that you
can do and avoid the long distance charge is to substitute your own phone number for the Parallax Javelin’s
phone number. Most modems will send a BUSY message back to the Javelin Stamp.

� Run Program Program Listing 4.8 to communicate with the serial modem.

Program Listing 4.9 - Modem Test
import stamp.core.*;

4: Application Examples – Circuits and Programs

 Page 68 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

public class ModemTest {

// On Demo board's X4
// connect pin 0 to DB9-2
// connect pin 1 to DB9-7
// connect pin 2 to DB9-8
// connect pin 3 to DB9-3
// The Demo board has a level converter

final static int SERIAL_TX_PIN = CPU.pin0;
final static int SERIAL_RTS_PIN = CPU.pin1;
final static int SERIAL_CTS_PIN = CPU.pin2;
final static int SERIAL_RX_PIN = CPU.pin3;

static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX_PIN, Uart.dontInvert,
SERIAL_CTS_PIN,Uart.speed9600,
Uart.stop1);

static Uart txUart = new Uart(Uart.dirTransmit, SERIAL_TX_PIN,Uart.dontInvert,
SERIAL_RTS_PIN, Uart.speed9600,
Uart.stop1);

public static void main() {

/* You can use this phone number to call a Javelin Stamp
* connected to a modem at Parallax. A long distance charge will apply.
*
* A simple test that costs little or nothing is to use your own phone
* number. The modem typically sends the Javelin Stamp a BUSY message
* since the Javelin Stamp is dialing the same number it is calling.
*/

txUart.sendString("ATDT19166240160\r");

// display modem's response (if any)
while (true) {

System.out.print((char)rxUart.receiveByte());
}

}
}

Figure 4.10 shows what’s inside the null modem adaptor. Note that it re-routes transmit lines to receive pins
and visa-versa.

4: Application Examples – Circuits and Programs

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 69

Figure 4.10
Null modem

adaptor
connection

diagram

1

X X

6

2

3

4

7

8

9 9

7

8

1

6

5

2

3

4

Db9 Connector
on Javelin Stamp

Demo Board
Labeled:

COM Port

Peripheral device

5

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 71

The Javelin Stamp IDE (Integrated Development Environment) provides a work environment where you can
write, run, and debug your Javelin Stamp programs. In addition, you can view the javadoc documentation from
within the IDE.

Starting the IDE
You can run the IDE by selecting the icon from your Start menu. From Windows, press on the Start button on
your menu bar. Mouse up to Programs, scroll over and mouse to the Javelin Stamp, scroll over once more and
select the IDE and the program will begin. You may wish to maximize the window (double click on the title
bar, use the system menu on the left-hand side of the title bar, or use the maximize button to the right-hand side
of the title bar).

By default, you’ll see two command areas just below the title bar. The first area holds the main menu (which
has items for File, Edit, etc.). The second area is a toolbar that has small icons to execute common methods.
Below the tool bar, you’ll see a tab that reads Untitled.java. This is the name of the file you are editing. If you
open multiple files, each will have its own tab and you can switch between them by clicking on the tabs. The
area below the tab is where the text will appear. The gray area to the left will contain indicators while
debugging, as you’ll see shortly.

Setting Global Options
Before you get started, it is a good idea to review the option settings found within the Global Options… under
the Project menu. The dialog (see Figure 5.1) that appears has three tabs. The first tab, Compiler, should
contain the Class Path and the path to the compiler. Having the correct Class Path is vital so that the IDE can
find the library files required for your programs. Be careful not to change the settings unless you are certain
you know what you are doing (you’ll learn more about changing the Class Path at the end of this chapter).

Figure 5.1 Global Options for IDE

(a) Compiler (b) Debugger (c) Documentation

5: Using the Javelin Stamp IDE

 Page 72 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

The Debugger tab has a single option that allows you to set the COM port you’ve used when connected your
Javelin Stamp. The IDE uses this port to communicate with the Javelin Stamp. You can press the Auto button
and the IDE will attempt to detect the Javelin Stamp automatically.

The final tab, Documentation, allows you to set the path to the javadoc files and the javadoc program. You’ll
read more about javadoc later in this chapter.

If you change things inadvertently, you can push the Default button to restore everything to its original state.
For now, the only thing you should change is the COM port setting on the Debugger tab.

Starting a Project
To start a project, you can just begin defining a class in the Untitled.java window. However, it is easier if you
use the Insert Template under the File menu to insert a prototypical class into the editor workspace.

Here is the code inserted by the Insert Template command:

import stamp.core.*;

/**
* Put a one line description of your class here.
* <p>
* This comment should contain a description of the class. What it
* is for, what it does, how it use it.
*
* You should rename the class and then save it in a file with
* exactly the same name as the class.
*
* @version 1.0 Date
* @author Your Name Here
*/

public class MyClass {

// Put variables here.
static int myVar;

public static void main() {
// Your code goes here.

}

}

You’ll need to change MyClass to an appropriate name. You’ll also want to alter the comments and myVar
variable to suit your program. Java requires that each file have only one public class and that the class have

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 73

exactly the same name as the Java file (including the case of the name). So if your class is MyFirstClass,
you should save the file as MyFirstClass.java Save or Save As under the File menu.

You can also ask the IDE to help you write your code by invoking specific templates. If you press
CONTROL+J while editing a file, you’ll see a list of templates you can insert. For example, if you select the
for (count) template, this will appear in your file:

for (int i = 0; i <; i++) {

}

If you’ve already typed a partial statement, pressing CONTROL+J will automatically insert the correct template
without displaying a list. For example, if you enter if and then press CONTROL+J, the IDE will
automatically insert the code template for if.

Table 5.1 shows the available templates and the keywords that will automatically invoke them.

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Template Keyword Example
Array declaration Arrayii int [] = {1, 2, 3};
Class declaration Class public class {

}

Class declaration (with
extend)

Classes public class extends
Object {

};

Complete program Program See above example
For statement For for (; ;) {

}

For statement (count) Forc for (int i = 0; i <; i++) {

}

If If if () {

}

5: Using the Javelin Stamp IDE

 Page 74 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
If else Ife if () {

}
else {

}

Try/catch Tryc try {

}
catch () {

}

Try/catch/finally Tryf try {

}
catch () {

}
finally {

}

While While while () {

}

Do while Whiled do {

} while ();

Switch statement switch switch () {
case a:
break;

case b:
break;
}

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 75

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Switch statement (with
default)

switchd switch () {
case a:
break;

case b:
break;

default:

}

Method declaration method /**
*
*
* @param
* @return
*/
void () {

}

Method declaration
(public)

methodp /**
*
*
* @param
* @return
*/
public void () {

}

Method declaration (with
throws)

methodt /**
*
*
* @param
* @return
*/
public void () throws
Exception {

}

5: Using the Javelin Stamp IDE

 Page 76 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Table 5.1: Javelin Templates
Menu Item Menu Item Menu Item
Field declaration field /**

*
*/
int ;

Debugging output debug System.out.println("");

Building your Program
There are several ways to build your program depending on what you want to do with it. On the Project menu
you’ll find five important menu items:

• Compile – This option simply converts your source code into a class file. This will catch any
compile-time errors, but it won’t send any code to the Javelin Stamp.

• Link – Linking takes all the class files referred to by your program and binds it together for
transmission to the Javelin Stamp. However, it doesn’t actually send any code to the Javelin Stamp
either.

• Program – This is the most common option. It compiles, links, and downloads your program to the
Javelin Stamp.

• Debug – This command is similar to the Program command, but it also adds the necessary code that
allows the IDE to debug your program.

• Resume Debug – If you are debugging a program and you get interrupted (perhaps you shut your
computer down and restart it later), you can start a new debugging session without having to
recompile, relink, and download. This does not resume your previous debugging session. It simply
allows you to start a new one without reprogramming the Javelin Stamp.

When you use the Program option, the Javelin Stamp will run the program by itself. If you use one of the
Debug options, the Javelin Stamp will require commands from the IDE to execute, so you’ll want to use
Program before you detach the Javelin Stamp. The Compile and Link options are handy for testing your
program’s syntax before downloading it to the Javelin Stamp.

Dealing with Errors
Of course, sometimes you’ll have compile-time errors (such as syntax errors) that will prevent any of the above
commands from working. For example, suppose you left the static keyword off of the two variable
declarations in the example program:

Program Listing 5.1 - My Test Class (Dealing With Errors)
// (This program contains intentional errors)

import stamp.core.*;

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 77

class MyTestClass {
// Put variables here.
int pause=5000;
boolean state=false;

public static void main() {
while (true) {
CPU.writePin(CPU.pin0,state);
state=!state;
CPU.delay(pause);

}
}

}

The two variable declarations should really look like this:

// Put variables here.
static int pause=5000;
static boolean state=false;

When you try to compile, run, or debug the program a window appears at the bottom of the IDE. This window
will contain four error messages (see Figure 5.2). The error message shows the type of error, the file name, the
line number, and the actual error message. In complex programs, compiling one file may cause other files to
compile, so pay close attention to the file name, as it may not be the same as the current file name.

Regardless of the file name, double clicking one of the error messages will take you to the part of your program
where the compiler detected the error. Notice that this is not always the same place as where you created the
error.

In this case, for example, the first error message is:

 The name “state” does not denote a class (static) variable

This error appears on the CPU.writePin line. However, the real error is not on this line. The mistake
here is that the state variable is an instance variable while the main method is (by necessity) static. A
static method can’t directly access instance variables, so an error occurs. All by itself, there is nothing
wrong with creating an instance variable named state, so the compiler can’t guess that this line is in error.
That’s because syntactically it isn’t in error. The only reason the line is incorrect is because the program uses
the variable contrary to its declaration and the compiler detects the error when the program tries to use the
variable. The real mistake, of course, is in the declaration and that is where you’ll have to fix the program.

5: Using the Javelin Stamp IDE

 Page 78 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 5.2
Error

Messages

The other three errors follow the same logic. Even though there are four errors on three different lines, only two
things require repair and they aren’t on any of those lines at all. Of course, you need to make the two variable
declarations static. You could also elect to have main create a new MyTestClass object and call an
instance method (which could then directly refer to non-static fields). However, that’s a major change to the
program’s design, not a repair.

Using the Debugger to Look Inside the Javelin
In a perfect world, you would write your program, download it to the Javelin, and be finished. In real life
unfortunately, it isn’t unusual for a program not to behave as you expected. Luckily, the Javelin’s built-in
debugger makes it very easy to troubleshoot misbehaving programs.

Of course, debugging won’t help you locate syntax errors and other problems that prevent your program from
compiling. You can find these by reading the messages the compiler and linker generate. However, just
because the compiler thinks your program is correct doesn’t mean the program does what you think it does.
The compiler can accept a program that doesn’t do what you want it to do (that is, your program contains an
error in it’s logic). That’s where the debugger comes into play.

To start the debugger (Figure 2.11), press the Debug button on the toolbar (or press CONTROL+D or select
Debug from the Project menu). The debugger window that appears has several useful buttons and tabs:

• Run – This button starts your program executing under the debugger. The program will stop at a
breakpoint, if any are set. You can set a breakpoint clicking in the gray area to the left of a program

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 79

line, using CONTROL+B, or using the Toggle Breakpoint from the Debug menu (in the main Javelin
window). A line with a breakpoint appears highlighted in red and has a red dot in the left margin.

• Stop – If the program is running, the Stop button will cause execution to halt as though a breakpoint
had occurred.

• Step Into – When the program is stopped, this will cause one line of program code to execute. If the
line makes a method call, the new stop location will be inside the called method.

• Step Over – When the program is stopped, this will cause one line of program code to execute. If the
line makes a method call, the Javelin will attempt to execute the entire method before stopping again.
Notice that some program lines make multiple method calls, so the stop position will appear not to
move until you press the Step Over button multiple times.

• Toggle Breakpoint – Push this button to place (or remove) a breakpoint on the current line. When the
program executes this line, the debugger will stop and wait for further user commands.

• Reset – Press this button to restart the program from the beginning.
• Show Message Window – This button displays the window the Javelin uses to display messages.
• Call Stack – This tab shows you the method calls that are currently active. So if the main method

calls method A, and method A calls method B, you’ll see main, A, and B in the display window when
this tab is active. The window also shows local variables and fields.

• Static Variables – This tab allows you to examine the static variables of each class in your program.
Click on a ‘+’ sign to expand the display to see details, then click the ‘-’ sign to hide those details
again.

• Memory Usage – Use this tab to display statistics about how much memory your program is using.

The easiest way to learn to use the debugger is to load a simple example program and start the debugger. Use
the Step Over and Step Into commands while examining the different tabs in the debugger window. Set a
breakpoint on a line and use the Run command.

The compiler can detect your syntax errors, but it can’t find mistakes in the logic of your program – only you
can do that. That’s why the IDE was programmed to have sophisticated debugging support to help you examine
what your program is actually doing and make it easier to spot mistakes.

Once you clean up any compile errors you can begin to debug the program. Select Debug under the Project
menu (or CONTROL+D) to begin the debugging process. Once the IDE downloads the program to the Javelin
Stamp, you’ll see a green bar indicating the first line of your program that will execute. You’ll also see a
debugging window (see Figure 5.3).

5: Using the Javelin Stamp IDE

 Page 80 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 5.3 Javelin Stamp IDE and Debugger

The debugging window has a toolbar that mimics the method on the main Debug menu (covered shortly). It
also has three tabs: Call Stack, Static Variables, and Memory Usage. The Call Stack tab shows the current
method executing, along with the return path from methods that are in the middle of calling this method. The
Static Variables tab shows you the name and value of all static variables. Finally, the Memory Usage tab allows
you to examine how much memory your program is using and how much of that memory is code or data. You
can also use the table at the bottom of the debug window to examine memory usage for each class in your
program. If the debug window is small, you may have to increase its size vertically (by dragging the window
border) to make the table visible.

If you lose the debug window accidentally, you can always get it back by selecting Show Debug Window from
the Debug menu. In addition, you can make the message window visible by selecting Show Message Window
from the Debug menu. The message window shows any output your program sends using System.out or
CPU.message. You can use System.out.println to write debugging messages to the message window
to help you debug your program.

There are several ways to execute your program. If you select Run from the Debug menu (or the green arrow in
the toolbar, or F9) then the program will execute normally. To stop the program, you can select Stop from the
Debug menu (or the double red bars in the toolbar, or F8).

If you want the program to stop at a particular spot, you can do this by setting a breakpoint. Place the cursor on
the line in question and select Toggle Breakpoint from the Debug menu (CONTROL+B), or use the stop sign
on the toolbar. You can also click on the gray area to the left of the line. In any event, you’ll see a red stop sign

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 81

icon appear in that left-hand area to indicate the breakpoint. Repeating the step will turn the breakpoint off and
make the stop sign icon disappear.

Sometimes you don’t know where you want the program to stop. In that case, you can single step through the
program. The Step Into menu item (on the Debug menu) causes your program to execute one line of source,
and steps into method calls. Step Over is the same, except that any method calls will run to completion. The
green execution bar will show you which statement will execute next. You can use F7 for Step Into and F8 for
Step Over. On the toolbar, these operations show a small box with an arrow pointing into the box (Step Into) or
jumping over the box (Step Over).

While stepping through the program or if you are stopped at a breakpoint, you can always resume execution
with the Run command. This will cause the program to continue until it ends or it encounters another
breakpoint.

The only other command on the debug menu is Reset (CONTROL+F2). This causes the Javelin Stamp to
prepare to run the program again. In other words, a Step Into, Step Over, or Run command will start the
program at the beginning after a Reset.

An Example Debugging Session
Using the DebugExample (see Program Listing 5.1) type it in exactly as you see it (if you think you see a
mistake, leave it as it is). Save the file in DebugExample.java. The intent of this program is to blink an
LED with a 2 second off time and a half-second on time. The idea is to use a half-second (that’s 5000 100us
periods) time base and only turn the LED on every fifth count. Of course, you can wire the LED so that the
LED will be off every fifth count and on the remainder of the time – the important point is that the LED will be
in one state for a single 500 ms period and in the opposite state for 2 seconds.

You can run the program by selecting Program from the Project menu. However, it doesn’t work. Why not?
You might be able to find the answer by inspecting the program, but often debugging is easier.

To prepare for debugging, select Debug from the Project menu (or press CONTROL+D). Your screen should
look like the one in Figure 5.4. The green bar and arrow in the source code tells you that you the next line that
will execute. The Call Stack tab in the debug window shows you that you are in the main method.

5: Using the Javelin Stamp IDE

 Page 82 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Figure 5.4
Stepping
through
Code

Use F7 to step through the program a line at a time. Notice that the Call Stack tab also shows the local variables
(like i and test). Press F7 until you make one pass through the loop and notice the state of the local variables
at each step.

On the first loop (where i is 0) everything seems to work, as you’d expect. On the second pass however, pay
particular attention to the if statement. Press F7 until the green bar rests on the if statement (and i is equal
to 1). Before executing the if statement, the test variable is false. That’s right because 1 is not evenly
divisible by 5 so i%5 is not equal to 0. Now press F7 to step through the if statement. Suddenly, test is
now true and the incorrect branch of the if executes. Do you see why?

Careful observation of the if statement shows that there is only one equal sign! Instead of testing to see if
test is true, this statement sets test to true and therefore assures that the else clause will never execute.
The answer – or at least, one answer – is to change the single equal sign to two equal signs. On the other hand,
you could rewrite main like this:

public static void main() {

for (int i=0;i<1000; i++) {
CPU.writePin(CPU.pin0,(i%5)==0);
CPU.delay(5000);

}
}

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 83

Editing Text
The IDE text editor window works the same as any other Windows editor. You can use the File and Edit menus
as shown in Table 5.2 and Table 5.3.

Table 5.2: File Menu Commands

Menu Item Command Shortcut
New Start a new document CONTROL+N
Insert Template Insert a sample class definition CONTROL+J
Open… Open an existing file CONTROL+O
Reopen Opens a recently used file ALT, F, R
Save Save the current document CONTROL+S
Save As… Save the current document with a new name ALT, F, A
Close Close the current document CONTROL+F4
Print Print the current document CONTROL+P
Exit Ends IDE ALT, F, E

You can also use common Windows shortcuts to perform common editing operations shown in Table 5.3.

Table 5.3: Edit Menu Commands

Menu Item Command Shortcut
Undo Undo the last editing action CONTROL+Z
Cut Remove the selection to the clipboard CONTROL+X
Copy Copy the selection to the clipboard CONTROL+C
Paste Paste the clipboard contents to the document CONTROL+V
Select All Select all text CONTROL+A
Find and Replace… Find or find and replace text CONTROL+F
Find Again Repeat last find operation F3

Toolbars and Menubars
You can move the main menu to different locations by grabbing the double vertical bar to the left-hand side of
the menu and dragging. You can move the menu anywhere horizontally, and you can move the menu to two
different vertical locations.

You can also drag the toolbars around in this fashion. In addition, you can drag the toolbars into the main
window area to convert them into floating windows. If you want to restore them to their bar state, you can drag
them to the top window border and they will stick. By grabbing the double bar to the left-hand side of the
toolbar, you can move the toolbar to different locations.

5: Using the Javelin Stamp IDE

 Page 84 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Another way to issue commands is to right click on the file’s tab at the top of the editor screen. Right clicking
will display a menu that will allow you to compile, debug, program, manipulate projects (covered shortly), or
close the current file. Note that the menu commands always apply to the current document, even if you right
click another document’s tab.

Class Path Considerations
One of the most critical aspects of working with any Java or Java-like development tools is the CLASSPATH.
Each time you name a class in your program, the compiler searches for the appropriate class file by searching
the directories named in the CLASSPATH (you’ll find more about this topic in Chapter 3).

It is crucial that the directories in the CLASSPATH refer to the correct class files, and not class files aimed at
another target system (like the PC, for example). In addition, if you create your own libraries of code, you’ll
want to place the correct directories for that code in the CLASSPATH.

Selecting Global Options under the Project menu will give you a Global Options window. You can select the
Compiler tab to view the CLASSPATH variable. You can directly change the string you find there if you like.
It is simply a list of paths separated by semicolons. The paths should be absolute (e.g.,
c:\myclasses\lib1 instead of ..\lib1).

However, it is easier to change the CLASSPATH by pressing the … button next to the path (see Figure 5.5).
Here, you can change each part of the path separately. You can use the … button to browse your files and the
up and down arrow buttons to alter the order of each directory in the CLASSPATH. The order is important,
because the compiler begins searching with the first directory, and proceeds in order. Once it finds a suitable
class file, it stops searching, so if two directories in the CLASSPATH contain class files named the same, the
first one mentioned in the CLASSPATH will override any subsequent directories.

Figure 5.5
Class Path

Settings

Working with Packages
If you make a class or a group of classes that you want to reuse, you might consider putting them in a package.
First, at the start of the java files that contain your classes, you’ll put a package statement. The convention is

5: Using the Javelin Stamp IDE

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 85

to use your inverted Internet domain name (for example, com.parallaxinc) to begin the package name. After
that, you can use as many words as you like separated by periods.

For example, consider this class:

package com.parallaxinc.testlib;

public class doubler {
private int val;
public doubler(int v) { val=2*v; }
public int value() { return val; }

}

This class (doubler) is part of the com.parallaxinc.testlib package. You need to save the file (or at least the
class file) in a file that is in several subdirectories. In particular, the file name must be
com\parallaxinc\testlib\doubler.java. This is a relative path name. The compiler will look in
the current directory and in all the CLASSPATH directories for this directory structure. So imagine that your
CLASSPATH had a single directory in it (c:\classes) and that the current directory is c:\projects.
The compiler will look for com.parallaxinc.testlib.doubler in the doubler.java file. It will
search for that file in:
 c:\projects\com\parallaxinc\testlib and in c:\classes\com\parallaxinc\testlib

To use the doubler class, you’d need to refer to its entire name, or use an import statement. For example,
you might write:

com.parallaxinc.testlib.doubler dbl = new com.parallaxinc.testlib.doubler(20);

Notice that you have to use the entire name every time you refer to the object. This is not very convenient so
you’ll usually use an import:

import com.parallaxinc.testlib.doubler;

doubler dbl = new doubler(20);

Remember, the packaged class must be in the correct directory tree and that directory tree’s root directory must
be in the CLASSPATH.

Working with Projects
You can organize your work into projects. From the main file of the project, you can select Make Project from
the Project menu. You can also right click the file’s tab and select Make Project from the resulting menu (if this
option is gray, you have not saved the file yet).

5: Using the Javelin Stamp IDE

 Page 86 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Once you’ve made a project, the tab for that file will have a file folder icon to the left of the file name. One
project can be active at a time. The active project will have a green checkmark in the file folder.

Projects are useful when you want your Java file to have its own options. The active project has its own private
options that you can access by selecting Project Options from the Project menu. From here you can set the class
path for compilation, the debugger settings, and packages you want to include in the javadoc documentation.
You can also specify the directory where the IDE will create documentation.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 87

This chapter details the Java language as it is used with the Javelin Stamp. Java, is a language developed by
Sun Microsystems, and many find its syntax and structure similar to C++ (which is an object-oriented extension
to C). However, there are two major differences:

1. Java is strictly an object-oriented system. You can use C++ without using objects, but Java requires
you to use objects at all times.

2. Java handles some of the more error-prone parts of programming to reduce the burden on the
programmer.

If you don’t know object-oriented programming, don’t worry. It does require you to change how you approach
programming a little, but the payoff is well worth the effort. If you’ve programmed in virtually any other
language, you’ll find Java is simple to learn. If you’ve looked at books about Java before, you may have been
put off by the complexity of the example programs. That’s because most books concentrate of graphical user
interfaces, which are complex by their very nature. In an embedded system, programs are usually much more
straightforward.

Java Differences
If you are an experienced PC Java programmer – or you plan to read about Java – you should be aware that the
Javelin Stamp uses a subset of Sun Microsystems’ Java 1.2 class libraries. The Javelin Stamp also does not
encompass certain variable types and object behaviors that PC Java programmers may expect to see. These
differences are necessary to allow the Javelin Stamp to execute your programs on such a small computer and to
ensure that embedded programs behave properly.

This manual shows you how to develop embedded applications using the Javelin Stamp. Experienced Java
Programmers should consult Chapter 10, Summary of Java Differences before continuing. Java programmers
are also encouraged to review the example programs in this manual for a clearer understanding of the scope of
Javelin Stamp embedded projects and the way the Javelin Stamp utilizes a subset of Java for project
development.

Getting Started
Every Java program consists of at least one public class. Of course, larger programs may consist of many
classes of different types. To make your class executable, it must contain a static main method. You can
generate a templatefrom the IDE program by selecting Insert Template from the File menu. Be sure to replace
MyClass in the generated code with a unique name. Save your new class file with the same name as the name
you used in the class definition. For example, the class MyClass is saved as a file named MyClass.java..

Java statements can extend to multiple lines and must end with a semicolon. This is similar to C or C++ and is
referenced as a code block. You can have nested blocks of code, in fact there is no limitation to how many
blocks of code you can have nested within blocks of code.

6: Javelin Stamp Programmers Reference

 Page 88 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

What About the Braces?
In Java, curly braces surround groups of statements. This group is called a code block. Consider the if
statement. This statement evaluates a boolean expression and executes the following statement if the expression
is true. If you want to execute multiple statements, you must enclose them in braces so the compiler will see
them as a single code block.

Of course, you can enclose a single statement in braces, if you like. In other words, these two if statements are
the same:

if (x==0)

System.out.println("zero value");

if (x==0) {
System.out.println("zero value");

}

Using the second form helps prevent a common mistake. Often, you’ll go back to add code to the if (or
similar statement) and forget to add the braces, which are now necessary. For example:

if (x==0)

System.out.println("zero value");
System.out.println("Please restart”);

The indenting of the code makes it appear that the if controls both println statements. However, this is not
correct. The compiler doesn’t actually pay attention to indentation – that’s just to make your code more
readable. In this case, the “Please restart” message will always appear no matter what the value of x is. The
correct code is, of course:

if (x==0) {

System.out.println("zero value");
System.out.println("Please restart”);

}

Some code must be grouped. For example, the code in a class declaration must be within braces. However, for
if, for, while, and similar statements you can omit the braces if (and only if) the statement controls only
one other statement. If there are multiple statements, you must surround them in braces. Notice that you don’t
place a semicolon after the closing brace.

The compiler doesn’t really care about the indentation level. It also doesn’t pay attention to where you place
your braces. Many Java programmers follow the standard borrowed from the C language. This standard places
the opening brace at the end of the line and then indents the following lines. The closing brace then appears on
a line by itself, indented to the same level.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 89

Some programmers have adopted one of two newer styles of writing braces. In both of these styles, both braces
appear on their own lines. The only difference is how the braces indent. Consider these two examples:

if (x==0)
{

System.out.println("Ready");
}

if (x==0)
{
System.out.println("Ready");
}

Regardless of what style you use, you should pick one and stick to it. Using consistent braces and indentation
will help you visually inspect your code for mismatched braces.

Variables, Types, and Constants
Variable store values, such as numbers or letters, or references to objects. Objects will be discussed later in the
chapter. Each variable has a characteristic, called a data type, which describes what kind of data will be stored
in the variable. The Javelin Stamp supports five fundamental data types, listed in Table 6.1 below.

Table 6.1: Fundamental Data Types

Type Description
boolean True/False value
char 8-bit ASCII (not Unicode) character (‘\u00’ : ‘\uFF’)
byte 8-bit signed integer (127 : -128)
short 16-bit signed integer (32767 : -32768)
int 16-bit signed integer (32767 : -32768)

In Program Listing 6.1 you can see the variable declaration (int i;) and an assignment statement that
computes a value and stores the result in i. Names are case-sensitive in Java, so it is possible (although not a
good idea) to have another variable named I. Having two variables I and i makes reading the code much
more confusing.

You can assign a value when you declare a variable as in this example:

int i=10;

6: Javelin Stamp Programmers Reference

 Page 90 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

You can also define multiple variables of the same type in a single line of code:

int i,j,k=33,loopctr=0;

You can create literal characters by using single quotes around any ASCII character. For example:

char stop=’X’;

Let’s look at the Calculate class in Program Listing 6.1. Notice that there are two places where variables are
declared. The usecount variable is declared outside of the main() method, but inside of the Calculate
class declaration. The variable i is declared within the main() method. The difference between these
declarations has to do with something called scope. Scope defines the area of your code where a declaration is
visible. The i variable is visible only to the code in the main() method. Other methods in the Calculate
class cannot access it. The i variable is created when the main() method is called and destroyed when
main() returns.

The usecount variable is declared outside of any method, so it can be accessed by the methods within the
class. This variable is declared at the class level. Variables declared at this level are called Fields. Fields are
discussed in more detail later in this chapter.

Program Listing 6.1 - Calculate
public class Calculate { // class Declaration

int usecount; // Variable Declaration

public static void main() { // main Declaration
int i; // Create i variable to store calculation
i=33*9; // Perform calculation
System.out.println(i); // Print result

} // end main
} // end class declaration

Constants
Sometimes you’d like to make a variable that has a constant value. For example, you might want to write:

int scale = 100;

However, let’s say that your program should never change the value. It is a constant. In the line above, your
program could, perhaps by accident, change the value of scale. The Java compiler has no way to know that the
value should never change, and it might be able to generate better code if it knew that was the case.

To solve this problem, you can modify the type of the variable by declaring the variable to be final . This
tells the compiler that the value of the variable is permanent and can’t be changed. A final variable is always

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 91

initialized with a value when it is declared, because you can’t change the value after it has been declared. For
example, the declaration:

final int scale= 100;

defines an integer constant equal to 100.

Table 6.2 shows some escape sequences used to generate special characters (like a single quote, or a new line).
You can also use a C-style escape, \ddd (where ddd is the octal value of a character. String literals follow the
same rules, but you enclose them in double quotes, not single quotes.

Table 6.2: Escape Sequences
Sequence Meaning

\b Backspace
\f Form Feed
\n New line
\r Carriage return
\t Tab
\u0013 Clear Screen
\\ Backslash
\’ Single quote
\” Double quote
\xxx Any character

(xxx is octal
number)

Number Bases
You can also specify literal integers in octal (base 8) or hexadecimal (base 16) form. Octal numbers have a 0
(zero) prefix, while hexadecimal (or hex) numbers have a 0x (zero x) prefix. This can be tricky. Consider this
code fragment:

int x=010;
System.out.println(x);

The result printed is 8, because the leading zero marks the literal 010 as an octal number.

Expressions
When you write x=10+3, x=x+1, or even x=0 you are assigning an expression to the x variable. Expressions
combine variables and constants using operators (see Table 6.3).

6: Javelin Stamp Programmers Reference

 Page 92 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Table 6.3: Basic Java Operators

Operator Definition Operator Definition
++ Pre or post increment < Less than
-- Pre or post decrement <= Less than equal to
~ Bitwise invert > Greater than
! Boolean invert >= Greater than equal to
* Multiply == Equal to
/ Divide != Not equal to
% Remainder from integer division & Bitwise AND
+ Addition, String concatenation) ^ Bitwise exclusive OR
- Subtraction | Bitwise OR
<< Left shift && Logical AND
>> Right shift with sign extension || Logical OR
>>> Unsigned right shift ?: Conditional (ternary)

Consider this line of code:

x=5+3*2

The value of x depends on the order in which the expression is evaluated. If the addition is performed before
the multiplication, the result would be 16. However, if the multiplication is performed before the addition, the
result is 11. The correct answer is 11. You can see that the order in which the expression is evaluated is very
important. Java addresses this issue by applying a set of precedence rules to the expression. It evaluates the
parts of an expression starting with operators with the highest precendence. It then moves down the list until
the entire expression has been evaluated. Table 6.4 shows the precedence of the various operators.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 93

Table 6.4: Order of Operations

Priority Operations
Highest [] . (params) expr++ expr--

 ++expr –expr +expr –expr ~ !
 new (typecast)
 * / %
 + -
 << >> >>>
 < > >= <= instanceof
 == !=
 &
 ^
 |
 &&
 ||
 ?:

Lowest = += -= *= /= %= >>= <<= >>>= &=
^= |=

Let’s look at the way that Java evaluates the expression x=5+3*2. The operator with the highest precedence is
located and evaluated. In our example, the multiplication operator (*) is higher on the list than the plus (+)
operator. When this is evaluated, the expression becomes x=5+6. The operator with the next highest
precedence is evaluated and the expression becomes x=11. There is nothing left to evaluate, so Java assigns
the value of 11 to the variable x and moves on to the next line of code.

You can override the evaluation order of an expression by using parenthesis. For example, if you wanted the
answer to be 16, you could write:

x=(5+3)*2

When Java encounters operators of equal precedence, it evaluates the operators from left to right in the
expression. For example, 4+2+9 produces the same result as (4+2)+9. It’s a good coding practice to place
parenthesis in expressions that has any complexity.

Special Operators
For the most part, the Java operators will be familiar to you if you’ve used any other programming language. A
few, however, may seem odd if you haven’t used C or C++ before.

6: Javelin Stamp Programmers Reference

 Page 94 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

For example, the ++ and -- operators can be confusing. These special operators increment or decrement (that
is, increase by one or decrease by one) the variable they alter. Instead of writing:

foo = foo + 1

You might write:

foo++;

That doesn’t seem like a big improvement, but you can also use these operators within other expressions. If the
++ occurs before the variable, the increment occurs before Java uses the value. If it occurs after the variable,
the increment occurs after Java uses the value. You’ll understand how this works if you consider the following
code:

int x=10;
int y=3*++x; // y = 33 and x=11
int z=2*x++; // z = 22 and x=12

If you want to increase the value by more than just one, you can write:

x=x+10;
or
x+=10;

This also works with +, -, /, and * operators.

Another operator that is unusual is the conditional operator.

boolean expression ? true expression : false expression

This operator requires three arguments. The first is a boolean expression. If the expression evaluates to true,
the result of the second expression is returned. Otherwise, the result of the third expression is returned. For
example, the following statement assigns 0 to x if y is equal to 10, otherwise, x is assigned a value of 100:

x=(y==10)?0:100;

Notice that two equal signs is the operator that tests for equality (y==10). A single equal sign is for
assignment only.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 95

You might wonder about the difference between the & and && operators (or the | and || operators). The single
character operators do bitwise operations. In other words, & takes the bits of its two arguments and ands them
together. The double character versions only work on boolean values.

Comments
It is always a good idea to add comments to your code. This helps other people understand your program and
might even help you figure out what you were doing when you return to your code a few weeks or months after
you wrote it.

Java allows you to start a comment with two slash characters (//). After the two slashes, Java ignores
everything else on that line. If you want to make multi-line comments, start them with /* and end them with
*/.

However, /** is a special type of comment known as a Java Doc comment. A special program (javadoc) can
scan Java source code and use special commands embedded in Java Doc comments to automatically create
documentation in HTML or other formats.

Control Flow
All programming languages need a way to control the program’s flow. Otherwise, your programs would be just
a list of commands.

The Javelin supports decision statements such as if and switch and loop control statements for, while
and do. These work nearly the same as their C counterparts. Program Listing 6.2 shows a simple program that
uses a for loop. The first expression in the for statement sets the initial conditions. The second expression
tests for the end of the loop, and the final expression modifies the loop variable at each loop.

Program Listing 6.2 - for Demo
public class forDemo { // class Declaration

public static void main() { // main Declaration
int i; // Create ‘i’ integer
for (i=0;i<10;i++) System.out.println(i); // For loop, from 0 to 9

} // end main
} // end class declaration

Even if you are used to C or C++, Java’s strong typing can throw you a few curves. For example, in C++ you
might write:

int t;
t = someroutine();
if (t)

dosomething(); // call if t is not zero

6: Javelin Stamp Programmers Reference

 Page 96 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

else
dosomethingelse(); // call if t is zero

This won’t work in Java. Why not? The variable t is an integer but the if statement expects a boolean value.
You’d have to write:

int t;
t = someroutine();
if (t==0)

dosomething(); // call if t is not zero
else

dosomethingelse(); // call if t is zero

Another place where Java differs from C is in the break and continue statements. With the Javelin Stamp,
as in C, you use these statements to either end a loop (in the case of break) or go directly to the next iteration
of the loop (for continue). However, these statements have extra features in the Javelin Stamp’s language.

Consider this loop:

for (i=0;i<10;i++) {

System.out.println(i);
if (func(i)==3) break;

if (i%2==0) continue; // don’t do any more for even
// numbers
System.out.println(“Odd number”);

}

The break statement, if executed, immediately terminates the loop. The continue statement, just moves on
to the next iteration of the loop (in this case, that prevents even numbers from getting to the bottom of the loop).

Unlike C, Java allows you to include a label as the target of a break or continue. This lets you terminate or
continue nested loops. For example:

Loop0:
for (x=1;x<10;x++) {

for(y=1;y<20;y++) {
.
.
.

if (checkexit()==true) break Loop0;
}

}

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 97

The for loop above, by the way, is functionally the same as this code:

int i=0;
while (i<10) {

.

.

.
i++;

}

There are many times when you want to test a value against several constants and take particular actions
depending on the value. You could write a series of if statements. However, Java provides the switch
statement, which is more succinct. Program Listing 6.3 shows an example of using switch. Notice that once
a match occurs, the code executes from that point – even if it encounters another case statement. This allows
you to cascade several cases that share the same code. However, most often you want each case to be separate
and you’ll want to write a break statement at the end of each case.

Program Listing 6.3 - Switch Demo
import stamp.core.*;

public class SwDemo { // class declaration

public static void main() { // main declaration

while (true){ // do while loop forever
System.out.print("Select 1-4: "); // Output
switch (Terminal.getChar()) { // run code based on getChar

case '1': // execute if ‘1’
System.out.println("Number one"); // Output
break; // exit switch

case '2': // execute if ‘2’
case '3': // execute if ‘3’

System.out.println("Either 2 or 3"); // Output
case '4': // execute if ‘4’

System.out.println("Either 2, 3, or 4"); // Output
break; // exit switch

default: // execute if no match above
System.out.println("You didn't enter 1-4!"); // Output

} // end switch
} // end while

} // end main
} // end class declaration

Classes and Objects

6: Javelin Stamp Programmers Reference

 Page 98 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Up to this point, we have talked about objects and classes without saying too much about what they are. You
already know how to use data types such as int or char. Classes allow you to define new data types, also know
as a reference types. In the example below, we have declared a class of type Thermostat. The Thermostat data
type has fields, to store data and methods, that can perform operations on that data. Now you can declare a
variable that uses this new data type:

int counter;
Thermostat myTemp;

A class does not actually do any work. That role is reserved for objects. An object is an instance of a class.

For example, consider a class that represents a thermostat used in a building’s air conditioning system. The
class might have fields to represent the current set point temperature and the current actual temperature. In
addition, there might be methods that request an update of the current temperature or a manual override to turn
the system on and off. You can see an excerpt of this imaginary class in shown below.

Class Thermostat {

private int id;
private int setpoint=20;
public Thermostat(int _id) { id=_id; }
public void setTemp(int temp) {

. . .
}
public int getTemp() {

.

.

.
}

All by itself, this class does nothing. If you want to represent a particular thermostat, you’ll have to instantiate
the object. First, you’ll declare a variable of the object’s type:

Thermostat t1;

This isn’t an object yet; it is simply a reference to an object. What’s the difference? The variable t1 holds
a reference (or pointer) to the Thermostat object. We haven’t actually
created the Termostat object yet, so the value of t1 is null or undefined.
To create (or instantiate) a new Thermostat object, you would write:

t1=new Thermostat;

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 99

This line of code creates a Thermostat object and stores a reference to the new object in t1. You might
also write:

Thermostat t2=t1;

Now t2 and t1 refer to the exact same object. That means you can change the object using either t1 or t2
and it will have the same effect.

This has an odd effect when testing for equality. If you test to see if t1 and t2 are equal (using ==) the result
will be true if an only if the two references point to the same object. For thermostats, that is probably the right
thing to do. On the other hand, consider objects like String (the built-in object for handling text strings).
You don’t care that the strings are the same object. You are more interested to know if the strings have the
same contents. Using == tests to see if the variable refer to the exact same object, and s1 and s2 will not tell
you whether the contents of the two strings are the same. Many objects (including String) provide an
equals method that tests for logical equivalence. Then, you can use a statement like s1.equals(s2) to
test and see if the two strings have the same contents.

Methods and Parameters
The equals method is a common method that exists in every class. Of course, you can write your own
methods. Each method belongs to a class and returns a value. Methods can also take arguments or parameters.
You can have two methods in the same class that have the same name as long as they accept different
parameters. For example, you might have a method known as print that accepts an integer argument and
another one that accepts a String. From Java’s point of view, these are two entirely different methods.

Methods return values (using the return statement). If you don’t need to return anything, you can define the
method as a void type. If you don’t specify void, then you must use a return statement or you’ll get a
compile error.

Classes can contain special methods that have the same name as the class. These special methods are
constructors and have no return type. They can, however, accept arguments. You can have multiple
constructors with different argument lists.

Consider the simple class in Program Listing 6.4. Here the construct object has three fields. The intval
field can store an integer value and the strval field stores a string. The which field tells which of the two
values were set (if any). Notice there are three constructors. One takes no arguments (the default constructor).
The other two take arguments of the appropriate type. Each constructor sets the correct field and the which
field as appropriate.

Program Listing 6.4 - construct
// This program is a Library Class and must be called by another program

6: Javelin Stamp Programmers Reference

 Page 100 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

public class construct { // class Declaration

// Variable Initialization
final int NONE=0;
final int INTEGER=1;
final int STRING=2;
int intval;
String strval;
int which;

public construct() { // default construct
which=NONE; // no value set

} // end construct

public construct(int value) { // int construct
intval=value;
which=INTEGER;

} // end construct(int)

public construct(String value) { // String construct
strval=value;
which=STRING;

} // end construct(String)
} // end class declaration

When you use new to create a new instance of an object, you can provide arguments, as in:

c1 = new construct(10);

The Javelin Stamp does not have garbage collection. Once you allocate memory for an object, it remains
allocated until you reset the processor. That means you have to be careful allocating objects in response to
external events, or timers. A good strategy is to allocate all the objects you will use early in your program and
refrain from allocating any more from other points in your program.

Another place to be careful is when Java automatically creates objects on your behalf. For example, consider
this:

String a = new String(“Hello ”);
String b = new String(“Parallax”);
a = a + b;

How many objects do you see? Two? The answer is four. There is the object that a refers to (it contains
“Hello Parallax”). There is also the object that b refers to (that string contains Parallax). However, there is also
the original string that contains “Hello ” – your program no longer refers to it, but it still takes up space in the
Javelin Stamp’s memory. In fact, the Java interpreter also creates a StringBuffer object to perform the
actual concatenation, so that’s another object for a total of four.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 101

Where are the Pointers?
If you are familiar with C++ or assembler language, you might wonder how the Javelin Stamp handles pointers.
A common misconception is that Java doesn’t have pointers. This is not really true. In Java, every time you
use an object you are using a pointer to the object. That’s why you say an object variable is a reference, not the
object itself.

For example, suppose you want to create a linked list. Each item in the list has a reference to the next element.
Program Listing 6.5 shows a simple class that implements the elements. The test main method builds a simple
list with 4 elements. Notice that the program has only one variable that holds a reference to a list element
(head).

Program Listing 6.5 - List
public class List {

static List head=null; // pointer to first item
String value;
List next;

// create list element (not linked)
List(String s) {

value=s;
next=null;

} // end List

// insert item in list
void insert() {

List ptr, last;
if (head==null) {
head=this;
return;

} // end if

// this code finds the last item in list
last=head;
for (ptr=head;ptr!=null;ptr=ptr.next)
last=ptr;
last.next=this;

} // end insert

static void printList() {
List ptr;
for (ptr=head;ptr!=null;ptr=ptr.next)
System.out.println(ptr.value);

} // end printList

static public void main() {
new List("One").insert();
new List("Two").insert();
new List("Three").insert();

6: Javelin Stamp Programmers Reference

 Page 102 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

new List("Four").insert();
List.printList();

} // end main
} // end class declaration

Every object has a special pseudo reference known as this. You can use this to refer to the current object.
You can see this in Program Listing 6.5. Where the List object’s insert method sets the next link.

There are a few more interesting points to Program Listing 6.5. First, notice that head is static. There is only
one head reference no matter how many list items are in use. What’s more the printList method is also
static. This is for the same reason – it applies to the list as a whole. The for statements that scan the list are a
good example of using a for loop in a non-numeric situation. Remember, the first clause initializes the loop
(ptr=head). The second clause tests for the end condition (ptr==null) and the third clause sets up the next
iteration of the loop (ptr=ptr.next). These clauses are not the usual numeric expressions, but they still
work.

In the test main program, you’ll see four new statements that create objects. They look a bit peculiar because
the program doesn’t store the object reference anywhere. Instead, it simply calls insert directly. Since the
program no longer needs the objects, there is no need to retain a reference to them. To print the list, the
program uses the printList method.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 103

Arrays
Java also supports array data types. You can create arrays of basic types (like int) or you can create arrays
that contain object references. All arrays in Java are objects. Create them using syntax similar to an object:

int [] x; // reference to array
x = new int[33]; // create array with 33 elements

You can also use an alternate syntax to declare the array reference:

int x[];

Given the above declaration and new statement, you could refer to the first element of the x array as x[0].
The last element is x[32]. You can use these just like any other variable:

x[2]=17;
system.out.println(x[2]);

Since arrays are really objects, they may have fields. The one you’ll find particularly useful is the length
field. This allows you to determine how many elements the array contains. This is very useful when you want
to loop through the entire array with a for loop (see Program Listing 6.6).

Program Listing 6.6 - An Array
public class AnAry { // class declaration

public static void main() { // main declaration
String [] testary; // Create reference to testary
String [] testary2 = {"One","Two","Three"}; // Cerate and fill testary2
testary=new String[5]; // Create testary with 5 elements
int i; // Create variable i

// initialize testary
for (i=0;i<testary.length;i++)
testary[i]=String.valueOf(i*2);

// print both arrays
System.out.println("testary");
for (i=0;i<testary.length;i++)
System.out.println(testary[i]);

System.out.println("testary2");
for (i=0;i<testary2.length;i++)
System.out.println(testary2[i]);

} // end main
} // end class declaration

6: Javelin Stamp Programmers Reference

 Page 104 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Notice in Program Listing 6.6 that testary2 uses a set of constants enclosed in brackets as an initializer.
This is known as an array constant.

Strings
You usually don’t think of strings as relating to microcontrollers, but these days many embedded systems do
manipulate strings. You might want to write to an LCD, or receive commands from a PC or to a modem.

Strings are objects, but they are so prevalent in many programs that Java makes a special concession to them.
You can create String objects using new like any other object. You can also assign a string literal to a
String. For example:

String modemprefix = “AT”;

Like all objects, String objects have fields and methods. If you are C programmer, you might think of
String as similar to an array. However, in Java, strings have very little in common with arrays.

One surprising feature of String is that once set, the actual String object never changes. That’s not to say
that the reference can’t change, but the actual object stays the same. This can lead to performance problems if
you are not careful. For example, suppose you have a method named getC that retrieves a character from
some source. You might write this code to build a String object in the s variable:

String s = new String();
for (i=0;i<1000;i++) s=s+getC ();

This will work, but it is very inefficient. When you compute s+getC(), you create another String object.
Then you set the String reference s to point to that new object. That means the original string now has no
references, and will be lost to the Javelin. Throughout this loop you’ll create and discard 1000 String
objects! Remember, the Javelin Stamp can’t reclaim this memory, so you’ll quickly run out of memory.

To prevent this problem, Java also provides a StringBuffer object. These objects are similar to String
objects, but they allow you to manipulate characters in place. Once you are done, you can convert the
StringBuffer into a proper String.

StringBuffer sb = new StringBuffer(1000);
String s;
for (i=0;i<1000;i++) sb.append(getC());
s=sb.toString();

The String object has several useful methods (see Table 6.5). Most of these are straightforward, although
many people have trouble with substring. The substring method has two versions. One takes the
starting index and returns the substring from that index to the end of the string. The other version takes a

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 105

starting index and an ending index. This version returns the string starting at the first index, and ending at the
character before the second index. Consider a string that contains “Javelin Stamp”. The index arguments start
at 0, so if you call substring with arguments of 2 and 4, the call will return “ta”, not “tam” as you might
expect. You’ll find out more details about all of the Javelin Stamp’s objects in Chapter 7 and Chapter 8.

Table 6.5: Object Methods

Method Description
equals Test objects for equality
hashCode Returns id number (hash) for this object
toString Returns a string representation of the object
clone Duplicates object

Extending Classes
The biggest benefit to object-oriented programming is the ease with which you can reuse code. One thing that
makes this possible is inheritance. The idea behind inheritance is that each class extends another class and
inherits methods and fields from this base class. Suppose you have a class that represents a temperature probe:

public class Probe {

public Probe(int portnum) { . . . }
public int getTemp() { . . . }
public void setOptions(int a) { . . . }

}

Later, you update the sensor to include a wind speed indicator. Instead of maintaining two copies of the
temperature code, you can create a new class DeluxSensor that extends the temperature sensor code. In this
way, all the code and fields in the original code are available in the new class. If you make changes to the
original code, the new object will inherit the same changes automatically. In this case, the original sensor
object is the base class. The new object is said to extend (or derive from) the base class.

public class DeluxSensor extends Probe {

public DeluxSensor(int portnum) { . . . }
public int getWindSpeed() { . . . }
public int getWindDir() { . . . }
// getTemp and setOptions are inherited from Probe

}

It is possible to extend this hierarchy to any number of levels. For example, you might extend DeluxSensor
into WeatherStation that integrates several instruments and an LCD interface. However, unlike some
languages, Java only allows you to derive from a single class, it is not possible to derive directly from more than
one class.

6: Javelin Stamp Programmers Reference

 Page 106 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

If you don’t specify a base class, your class will extend the default Object class. That means that all objects,
no matter what their type, will have the basic methods that belong to Object (see Table 6.5). Remember,
classes that extend other classes (including Object) can (and often do) replace methods with custom versions.
For example, quite a few classes override toString to provide a more meaningful string representation of
their contents (the default toString doesn’t print any of the object’s contents). Many objects (like String)
override equals to test the object’s contents instead of the actual object.

Usually, you’ll want to allow others to extend your classes and inherit members (that is, methods and fields).
However, you can control what other classes can access. If you name certain fields or methods private they
will not be accessible by code in any other class (including classes that extend this class). If you mark members
public, any code can access them. You can also specify members as protected. Classes that extend your
class can freely access protected members, but other classes have no access. If you don’t specify any of
these access modifiers (that is, private, public, or protected) then the member is accessible to any
code in the same package. You’ll read more about packages shortly, but for now consider it as one
subdirectory. In addition to making certain members private, you can also mark a class as final. This will
prevent other classes from extending your class.

Just because a base class provides members doesn’t mean the derived class has to use them. You can override
methods (or fields) when you want to provide replacements. You can still call the base class version by using
the super keyword. This can be useful if you want to make a minor modification to an object. For example,
suppose your temperature sensor class operates using Fahrenheit temperatures. Later, you decide you want to
create a version to do Celsius temperatures. You can simply extend the original class and override the
getTemp method. Instead of rewriting it totally you can still call the original class method:

int getTemp() {

return 5*(super.getTemp()-32)/9;
}

This is a common theme in embedded programming. For example, you might have a base class that represents
a serial port. You could extend the class to represent instruments that use the serial port. That way all the serial
port code resides in the main class and the other derived classes can share that common code.

An important consequence of using derived classes is polymorphism. Polymorphism is a simple concept for
such a fancy word. Suppose you’ve built the serial port class and extended three other classes from it: Temp,
Wind, and Humid. These classes – of course – represent different instruments that all use a serial port for
communications. What if you want to keep a list of these items in an array? Since they are all derived from
SerialPort, you can treat them as if they are SerialPort objects. Once you place the objects in the
instruments array, you can’t use members that belong to the derived classes. In other words, calling
instruments[0].getTemp() is not legal. However, you can access anything that belongs to
SerialPort. For instance, if SerialPort defines an init method, you could call it using any (or all) of

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 107

the elements of the array. If any of the specific objects override the init method, Java will call the correct
override.

public class Instruments {

public SerialPort[] instruments = new SerialPort[3];
public Instruments() {

instruments[0]=new Temp(1); // on port 1
instruments[1]=new Wind(2);
instruments[2]=new Humid(3);

}
}

This is not true, however, of fields. If the SerialPort object defines a field named port and Humid
overrides it, you’ll access different fields depending on if you are using a SerialPort variable or a Humid
variable. That’s true even if the SerialPort variable really refers to a Humid object. Remember, variables
are just references to objects and it is legal for a base class variable to refer to a derived class object.

If you want to force an object reference into another type of object, you can use a cast, which is simply the
name of the object in parenthesis. You can only cast an object to a correctly related class. For example, you
can cast any object to Object since it is a base class of all objects. You can also cast an object back to its
original class. However, you can’t cast an object to a class that doesn’t appear in the object’s class hierarchy.

Suppose you have class B that extends class A. You also have class C that doesn’t extend any other class
(except, of course, Object which is the default). Further suppose that you have the following declarations:

B b = new A();
B b1;
A a;
C c = new C();

The following assignments are legal:

a=(A) b;
b1=(B)a;

However, the following is not legal:

a=(A)c;

Because class A and class C are not related. You also could not make the following assignment:

b1=(B)new A();

6: Javelin Stamp Programmers Reference

 Page 108 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Constructors present a special problem. Each class has to provide its own constructors. Then, if you don’t do
anything special, Java calls the default constructor for each base class, starting with Object (which is the
ultimate base class of every object) and working down the class hierarchy until, finally, the most specific
constructor executes.

If you think about this, it makes sense. After all, a derived class might need to use methods in the base class
that require that the base class’ constructor has already executed. However, there are a few cases where this
chaining of constructors doesn’t work correctly. For example, suppose the base class doesn’t have a default
constructor? The same situation might arise when the derived class needs to call a non-default constructor.

The answer is to make the first line of the derived constructor a call to super. This special keyword calls the
base class constructor explicitly.

class BaseClass {
private int val;
public BaseClass(int x) { val=x; }
public int getVal() { return val; }

}

class Extender extends BaseClass {
private int val2;
public Extender(int a, int b) {
super(a);
val2=b;

}

public int getAltVal() { return val2; }
}

Basic Type Classes
Nearly every data type you can use in Java is an object. Since all objects derive from Object, that means you
can depend on a certain number of methods being available in all objects. For example, toString, a method
in Object, returns a string representation of any object. Many objects override toString so they can return
a meaningful representation.

What about the basic types like int? Often, it is useful to have a class that represents one of these types.
However, you don’t want the overhead of using an object just to perform simple operations. Therefore, Java
uses simple types for most purposes, but also provides corresponding objects. For example, the Integer class
wraps an int value.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 109

This has several benefits. First, you might want to treat a basic type as an object so you can put it in an object
array with other objects. Also, these objects act as a central clearinghouse for methods related to the type.
Remember, Java has no real global variables or methods – everything has to belong to a class.

Numeric Conversions
You’ll often use the wrapper classes to convert strings to the appropriate type. For example, Integer has two
methods (parseInt and valueOf) that convert strings to integers. The parseInt method returns an int
whereas the valueOf method returns an Integer object. You can also specify an optional radix if you
want, for example, hex or octal interpretations.

In the opposite direction, you can use toString to convert an integer to a string. To convert the basic types,
you can use a cast:

int n=100;
byte fn = (byte) n;

Statics
Numeric conversions are one of the uses of the wrapper classes – Java uses them as containers for what might
otherwise be global methods. It does this using static methods. This allows you to refer to a method without
having to actually create an instance of an object. Suppose you have an integer variable x. You can’t call
toString on an int because it isn’t an object. You could construct an Integer object to contain the int,
but that’s a lot of work just to do a string conversion.

Luckily, Integer provides toString as a static member, so you can call it like this:

String s = Integer.toString(x);

You can make methods or fields static. Be aware that a static method can’t access any normal fields or methods
directly, because there is no object instance associated with the static method. Therefore, there is no this
reference. That also means, in the case of fields, that there is only one copy of the variable no matter how many
object instances exists. That makes static fields useful for creating a kind of global variable. If you make the
field public, any other part of your program can access the variable (using the class name as a prefix). If you
make the field private or protected, the variable will still be like a global variable, but it won’t be
accessible from other objects (or unrelated objects in the case of protected).

Abstraction
Sometimes, it is useful to write a class that represents an imaginary object that will never exist. For example,
suppose you had classes that represented a serial port, a printer port, and an USB port. You’d like to share code
between them, but what’s the common base class? Printer ports are not serial, nor are they a kind of USB port.

6: Javelin Stamp Programmers Reference

 Page 110 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

The answer is to make an abstract class that represents ports in general. It doesn’t make sense to instantiate this
class because there is no such thing as a generic port. Abstract classes can contain reusable code that subclasses
can inherit, but they can’t be instantiated directly. You must use a derived class.

Program Listing 6.7 - Library Class Example
//This program is a Library Class and must be called by another program

abstract class GenericPort {
protected byte [] buffer;
protected int buffp;
protected int bufflen;
protected int portnum;
protected int irq;
public void init();
public int getData(byte [] data); // returns bytes read
public void sendData(byte [] data, int len);
public GenericPort() { buffer=new byte[256]; buffp=0; bufflen=0;}
public byte getByte() {

if (bufflen==0) {
bufflen=getData(buffer); // read chunk (assume this never fails)
buffp=0;

} // end if
return buffer[buffp++];
} // end getByte

} // end class declaration

Exceptions
Java supports a modern idea known as exception handling. Simply put, an exception is a way for your code to
signal some event to other parts of your programs. Java uses exceptions frequently in its own library and you
may also use them as part of your own programs.

Often, but not always, an exception indicates an error has occurred. Suppose you are writing a general purpose
routine that performs a simple calculation based on input parameters. The computation might divide by zero,
depending on the input parameters. Of course, you could test for a zero denominator before dividing, but what
do you do if you detect this condition? You could print an error message, but that presupposes your program
can display a message (remember, I said this routine was general-purpose).

A common solution is to return an error code to the calling method. This is not always good, though. What if
the calling program is another general routine? It will have to propagate the error condition somehow. What if
the calling program doesn’t check for an error condition? You can solve these problems with exceptions.

When an event occurs, like a division by zero, Java throws an exception. Your code can handle the exception
by wrapping the code in a try block see Program Listing 6.8. In this case there isn’t much advantage to using
exceptions. However, suppose the equation inside the try block called other methods to do its work.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 111

Program Listing 6.8 - Exceptions Ex1
public class Ex1 {

public static void main() {
int x=0;
int y=20;
int z;
try {
z=y/x;

} // end try
catch (Exception e) {
System.out.println("Divide by zero");

} // end catch
} // end main

} // end class declaration

Even if code in these other methods divided by zero, the catch block beneath the try would be activated
(unless, of course, the called methods provided their own try block. Consider this example.

Program Listing 6.9 - Exceptions Ex2
public class Ex2 {

static int docomp(int a, int b) {
return a/b;

} // end docomp
public static void main() {

int x=0;
int y=20;
int z;
try {
z=docomp(y,x);

} // end try
catch (Exception e) {
System.out.println("Divide by zero");

} // end catch
} // end main

} // end class declaration

This is the real value to exceptions. It allows code that is interested in some event to handle that event, no
matter what caused it. Code that doesn’t care about an event can simply ignore the event.

Dividing by zero is an example of an unchecked exception. Since it could happen at almost any time, Java does
not force you to handle the exception. If you remove the try and catch blocks, the code will still compile,
but it will cause an abnormal termination of the program.

Many exceptions, however, are checked exceptions. That means that the Java compiler ensures that you handle
the exception wherever it may occur. If your code calls a method that may throw an exception, you have to

6: Javelin Stamp Programmers Reference

 Page 112 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

either mark your method as throwing the same exception, or you must handle it yourself. You indicate which
checked exceptions your method may throw by using a throws clause.

You can find an example in Program Listing 6.10. Here, there is a custom exception (ScaleError) that
extends Exception. When the calculation detects a zero divisor, it throws the custom exception, which can
be caught by any of the interested caller. Of course, the docalc method could catch the divide by zero
exception and simply convert it to the special exception by throwing it in the catch clause.

Program Listing 6.10 - Scale Error (Extends Exception)
class ScaleError extends Exception {

// no methods or fields required
}

public class Ex {
static int docalc(int a, int b) throws ScaleError {

if (b==0) throw new ScaleError();
return a/b;

}

public static void main() {
int x=0;
int y=20;
int z;
try {
z=docalc(y,x);

}
catch (ScaleError e) {
System.out.println("Scale Error");

}
catch (Exception e) {
System.out.println("Unknown exception");

}
}

}

Notice that there are multiple catch clauses. The first one is the most specific type of exception. The last one
catches any Exception object including objects that derive from Exception. That’s why that clause must
come last. If it were first, it would match the ScaleError exception and the second catch clause would
never execute. Try removing the try and catch block and rebuilding the program. You’ll find that the
compiler rejects the program because it sees that there is an unchecked exception. Of course, you could mark
main so that it throws a ScaleError exception. Then the exception would terminate the program like an
unchecked exception.

Packages and CLASSPATH
When Java must locate a class file, it searches the directories listed in the CLASSPATH environment variable.
This is a list of directories separated by semicolons.

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 113

Even with multiple directories, you’d quickly clutter each directory with class files. For that reason, Java
supports packages. Packages are somewhat like subdirectories that contain class files. For example, suppose
your CLASSPATH variable contains a single directory named C:\Classes. When you attempt to load an
ordinary class, the IDE will search in the C:\Classes directory.

However, some classes belong to a package, a group of related classes. For example, you might want to refer to
a Cache object. That object is in the stamp.util package, so to declare it, you could write:

stamp.util.Cache = new stamp.util.Cache();

The JVM would look for the Cache.class file in a subdirectory of one of the CLASSPATH directories. In
this case, there is only one directory (C:\Classes) so the class file should be in C:\Classes\javelin
stamp\util\Cache.class. Of course, if there were more directories listed in the CLASSPATH variable,
the IDE would also search those directories, always looking in the javelin stamp\util subdirectory.

It wouldn’t be very convenient to have to write stamp.util.Cache every time you wanted to use it. By
default, if you use a class name, it can only reside in one of the top-level CLASSPATH directories or in the
special package java.lang. However, you can use the import statement to mark certain packages that you
want to behave as though they were local.

If you wanted to use the name Cache instead of stamp.util.Cache, you can add the following line at the
start of your java source file:

import stamp.util.Cache;

You can also get all the classes in stamp.util by writing:

import stamp.util.*;

Keep in mind that you never have to use import. If you prefer, you can simply use fully qualified class names
everywhere. Still, using import makes your programs much more readable so you’ll want to use it where
appropriate. A common mistake beginning Java programmers make is to try something like this:

import System.out.println;
println(“Hello World”);

This won’t work! That’s because System is an object (part of the java.lang package), but out is a static
field of this object. This field is an object reference that has a method called println. The import
statement only works with classes. You can’t import a field or method.

6: Javelin Stamp Programmers Reference

 Page 114 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Summary

You could read an entire book on Java – there are plenty around. However, this chapter, along with the
examples in the next few chapters, will give you a lot of practice with Java. You can also find many online
tutorials, books, and documentation on Java. Be sure to check out the online resources section for more
information. Be aware, though, that many books and other materials will focus on writing graphical programs,
not embedded systems.

This chapter may leave you wondering why use Java. In the next chapter, however, you’ll see that Java’s
networking capability is a real winner. And Java’s cross platform ability will serve you well in a networked
environment.

Online Resources
http://java.sun.com

 Java’s home on the Web. Free downloads of the JDK, tutorials, news, and more.
http://www.norvig.com/java-iaq.html

Java Infrequently Asked Question (IAQ) list.
http://mindprod.com/gotchas.html

Java gotchas
http://www.afu.com/javafaq.htm

Java programmer’s FAQ
http://www.mindspring.com/~chroma/docwiz/

Adds java doc comments to your code
http://uranus.it.swin.edu.au/~jn/java/style.htm

Automatically format your Java code

Javelin Stamp Keyword Reference

abstract
The abstract keyword has two possible methods. You can mark a method as abstract to indicate that
the class contains no code for the method. That implies that you can’t instantiate the class, only extend it.
Classes that extend the class must either implement the abstract method, or also be an abstract class.

You can also mark an entire class as abstract – any class that contains at least one abstract method is an
abstract class.

Examples:

abstract class AbaseClass {

abstract void someMethod();
}

boolean

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 115

The boolean data type can contain the values true or false.

Example:

boolean limit = false;

break
When you are executing a loop (that is, a for, a do, or a while loop), you may find it useful to exit the loop
prematurely. That’s the purpose of the break statement. You can optionally provide a label that will cause
the break statement to exit to an outer level of nested loops.

You can also use a break statement to stop execution inside a switch statement. This is useful to end a
block of code that handles one condition (see switch for more details).

Example:

outside: // label
for (x=0;x<10;x++) {

for (y=0;y<10;y++) {
f(x,y); // do something with x and y

if (CPU.readPin(CPU.pin2)) break; // skip to next X early
if (CPU.readPin(CPU.pin3)) break outside; // stop both loops

}
}

See Also: continue, do, for, switch, while

byte
You can use the byte type to store any 8-bit quantity. The byte type is signed, so it can store values from –
128 to 127. The signed nature of bytes can lead to common compile errors. For example, you can’t assign
0xFF (255) into a byte, because it is out of range and the compiler won’t allow it. You can cast the value,
however (see the examples below). If you really want an unsigned byte, consider using a char.

Examples:

byte x = 10;
byte y = 0x55;
byte z = (byte)0xFF;

You can’t directly assign 0xFF (255) into a byte, because it is out of range and the compiler won’t allow it.
However, you can assign numbers greater than 127 into a byte with a cast:

6: Javelin Stamp Programmers Reference

 Page 116 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

byte fullvalue = (byte) 0xFF;

See Also: char

case
See switch

catch
See try

char
The char data type stores a single byte character. This type can hold a single ASCII character, or you can use
it as an unsigned alternative to byte.

Example:

char c = '@';

See Also: byte

class
Classes are templates that create objects. You’ll introduce each class definition with the class keyword.

See Also: extends, private, protected, throws

continue
When you are executing a loop (that is, a for, a do, or a while loop), you may find it useful to jump directly
to the next iteration of the loop prematurely. That’s the purpose of the continue statement. You can
optionally provide a label that will cause the continue statement to exit to an outer level of nested loops.

Example:

outside: // label
for (x=0;x<10;x++) {

for (y=0;y<10;y++) {
if (CPU.readPin(CPU.pin2)) continue; // skip this value of Y

if (CPU.readPin(CPU.pin3)) continue outside; // skip to next X
f(x,y); // do something with x and y

}//end if
}//end for y

}//end for x

See Also: break, do, for, switch, while

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 117

default
See switch

do
Use the do loop construct to perform a statement (or statements) a repeated number of times. The do construct
always executes the loop once before performing the end of loop test.

Example:

do {

CPU.writePin(CPU.pin8,getNext());
} while (CPU.readPin(CPU.pin5)); // continue until pin5 goes low

See Also: break, continue, for, switch, while

else
See if

extends
When you define a class, by default, it extends the Object class. However, you can make it extend any class
you like by specifying extends. When an object extends a base class, it can override the base class methods
and fields. It can also access the base class protected members.

Example:

class ParallaxDemo extends GenericDemo {
 . . .
}

See Also: class, throws

final
When you declare something final you indicate that it can’t be changed. For example, declaring a variable
final makes it a constant. You can also declare a class as final to prevent others from extending it.

Example:

final int x = 33;

final class TheEnd {
. . .

}

6: Javelin Stamp Programmers Reference

 Page 118 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

finally
See try

for
The for statement allows you to execute a group of statements multiple times. Each for statement has three
parts separated by semicolons. The first part initializes the loop, the second part tests for the end of the loop,
and the third portion specifies code to execute after each loop completes.

There are many variations on the for loop. Consider this example:

int i;
for (i=0;i<10;i++) System.out.println(i);

This initializes the i variable to 0 and then executes the loop until i is less than 10. At the end of each loop, the
for statement adds one to i (i++). In this case, only one statement is part of the loop
(System.out.println(i)), but often you’ll see multiple statements enclosed in braces.

Notice that if the test (the second part of the loop) fails right away, the code never executes. For example:

int k;
for (k=0;k>0;k++) System.out.println(k);

This loop never executes because k is not greater than 0.

As a special case, the for statement allows you to declare the loop variable right in the statement:

for (int j=0;j<100;j+=2)

In this example, the loop variable (j) increases by two on each pass through the loop.

You can omit any (or all) of the portions of the for loop:

for (;;j++) { . . . }
for (j=0;j<10;) { . . . }
for (;;;) { . . . }

The first example assumes j is already set, and will continue forever (presumably the loop
will contain a break statement). However, at the end of each loop, j’s value increases by
one. The second example doesn’t change the value of j at all. In this case, some code within
the loop would probably assign a value to j. The final example loops forever (unless

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 119

something inside the loop uses the break statement). This is useful when you want a loop to
run without stopping (although you could also use while(true) to get this same effect.

The for statement is very versatile. You don’t have to directly refer to the loop variable in
any of the clauses. For example, suppose you want to call a method f on each element of an
array until you find an array element that contains a –1. You could write:

for (j=0;ary[j]!=-1;j++) f(ary[j]);

Here’s another example that loops until the input on pin 0 is high (and counts the number of
seconds it is low):

for (ct=0;CPU.readPin(CPU.pin0);ct++) CPU.delay(10000);

Notice that the test does not involve the loop variable at all.

Sometimes it is useful to use more than one loop variable. Here is an example that declares
two variables (x and y), initializes them, and changes them on each loop:

for (int x=0,y=0;x<10;x++,y+=2) System.out.println(x+y);

Notice the commas separate the different portions of the for loop. In C this is known as a
comma operator and you can use it anywhere. However, in Java there is no general-purpose
comma operator – you can only use this syntax in a for loop.

Examples:

for (n=0;n<ary.length;n++) f(ary[n]);
for (x=0;x<10;x++) f(x);

See Also: break, continue, do, while

if
The if statement allows you to conditionally execute a statement (or a group of statements surrounded by
braces). The if statement requires an expression that returns a boolean in parenthesis. If this expression
evaluates to true, the following statement executes. If it is false, execution continues with the next
statement.

6: Javelin Stamp Programmers Reference

 Page 120 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

In addition, you can specify an optional else clause. The statement (or statements) following the else will
only execute if the if condition is false. Often it is useful to use multiple if/else statements. For
example, consider this code:

if (x==10) System.out.println("Condition A");
if (x<20)

System.out.println("Condition B");
else

System.out.println("Condition C");

This code will output both “Condition A” and “Condition B” if x is 10. You probably meant to write:

if (x==10) System.out.println("Condition A");
else if (x<20) System.out.println("Condition B");
else System.out.println("Condition C");

This prints one line, depending on the value of x.

Examples:

if (x==10 && y<0) break;

if (CPU.readPin(CPU.pin1)) func(100);

See Also: switch

import
The import statement is a directive to the compiler that tells it to search for class names in different packages.
When you name a class, by default the compiler looks in your current package (essentially, the current
directory) and in the default java.lang package. If you want something from another package, you must
fully qualify the name. For example, you might write java.util.Random to access random numbers.

This is cumbersome if you need to access the object frequently. You can place any number of import
statements at the beginning of your file. Each import names a class you plan to use in your code. Then you can
refer to the class using an ordinary name. In addition to naming specific classes, you can also use an asterisk to
refer to the entire package. So importing java.util.Random allows you to use the Random class, but
importing java.util.* imports all classes in the java.util package.

Examples:

import java.util.Random;
import java.util.*;

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 121

See Also: package

int
The int data type defines 16-bit signed integers. Integers can hold between –32768 and 32767. Notice that
the limit of 32767 precludes directly writing hex constants greater than 0x7FFF. If you need a number greater
than 0x7FFF you’ll either need to compute the equivalent negative (two’s compliment) number or break the
number into parts. Moreover, if you break the number into parts, you’ll have to keep the compiler from
realizing the expression is constant or else it will resolve it at compile time.

As an example of this, suppose you want to pass 0x80A0 to a method named f. You might try this:

f(0x80A0);

However, this won’t work because the compiler decides it is too large to be an integer constant. Next, you
might try:

f(0x80<<8+0xA0);

That’s the right idea, but the compiler realizes it can calculate 0x80A0 at compile time and you wind up with
the same problem. One possible way around this is to define a method to prevent the compiler from resolving
the expression. So you might write this method:

int bytes2hex(int hi, int lo) {

return hi<<8+lo;
}

Now the call to method f is simply:

f(bytes2hex(0x80,0xA0));

Another solution is to subtract one from the number and invert it. This will give you the magnitude of the
equivalent negative number. So 0x80A0 minus 1 is 0x809F. Inverting this results in 0x7F60 (32608 decimal)
so -32608 is the same as 0x80A0 and this code will correctly compile:

f(-32608); // 0x80A0

Examples:

int x;
int num = 100;

new

6: Javelin Stamp Programmers Reference

 Page 122 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

When you declare an object variable, it is simply a reference to an object. Using new creates an object that you
can assign to an object reference. Following new, you’ll specify the class name followed by any constructor
arguments required (in parenthesis). Of course, the class in question must have a visible constructor that
matches the arguments. Even if you don’t want to supply any arguments (that is, you want to use the default
constructor) you’ll still need to provide an empty set of parenthesis.

Usually, the variable on the left side will have the same type as the argument to new as in:

SomeObj anObj = new SomeObj();

However, it is possible to assign the object to a variable of a base class of the object. Since Object is a base
class of all objects, for example, you might write:

Object anObj = new SomeObj();

The object is still a SomeObj, but your program will treat it as an Object until you cast it to the more specific
type.

Examples:

pid = new PIDController(10,1,"Unit 1");

LED led = new LED(CPU.pin3);

null
Uninitialized object references have the null value. You can also assign null to an object reference to mark
the value as empty once you are done with the object the variable refers to.

Example:

if (anObj != null) anObj.doSomething();

package
You can organize your classes into packages. By placing code in a package, you not only group similar classes
together, but you also avoid the risk of naming a class something that is already in use by other code (that is
presumably in another package). In addition, you can specify fields and methods that are only accessible by
other code in the package. This is similar to having private data or methods, but any class in your package can
access the members.

Each class that belongs to a package must include a package statement. This tells the compiler that the class
is a member of the package and makes it implicitly search the package for any unresolved class names. The

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 123

package statement must appear before any class declarations in the file (it is usually the first non-comment
line in the file). You may only use one package statement per file.

Package names may be hierarchical. For example, you might make a package named robot.wheels and
another named robot.sensors. If you expect to widely distribute your packages to the public, you should
consider following a widely-used convention to avoid conflict. The idea is to use your Internet domain name
(assuming you have one, of course) but with the top-level domain name first (and in upper case). So, a
fictitious package from Parallax, might be: COM.parallax.fictitious.

Class files that belong to the package must reside in a subdirectory that matches the package name (replacing
dots with slashes). So the above example would be the fictitious subdirectory of the parallax directory,
which would be in the COM directory. The COM directory would be a subdirectory of one of the directories in
the CLASSPATH environment variable.

You should note that if you are simply writing programs, you don’t need to use package at all. This statement
is for either organizing very large programs or distributing code for others to use. Small programs that only you
will use do not really need package although you can use it if you like.

Example:

package COM.parallax.fictitious;

See Also: import

private, protected, public
You can use the private keyword to mark fields and methods. A member that is private can’t be used except
in the class that defines it. Marking a member public has the opposite effect. A public member is accessible
by all code. A member that uses protected is visible only to code in the class that defines the member and
any classes that extend that class.

If you don’t use any of the three keywords (private, protected, or public) the member has package
visibility. That means that the member is public to any class in the same package, but private to all other code.

You can also mark classes as public. Any class that is not public will have package access.

Example:

public class A {

int pack_var; // package visible
public int pub_var; // public variable
protected int prot_var; // protected variable

6: Javelin Stamp Programmers Reference

 Page 124 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

private int keep_out; // private variable

// all of the following is OK
void test() {

pack_var=0;
pub_var=0;
prot_var=0;
keep_out=0;

}

private class B {
void testB() {

A aobj = new A();
aobj.pub_var=10; // Ok
aobj.keep_out=3; // error
aobj.prot_var=9; // error
aobj.pack_var=5; // OK (same package);

}
}

private class C extends A {
void testC() {

prot_var=77; // ok – C can access A variables directly
keep_out=33; // error!

}
}

return
When you call a method that returns a value (that is, it is not a void method) you’ll need to return a value. This
is the purpose of the return statement. It returns control to the calling part of your program and specifies the
return value of the method (which the calling program may discard, of course). The expression you use with
return must match the method’s return type. If the method returns void, you may use the return
statement alone to end the method early. Otherwise, a void method will return automatically when it
encounters the final closing brace.

Examples:

void a(int n) {

if (n==0) return;
f(n);

} // automatic return

int b() {
System.out.println("Processing B");
return 0;

}

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 125

See Also: void

short
The short data type is the same as an int.

Example:

short value=33;

See Also: int

static
You may declare fields and methods static. This means that, unlike other members, they apply to the class
as a whole. You don’t need to instantiate the object to use a static member. Also, a static method can’t
access non-static members of the class directly.

A static member is useful for cases where you would normally use a global variable or method. For
example, suppose you have a CommLink class that handles communications with the outside world. You
might have several CommLink objects, each representing a different port. However, you want to track the total
number of errors for all ports.

You might write:

class CommLink {

private static int errct = 0;
public static void reportError() { errct++; }
public static int errorCount() { return errct; }
private int portNumber;

.

.

.
}

Notice that the two static methods can access errct only because it too is static. Any attempt by these
two methods to access, for example, the portNumber field would cause a compile-time error.

From outside the object, your code could call CommLink.errorCount to fetch the error value. There is no
need for the program to actually create an instance of CommLink using new first. One common case where
this is useful is in the class’ main method. It is static because when the program starts, there is no instance of
the class. Since main is static, that doesn’t present a problem.

6: Javelin Stamp Programmers Reference

 Page 126 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Another common use for static fields is to provide named constants for use elsewhere in your program. For
example, you might have an entire class consisting of static constants:

public class Bitmasks {

final public static int bit0=1;
final public static int bit1=2;
final public static int bit2=4;

.

.

.
final public static int bit7=128;

}

Then your program could refer to Bitmasks.bit7 to retrieve the value 128.

Examples:
public static void main(String args[]) {

. . .
}

static int errct;

super
You can use the super keyword to call the base class constructor of a class from within a class constructor. If
you don’t supply the super keyword as the first statement of the constructor, Java will call the base class
default constructor. This could be a problem if the base class does not have a default constructor, or if you need
to pass the base class constructor arguments.

You can also use super in any non-static method. In this case, super acts like the this reference, except
that it acts as a reference to the base class. This is useful if you want to call a base class method or access a
base class field that you have hidden in the derived class.

Example:

class Base {

int z=10;
}

class Other extends Base {
int z=100;
void test() {

System.out.println(z); // prints 100
System.out.println(super.z); // prints 10

// another way to do this

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 127

Base otherBase = (Base)this;
System.out.println(otherBase.z); // prints 10

}
}

See Also: this

switch
You’ll use the switch statement to compare a value to a group of constants and execute code based on the
value. Within the switch statement you can place any number of case statements. When the case
statement matches the test value, execution begins at that point. It continues until the code reaches a break,
return, or throw. Notice that execution does not stop when reaching another case statement. You may
also specify a default clause that will match any value.

Example:

switch (n) {

case 1:
System.out.println("One");
break;

case 2:
case 3:

System.out.println("Two or Three");
case 4:

System.out.println("Two, Three, or Four");
break;

default:
System.out.println("Huh?");
break;

}

See Also: break, case, default, if

this
Every non-static member method has access to a pseudo-variable named this. The this variable is simply a
reference to the current object. This can be useful if you want to pass a reference to another method, for
example. You can also use it to access an object field if it is hidden by a local variable or formal parameter.
For example, it is not uncommon to see an object with the following constructor code:

class ConstDemo {

int x;
ConstDemo(int x) { this.x = x; }

}

6: Javelin Stamp Programmers Reference

 Page 128 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Example:

Object [] objs = new Object[10];
objs[0]=this;

See Also: super

throw, throws
The throw statement allows you to create an exception. An exception consists of an object that extends
Throwable. In general, nearly all exceptions extend subclasses of Throwable. In particular, exceptions
derive from RuntimeException or Error (for an unchecked exception) or Exception (for a checked
exception). A method that may throw a checked exception must use the throws keyword in the method
declaration.

When you call a method that may throw a checked exception, your code must either catch the exception (using
try) or use the throws statement to indicate that your code may also throw the same exception. Unchecked
exceptions do not have to be caught, but if one occurs, your program’s execution will terminate.

Example:

class EmptyArgumentException extends Exception {

EmptyArgumentException() {
super("Argument must not be empty");

}
}

public class SomeClass {
public void aMethod(String s) throws EmptyArgumentException {
if (s==null || s.equals("")) throw new EmptyArgumentException();

.

.

.
}

}

See Also: try

try
When you perform an operation, there is always a chance it might throw an exception. Unchecked exceptions
(like dividing by zero, for example) can happen at any time, and the Java compiler does not require you to catch
them. However, many exceptions are checked – the compiler requires you to either catch the exception, or
mark that you may throw the same exception (using the throws keyword).

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 129

To catch an exception, enclose the code that might cause the exception in a try block. If the code executes
without any exceptions, nothing special happens. However, if an exception occurs, the compiler scans the
adjoining catch statements, looking for a matching type. You can catch broad categories of exceptions by
writing catch statements for a base class (like Exception, which will catch all checked exceptions). You
can have any number of catch statements as long as each catch handles a different type. You should place
specific catch statements before more generic ones.

If there is no appropriate catch statement, the exception propagates to the calling method. If it is executing
within a try block, the search continues. If there is no match, or no try block, the exception propagates to the
next caller, continuing until a catch is found, or there is nowhere else to search (at which point, the program
terminates).

You can also place a finally block after the catch statements. The code in the finally block will
execute whenever execution leaves the try block. That means the finally code will execute if no
exceptions occur, or if an exception occurs (even if it is not caught), or even if the code within the try block
executes a return.

Example:

class BadArgumentException extends Exception {

BadArgumentException() { super("Bad Argument"); }
}

public class TryTest {
void test() {

try {
test1();

}
catch (BadArgumentException e) {

System.out.println(e);
}
finally {

System.out.println("Done!");
}

}

void test1() throws BadArgumentException {
test2(-1); // try changing this value

}

void test2(int n) throws BadArgumentException {
if (n==-1) throw new BadArgumentException();

6: Javelin Stamp Programmers Reference

 Page 130 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

System.out.println(n);
}

public static void main(String[] args) {
TryTest t=new TryTest();
t.test();

}
}

See Also: throw, throws

void
The void type is used for methods that return no value.

Example:

void f(int n) {
.
.
.

}

See Also: return

while
Use the while loop construct to perform a statement (or statements) a repeated number of times. The while
construct always tests for the end of the loop before it executes the loop. Therefore, it is possible that the loop
will never execute.

Frequently, you’ll write a while loop with no statements simply to wait for some condition. For example:
while (CPU.readPin(CPU.pin5); will wait for pin 5 to go high.

Example:

while (CPU.readPin(CPU.pin5)) { // continue until pin5 goes low

CPU.writePin(CPU.pin8,getNext());
}

See Also: break, continue, do, for, switch

Javelin Stamp Operator Reference

[]

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 131

The bracket operators define or use an array. Javelin Stamp arrays can only be one-dimensional and always
start at index 0.

Examples:

// The next two lines are the same; you can use either syntax
int [] x = new int[10];
int y[] = new int[10];
x[2]=0;
y[1]=x[2];

++, --
The ++ and – operators perform slightly different methods depending on their position. Consider ++ first. It
always adds 1 to the variable it is next to (known as an increment operation). However, it also returns a value
used in the expression. If the ++ precedes the variable, the increment occurs before the value is taken. If the ++
is after the variable, the increment occurs after taking the value. The -- operator works the same way but it
decrements (subtracts 1) instead of incrementing.

Examples:

int x=5, y;
y = ++x; // y=6, x=6
y = x++/3; // y=2 (6/3), x=7
y = --x*2; // y=12 (6*2), x=6

(type)
You can force a value of one type into another type using the cast syntax (type). Some casts don’t make
sense, and the compiler won’t allow them. For example, you can’t convert an object type (including String)
into, say, an integer. You also can’t cast a type to another unrelated type.

Often, the compiler will automatically cast values where it can be sure it is safe. For example, while you can
cast a short to an integer, you don’t have to, because the compiler knows it can always fit a short into
an integer. On the other hand, you do have to explicitly cast an integer into a short because it is
possible that the integer will be too big, and your program will use the wrong value after the cast. The cast is
the compiler’s way of making sure you really want to do the conversion. The same holds true for objects. You
don’t need to make an explicit cast to convert an object to one of its base classes. However, you do need a cast
to convert an object to a more specific type. Consider this example:

Object o = new SomeObject(); // no cast required, because Object must

// be a base class
SomeObject so = (SomeObject)o; // cast required here

Examples:

6: Javelin Stamp Programmers Reference

 Page 132 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

short s=20;
int n;
n=(int)s; // cast not required here
n=n*3+7;
s=(short)n; // cast required

+, -, *, /, %, ()
These operators represent the usual math operators: addition (+), subtraction (-), multiplication (*), division
(/), and remainder from integer division (%). Parenthesis can override precedence.

Java evaluates these operators using the normal order of operation (multiplication and division first, followed by
addition and subtraction). So 4+3*2 is equal to 10, not 14. You can override the order using parenthesis, so
(4+3)*2 is 14.

Don’t forget that division is integer-only on the Javelin Stamp. So 10/3 is 3 (and 10%3 is 1, the remainder).
You may want to rearrange your computations to make sure division occurs in such a way that it doesn’t affect
your results. For example, suppose you read a value from an A/D converter. To get the correct answer in volts,
you need to multiply by 5/256. You don’t want to write this so that 5/256 is computed first since that result will
always be zero. So don’t write:

y = 5/256*x;

Instead, you want to write:

y = (5*x)/256; // parenthesis not necessary, but added for clarity

Even writing it this way, any value below 52 will result in a 0 result. You might prefer to compute decivolts
(1/10 of a volt units) instead by scaling everything up by 10. For example:

y = (50*x)/256;

If you need to find the volts, you can use the / operator. The % operator could determine the fractional (1/10)
volt units. For example:

System.out.println("Volts = " + y/10 + "." + y%10);

Examples:

y = 10 + 33 / 17 % 3 * 100; // answer is 110

<<, >>, >>>

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 133

These operators all shift their left argument to the left (<<) or right (>> and >>>) the number of times specified
by their right argument. Shifting to the left is equivalent to multiplying by powers of two, and shifting right is
the same as dividing by a power of 2. So writing 100>>4 is the same as writing 100/16 (because 2 to the 4th
power is 16). In addition, shifting is typically faster than multiplication and division.

It is possible to rewrite certain common multiplication statements as sums of shifts to realize faster execution.
For example, when working with decimal numbers, you’ll often need to multiply by 10. Observing that 10 is
actually 8+2, you can rewrite 10*x as (x<<3)+(x<<1).

The << operator always sets the least-significant bit of the result to zero. The >> operator preserves the most
significant bit (which represents the sign). This makes positive numbers stay positive and negative numbers
stay negative. If you really want to zero fill the most significant bit, use >>> which is a true unsigned shift.

Examples:

x = 10<<3; // x = 80

<, >, <=, >=, ==, !=

The relational operators allow you to test two values and get a boolean value (true or false). Each operator
makes a particular test:

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

You have to be careful when using == and != with objects. For objects, these operators only test that the object
references are the same. In many cases, you may want to treat objects that are not the same as though they are
equal. For example, suppose you have a String object that contains the word "END" and another String
object that you read from an RS-232 device. Suppose the RS-232 string also contains "END" and you compare
them. Since the objects are not the same identical object, they are not equal (as far as == is concerned).
Instead, use the equals method (part of Object) to make the test. The default version of equals is no
different than ==, but many classes (including String provide different versions of equals that behave the
way you would expect).

Examples:

6: Javelin Stamp Programmers Reference

 Page 134 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

if (x==10) done();
while (y!=33) {

perform(y);
}

&, |, ^
These operators perform logical operations on binary numbers stored in int, short, or other integral types.

To understand how these operators work, consider their arguments as binary numbers. For example, 100
decimal is 01100100 binary and 7 decimal is 00000111 binary (assuming byte data types). If you and these
numbers together, the result will only have a 1 where both arguments have a 1. So the result would be
00000100 (or 4 decimal). An OR operation will have a 1 where either or both arguments have a 1. So using or
on these two numbers will result in 01100111 (or 103 decimal). Exclusive or results in a 1 where there is a one
in either argument, but not both. So the result for exclusive or would be 01100011 (or 99 decimal).

Examples:

int x=100, y=7, z;
z = x & y;

&&, ||
These operators are superficially similar to the & and | operators. However, while & and | operate on integers,
&& and || operate on boolean values. This is especially useful in if, do, and while statements.

Examples:

if (x==3 && y!=5) doit();

boolean b = x==100;
boolean c = y!=55;

while (b && c) go();

~, !
These operators perform the invert method. The ~ operator inverts integers bit by bit. So a byte with a value
of 100 decimal (which is 01100100 binary) will invert to 10011011 binary. The ! operator is strictly for
boolean data. So it turns true into false and vice versa.

Example:

if (!CPU.readPin(CPU.pin3)) break;

?:

6: Javelin Stamp Programmers Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 135

The conditional operator, unlike other operators, requires 3 arguments. The first evaluates to a boolean. If this
value is true, the operator evaluates its second argument. Otherwise, it evaluates the third argument. In other
words q = x==10?-1:2*x; will set q to –1 if x is 10. Otherwise, q will be set to 2*x.

It is important to realize that only one of the last two arguments will execute. That means that any side effects
(like ++ or --) will not occur in the unused argument. For example:

int x=10, z=5, q;
q = x == 10?-1:++z;

This code will set q to –1 and not change z at all. On the other hand, this code would change z:

int x=10, z=5, q;
q = x == 10? ++z: -1;

Or:

int x=10,z=5,q;
q = x!=10?-1:++z;

Examples:

x = y!=3?5:10;
=, +=, -=, *=, /=, %=, >>=, <<=, >>>=, &=, ^=, |=
The = operator, of course, assigns a value into a variable (as in x=10;). It is not the equality operator (which
is ==). The other related operators all perform the indicated operation on their left-hand argument and their
right-hand argument while storing the result back in the left hand argument. That is to say, x+=5; is the same
as x=x+5; for practical purposes.

Examples:

x *=10;

instanceof
The instanceof operator returns true if its first argument is an instance of the class named in the second
argument. An object is considered an instance of a class even if the object uses the class as a base class. So, for
example, all objects are instances of Object (although null is not an instance of Object).

You can use instanceof to ensure safe casting. For example, consider this code:

class bar {

. . .

6: Javelin Stamp Programmers Reference

 Page 136 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

}

class foo extends bar {
. . .
void f(Object o) {

if (o instanceof foo) {
foo fooobj = (foo) o; // will definitely work

. . .
}
if (o instanceof bar) { // true even for objects of type foo

bar barobj = (bar) o; // will definitely work
. . .

}

Examples:

if (obj instanceof Error) procErrorObject(obj);

Unused Keywords
The IDE compiler currently recognizes a group of Java reserved words (keywords) that are unsupported in the
Javelin Stamp. Some of these words are reserved for historical reasons and are not currently used in regular
Java or the Javelin. You should not use these keywords in your programs. While the compiler will accept their
use, the Javelin Virtual Machine will fail to recognize them.

Unsupported Reserved Words:
const, double, float, goto, implements, interface, long, native, synchronized,
transient, volatile

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 137

Objects are a key part of the Java programming language. You can benefit right away from using other
people’s objects. For example, the Javelin Stamp has quite a few objects that act as UARTs or interact with
peripheral devices. You don’t need to know anything about how they work internally. That’s the power of
objects, you just use them. However, you’ll get the most out of objects when you understand how to create new
ones yourself and reuse them later or share them with others.

You can hardly use Java without some understanding of objects. In the last chapter, you read a little about
objects. In this chapter, you’ll dive a little deeper into the objects oriented system that makes the Javelin Stamp
so flexible and powerful.

What's an Object?
Let’s start right at the beginning. What's an object? In simple terms, an object is an entity that has "state",
meaning that it can store information across sessions. The information isn't lost or reset each time your program
code refers to the object.

An object can perform operations on itself, via methods. Consider this example. In a non-object programming
language (like PBASIC for the Basic Stamp) you have functions that read and write serial data (SEROUT and
SERIN). These functions are related, but only because you know they are related. PBASIC recognizes no
special relationship between them. Setting the baud rate for SERIN, for example, doesn’t affect calls to
SEROUT. In fact, since the calls have no state, it doesn’t even affect subsequent calls to SERIN. You might
write:

baudrate var word
serialpin var nib
baudrate = 84
serialpin=16
serout serialpin, baudrate, …

Your program, in this case is keeping track of the serial port state (the baud rate and pin number to use). With
the Javelin Stamp, you’d perform the same operation using a Uart object from the stamp.core package.
This object handles the methods you’d expect using SERIN and SEROUT, but it also remembers the state of the
serial port. Once you create the object, it even listens for serial input while your program is doing other things.

In this case, the Uart object contains all the methods and fields required to do serial I/O. When you want to do
serial I/O, you know everything you need is within the Uart object. When you construct a Uart you provide
all the initial conditions:

Uart xmit = new Uart(Uart.dirTransmit, CPU.Pin0,Uart.invert,

Uart.speed9600, Uart.stop1);

7: Working With Objects

 Page 138 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

The object then remembers the parameters. To write to the port, you’d simply call:

xmit.sendByte(v1);

In traditional object-oriented parlance, you send messages to an object to tell it what to do. With Java, sending
a message means calling a member method. So you might say, the above example sent the sendByte
message to the xmit object.

One advantage of objects is that your access to them is strictly through public members. Therefore, you
might replace the Uart object with, for example, a Uart422 object that you wrote to handle RS422
communications. As long as the new object supports all the same public members as Uart, you’d only have to
change the call to create the object.

Your program creates objects based on a class that you define. Think of a class as a cookie cutter. You don't
eat the cookie cutter, but it makes the cookies. A class is just a blueprint for an object. When you instantiate
the object (for example, by using the new keyword in Java), you create a particular object that follows the plan
laid out by the class.

The real trick to object-oriented design is deciding what constitutes an object. You could write your entire
program in one object, but that probably isn’t the best idea. A good object is a focused representation of some
entity in your design. Good objects have a well-defined and limited scope. For example, suppose you're
developing a system that operates an automated testing machine. Developing a single class to represent the
machine, the device under test, and the user isn't an example of focus. Instead, you might decide to write one
class to represent the testing machine, one for the device under test, and another to represent the user.

Of course, too much focus can be burdensome, too. Creating objects to represent each individual component in
the device under test is probably going too far.

Encapsulation

One of the key features of object-oriented programming is encapsulation. Encapsulation is the process of
hiding as much internal detail of your object as possible, so that others can use your object without having to
know how it works.

Java, along with other object-oriented languages, allows you to declare each method and variable either public
or private, with the public and private keywords. Anything public can be used by the rest of your program to
manipulate the object. Anything private is used by the object for its own internal workings. If you think of the
automated tester example, the switch that starts testing is public but the electrical wiring inside the machine is
private. How that switch works is not important. However, it's important that the public part of your object (the
switch in this case) always behaves in the same way.

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 139

Suppose you develop a data acquisition system that reads flow data from a sensor and displays the results in
gallons per minute. However, the manufacturer of the flow sensor goes out of business and you have to switch
to another flow meter that reads in liters per minute. With object-oriented design, solving this problem is easy.
You can rewrite the way the class communicates with the sensor to do the appropriate conversion. As long as
the new class still supports the original public methods and fields (in gallons per minute), you won't have to
change anything else in the rest of your program. That's the power of encapsulation.

In a sense, an object acts like a black box to the rest of your program. Objects hide the internal mechanisms of
related methods, and expose only the parts that the rest of your program needs. As long as you don't alter the
public interface, you're free to change the private methods and variables without fear of breaking the entire
system. You can add new things to the public interface, if necessary, but you shouldn't delete or change
anything you've already made public.

A common mistake is the temptation just to make everything public. This defeats the real purpose of
encapsulation, you should resist this temptation. Hide private implementation details.

Polymorphism
One of the most important parts of an object-oriented system is polymorphism. This is just a fancy word for
establishing "is a kind of" relationships between objects. For example, an A/D converter and a shift register are
both types of integrated circuits. An 8-bit serial A/D converter is a specific type of A/D converter.

The idea behind polymorphism is to factor the common parts out of a series of objects. For example, A/D
converters, regardless of type, often require a lot of the same code. If you place all the code and data relating to
A/D converters in a single class, the classes that represent specific types of A/D chips can extend this base class.
This allows the specialized classes to reuse the common code without having to duplicate efforts. It also allows
your program to treat all A/D converters the same. If your program deals mostly with generic converter objects
(as opposed to specific types), you won't have to make many changes to your code when you want to upgrade to
a faster or better chip.

Hypothetically, an A/D class might contain methods to perform engineering unit conversions and to read a
value from the device. The value reading method could use low-level routines (like initialize,
startConversion, etc.) that the derived classes supply. The derived classes could then provide the code
that directly talks to the chip. Your program could simply call readValue and know that all the right things
will happen.

With Java you typically get polymorphism (and the associated code reuse) by extending one class from another
with the extend keyword. However, you can also get polymorphism without code reuse by using an interface.
An interface in Java acts like a skeleton class that defines a number of required methods but doesn't actually
implement the inner workings of those methods.

7: Working With Objects

 Page 140 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

When you define an interface, you don't write any code—you simply provide a list of methods that the interface
contains. Any class that implements the interface (with the implements keyword) must provide the actual
code for the methods. All classes that implement a particular interface are polymorphic with each other. This is
handy for cases where objects are similar to another object, but not enough so that you want to share code
among them.

Class Relationships
Recent versions of Java offer several other ways to express class relationships. You can nest classes, make one
class a member of another, create local classes, or create anonymous classes. These are not strictly necessary to
create an object-oriented program, but they do offer more options for grouping code together and can help in
many common situations (like event handling, for example). You’ll find more about these advanced techniques
in any recent Java book.

An Object Oriented Example
Amateur radio operators sometimes use Morse code to communicate over the radio airwaves. In other cases,
Morse code identifies remote stations, or even sends telemetry from balloons or rockets. Since Morse code is
just a series of short and long pulses, it is easy to make the Javelin Stamp generate them using any of a variety
of methods. Suppose you want to send Morse code telemetry. Perhaps you are working on a team, and not
everyone knows Morse code. You may be working on several payloads that will each send different
information back using Morse code. In either case, you should consider creating an object that knows how to
send the data.

That’s what you’ll see in Program Listing 7.1. The MorseOut object encapsulates the logic required to send
numbers via Morse code. As you examine the code, consider these important points:

• The MorseOut object completely encapsulates the logic required to generate the code. Anyone who
wants to send numbers can simply create the object and call send.

• The templates for each number are private to the MorseOut object.
• If you wanted to change the telemetry to some other system, you could simply replace the code in

MorseOut.
• The program does not specify the pin number or the speed of the Morse code, which increases the

reusability of the object.
• If you wanted to make the class send more characters, you’d only need to provide a new sendChar

routine (and of course a new table, or other method of translating text into Morse code).

Although there are several things about this class that make it easier to reuse it, you could go even further. For
example, creating a class that converted a character to another character would disassociate the conversion to
Morse code from the output operations. Connect an LED circuit to P0 to view the Morse output.

Program Listing 7.1 - Send Morse Code Example 1
import stamp.core.*;

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 141

/**
* Code to send Morse code
* <p>
* This object will send Morse code numbers given ASCII text
*/

public class MorseOut {

int outPin; // output pin
int delay; // speed base

private final String[] chars = {
"-----", ".----", "..---", "...--",
"....-", ".....", "-....", "--...",
"---..", "----." };

/**
* Constructor
* @param pin The pin number to send on (example: CPU.pin0)
* @param dly The element timing in 100us units
*/

public MorseOut(int pin, int dly) {
outPin = pin;
delay = dly;

}

/**
* Send a single character
* @param c The character to send
*/

public void sendChar(char c) {
int idx;
String s;
if (c<'0' || c>'9') return;
idx=(int)c-(int)'0';
s=chars[idx];
for (idx=0;idx<s.length();idx++) {
sendElement(s.charAt(idx));

}
CPU.delay(delay*2); // character spacing

}

protected void sendElement(char el) {
CPU.writePin(outPin,true);
if (el=='.')
CPU.delay(delay);

else
CPU.delay(delay*3);

CPU.writePin(outPin,false);
CPU.delay(delay);

}

/**

7: Working With Objects

 Page 142 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

* Send a string (must be numbers only -- skips other characters)
* @param s The string to send
*/

public void send(String s) {
int i;
for (i=0;i<s.length();i++) {
sendChar(s.charAt(i));

}
}

/**
* A test main to try out the object if you like
* Sends on pin0 and uses a delay of 2000 (200mS)
*/

public static void main() {
MorseOut mo = new MorseOut(CPU.pin0,2000);
mo.send("3141");

}
}

Decoupling the Code
The original MorseOut object handles two distinct operations: converting characters to Morse code and
sending them out on an output bit. If you aren’t interested in reuse, this shouldn’t be a problem. However, the
best object designs strive to provide objects for each important operation. That means you should decouple this
object into two objects, one for each operation.

Consider Program Listing 7.1. It is very similar to the original code, but it accepts a third argument in the
constructor. This third argument is a reference to a CharConvert object. CharConvert is an abstract
class Program Listing 7.2 that knows how to convert one character into an equivalent string. Notice that it
doesn’t convert to Morse code. It simply looks up a string given a character. This class is abstract, you can’t
create it, but you can extend it.

Program Listing 7.2 - Send Morse Code Example 2

import stamp.core.*;
import examples.manual_v1_0.*;

/**
* Code to send Morse code
* <p>
* This object will send Morse code numbers given ASCII text
*/

public class MorseOut2 {

int outPin; // output pin
int delay; // speed base
CharConvert cvt; // converter object

/**

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 143

* Constructor
* @param pin The pin number to send on (example: CPU.pin0)
* @param dly The element timing in 100us units
*/

public MorseOut2(int pin, int dly,CharConvert conv) {
outPin = pin;
delay = dly;
cvt=conv;

}

/**
* Send a single character
* @param c The character to send
*/

public void sendChar(char c) {
int idx;
String s;
s=cvt.convert(c);
for (idx=0;idx<s.length();idx++) {
sendElement(s.charAt(idx));

}
CPU.delay(delay*2); // character spacing
}

protected void sendElement(char el) {
CPU.writePin(outPin,true);
if (el=='.')
CPU.delay(delay);

else
CPU.delay(delay*3);

CPU.writePin(outPin,false);
CPU.delay(delay);

}

/**
* Send a string (must be numbers only -- skips other characters)
* @param s The string to send
*/

public void send(String s) {
int i;
for (i=0;i<s.length();i++) {
sendChar(s.charAt(i));

}
}

/**
* A test main to try out the object if you like
* Sends on pin0 and uses a delay of 2000 (200mS)
*/

public static void main() {
MorseOut2 mo = new MorseOut2(CPU.pin0,2000, new MorseNumConvert());
mo.send("3141");

}

7: Working With Objects

 Page 144 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

}

This is the CharConvert base class:

Program Listing 7.3 - Character Convert
package examples.manual_v1_0;

abstract public class CharConvert {
abstract protected int transform(char c); // transform c to integer
abstract protected String [] getTransformMatrix(); // get array of conversions
public String convert(char c) {

int idx=transform(c);
if (idx==-1) return ""; // error
return getTransformMatrix()[idx];

}
}

You’ll need to place this file in a separate file (named CharConvert.java) and compile it so that the
improved Morse code sending program can use it.

The specific class that handles the code conversion appears below:

Program Listing 7.4 - Convert Numbers to Morse Code
package examples.manual_v1_0;

public class MorseNumConvert extends CharConvert {
private final String[] chars = {

"-----", ".----", "..---", "...--",
"....-", ".....", "-....", "--...",
"---..", "----." };

protected int transform(char c) {
if (c<'0' || c>'9') return -1;
return (int)c-(int)'0';

}
protected String[] getTransformMatrix() { return chars; }

}

If you extend CharConvert with a regular class, that class must implement two methods: transform and
getTransformMatrix. The transform method converts a character to an integer index (or returns –1 if
the character is illegal). The getTransformMatrix method returns a string array. The convert routine
handles the actual lookup logic. Notice that while a derived class could override convert, it doesn’t have to
do so (and should avoid it if possible). This allows you to make changes to the public part of all
CharConvert, derived objects by simply changing that one routine in the base class.

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 145

For example, suppose you wanted convert to throw an exception if you pass in a bad character. Since the
derived classes only extend protected members, you can change the one version of convert and any new
classes will use that logic. Of course, if any derived classes provide their own convert, you’d need to change
them as well. You could make convert final, that would prevent other classes from changing it.
However, that would limit the flexibility of the class, some classes may need to provide custom convert
routines.

The class that does the actual Morse code conversion is MorseNumConvert Program Listing 7.4. This class
simply provides the CharConvert base class with the information it needs to get the job done. The main
program creates a new MorseNumConvert object and passes it to the constructor of MorseOut. The
constructor expects a CharConvert object, but since MorseNumConvert extends CharConvert, that
isn’t a problem.

At first glance this seems much more complex than the single original file. However, consider this: What if you
wanted to make a new class that could send letters and numbers (perhaps to use in a different program). You’d
have to make a copy of the entire original class and make major changes to it. Now if you fix or add something
in one copy, you’ll need to remember to change it in the other copy as well.

With the new scheme, you’d have no problem making the change. Just derive a new class from
CharConvert and provide the appropriate translation. The same applies if you wanted to change
MorseOut’s output device (perhaps you want to change it to a tone instead of just blinking a light, you only
need to change (or override) the sendElement method so that it reads:

CPU.outputSine(el=='.'?delay*10:delay*30,outPin,10000,0);
CPU.delay(delay);

Now a speaker on the output pin will create beeps for the Morse code. Separating the conversion from the
output made changes easier to make.

Virtual Peripherals
Another important class of objects are Virtual Peripherals (VPs). These are special objects that the Javelin
Stamp executes at the same time that your program is running. For example, consider the Javelin Stamp Uart
VP. Once you start it, it runs constantly in the background sending and receiving serial data. That means your
program won’t miss serial data because it is doing something else when the data arrives. It also means that your
program isn’t tied up waiting while sending serial data.

How does the Javelin Stamp juggle your program and VPs? The same way that personal computers (like a PC
running Windows) multitask programs. Your program and each VP share the Javelin Stamp. Every 8.68 µs,
the Javelin Stamp allows the VPs to execute. Each VP is designed to execute quickly on each time slice. Once
the VPs have had a chance to run, your program resumes right where it left off.

7: Working With Objects

 Page 146 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Don’t worry about the VP consuming so much time that your program will slow down. Each VP is especially
designed to do just a small amount of processing on each time slice. The Uart VP, for example, does not send
or receive an entire byte of data on each time slice (that would take far too long). Instead, the UART might start
sending a bit during one time slice and then finish that bit much later (remember, there are roughly 250 time
slices in a single bit at 9600 baud).

Of course, if you added too many VPs, the total processing time might start to add up. That’s why the Javelin
Stamp limits you to six VPs at once. If you try to exceed this limit, you’ll cause an
IllegalArgumentException.
Most VPs will install themselves when you create them. You can manually install or uninstall a VP using
CPU.installVP and CPU.removeVP.

The Javelin Stamp includes several VPs, and you can download the latest from the Parallax site. Here’s a brief
overview of the core VPs:

• Uart – Send or receive RS232 data (bi-directional communications requires two Uart VPs).
• PWM – Creates pulse width modulation on an output pin. You can use PWM to control a motor speed,

modulate light brightness, or generate an analog voltage (using an RC filter).
• TIMER – Time events with 8.68us precision. When you create a Timer object, the Javelin Stamp

installs the Timer VP. However, once the VP is present, you can create more Timer objects and they
will use the same VP.

VPs are a perfect example of how you can take advantage of object orientation. By using these objects you can
perform tasks that would be difficult or impossible to do without them.

A Timer Example
Suppose you want to write a program that will flash two LEDs. Making LEDs flash is usually not the eventual
goal of a project (unless you are making a holiday display, perhaps). However, what if you want the two LEDs
to blink while you are doing something else? Perhaps one LED flashes to let you know your software is
running (it could even reset a watchdog timer). The other LED might flash to let you know that data is arriving
over a serial port. The question is how to make the LEDs flash at a steady rate while performing other tasks?

By using multiple timers, the job is easy. Remember, the first timer object installs the VP. Subsequent timers
use the same VP, so even though you can only have 6 VPs, you can use many timers while only consuming one
of your allotted VPs. Program Listing 7.5 shows the timer code:

Program Listing 7.5 - Simple Timer Demo
import stamp.core.*;

// This program blinks an LED circuit connected to P0 every 200 mS and
// blinks an LED circuit connected to P2 every 300 mS using the Timer object.

7: Working With Objects

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 147

public class SimpleTimer {

public static void main() {
Timer t1 = new Timer(); // timer for first LED
Timer t2 = new Timer(); // timer for second LED

boolean led0=false;
boolean led2=false;

t1.mark(); // Start timer t1
t2.mark(); // Start timer t2

while (true) { // do forever…

String msg = "test\n";
CPU.message(msg.toCharArray(),msg.length()); // Print Message

if (t1.timeout(200)) { // If 200 mS LED interval
led0=!led0; // set LED
CPU.writePin(CPU.pin0,led0);
t1.mark(); // start new time period

} // end if

if (t2.timeout(300)) { // If 300 mS LED interval
led2 = !led2; // Negate LED
CPU.writePin(CPU.pin2,led2);
t2.mark(); // start new time period

} // end if
} // end while

} // end main
} // end class declaration

Notice that the code loops forever doing some work (in this case, just printing a string with CPU.Message).
During the loop, the code examines two Timer objects to test for a timeout (one for 200 ms and the other for
300 ms). If the timeout occurs, the program flips the state of the LED and then uses the Timer’s mark method
to start a new interval.

Object-Oriented Opportunity
When designing objects, remember to keep each object focused, make each object as self-contained as possible,
and factor common code into base classes.

Having a hammer doesn't mean you can build a house. Using an object-oriented tool like Java doesn't mean
you're writing object-oriented code. Look for ways to use objects in your coding to make reusing code easier
and to make your program easier to understand.
With so many ways to model objects, you're sure to come up with an elegant, succinct representation for nearly
any problem. Elegant representations tend to generate elegant implementations. Better still, a great
implementation will be more robust and maintainable than an ad hoc solution.

7: Working With Objects

 Page 148 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Example 1.

public class datanode {

static class converter {
// members of converter

}
// members of data node

}

Example 2.

public class mainclass {

void somemethod(int x) {
class helper {

// some class that only
// somemethod needs

}
}
void anothermethod(int y) {

// . . .
}

}

Example 3.

class obj {

void amethod(Object o) {
// some method that
// requires an object

}
}

// . . .

obj.amethod(
new {

public void object_func_1(void) {
// some code here

}
public void object_func_2(void) {

// more code here
}

} // end of nested class
);

8: Object Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 149

The Javelin Stamp language depends on objects to perform a variety of tasks. That means understanding the
details of objects is crucial if you want to get the most from the Javelin Stamp. This chapter will provide a
reference for the core language classes – that is, classes that don’t directly interact with the hardware. That
includes objects in the java.lang, java.io, java.util, and stamp.util packages.

Objects are also critical when controlling hardware, you’ll find more about hardware-related objects in Chapter
8. Don’t forget that Parallax and third parties can create new objects that will help you perform different tasks
or use different hardware features. For an up-to-date list of available objects, be sure to checkout:
www.parallaxinc.com

 It is important to realize that in addition to the methods and fields specified
for each object, the object also inherits the public methods and fields of the
base classes. Since all classes extend Object, for example, all objects
have an equals method. Some classes override this method and will
separately document it, but others use the default and do not list it explicitly
in their documentation. In addition, classes that don’t specify any
constructors have default constructors that take no arguments.

The java.lang Package

The java.lang package contains fundamental types that practically all programs will require. Because of
this, the compiler always looks in java.lang to find object names. So while you can write
java.lang.Boolean, you don’t have to do it that way – a simple Boolean will suffice. In addition, you
never have to import the java.lang package since every program imports it anyway.

Many of the classes in this package represent wrappers for the fundamental types (boolean for example). In
addition, you’ll find objects that consist of static members that are more or less global in scope (like Math
or System). Objects that are exceptions are those that derive from Throwable like Exception or Error.

Boolean
The Boolean class provides an object that wraps a basic boolean type. Note that the class does not have a
default constructor.

Base Class: Object

Fields:
static Boolean false – A Boolean object that contains false.
static Boolean true – A Boolean object that contains true.

8: Object Reference

 Page 150 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Constructors:
Boolean(boolean value) – Creates a new object with the specified value.
Boolean(String s) – Creates an object that is true if the string’s value is “true” (the comparison is not
case sensitive).

Methods:
String toString() – Converts the object to a string (true or false).
boolean equals(Object o) – Tests objects for equality.
int hashcode() – Returns the hashcode of the object (1231 if the object value is true, otherwise the
hashcode is 1237).
boolean booleanValue() – Returns the value of the object.
static boolean valueOf(String s) – Returns boolean value of supplied string.

Error
The Error object is the base class for all non-checked exceptions. A non-checked exception is one that can
occur at any time, and the compiler does not require you to catch them (contrast this to checked exceptions,
which generally derive from Exception).

Base Class: Throwable

Common derived classes: OutOfMemoryError

Methods:
String getMessage() – Returns an error message appropriate to the error.

Exception
The Exception object is the base class for all checked exceptions. A checked exception must be explicitly
handled in your code via a try/catch block or by using the throws clause in your method declaration.
Contrast this to non-checked exceptions, which derive from Error. Although all checked exceptions derive
from Exception, not all objects that derive from Exception are checked exceptions. Notably, those that
derive from RuntimeException are not checked.

Base Class: Throwable

Common derived classes: RuntimeException

Methods:
String getMessage() – Returns an error message appropriate to the error.
IllegalArgumentException - The IllegalArgumentException object is what a method throws when it determines
that you have passed an illegal argument to it.

8: Object Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 151

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

IndexOutOfBoundsException
Your program will throw an IndexOutOfBoundsException if you attempt to access an array with an
illegal array index.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

Math
The Math class consists solely of static methods. These methods are effectively global Since you don’t
need to create the Math object to use these methods. For example, to find the absolute value of a number, you
don’t need to instantiate a Math object. Instead, just call Math.abs().

Methods:
static int abs (int a) – Returns the absolute value of the argument.

static int min (int a,int b) – Returns the smallest of a and b.

static int max (int a,int b) – Returns the largest of a and b.

NullPointerException
Your program will throw a NullPointerException if you attempt to access an object reference that is
equal to null.

Base Class: RuntimeException

Methods:
static RuntimeException throwIt() – Throw a run-time exception.

Object
Object is the top-level base class for all objects, even those that don’t explicitly extend anything. Public
methods of Object are available in all objects, since all objects extend Object.

8: Object Reference

 Page 152 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Methods:
boolean equals (Object o) – Compares this object to another object. Returns true only if both
objects are references to the same actual object. Many classes will provide override versions of equals to
make comparisons of the object’s value (e.g., String will test to see if the two strings are equal).

OutOfMemoryError
Your program will throw an OutOfMemoryError if you run out of memory during program execution.

Base Class: Error

Methods:
static OutOfMemoryError throwIt() – Throw a run-time exception.

RuntimeException
The RuntimeException class is the base class for many unchecked exceptions.

Base Class: Exception

Common derived classes: IllegalArgumentException, IndexOutOfBoundsException,
NullPointerException, java.util.NoSuchElementException

Methods:
static RuntimeException throwIt() – Throws a RuntimeException.

String
The String class represents fixed, unchanging, text data. For the Javelin Stamp, strings consist of 8-bit
ASCII bytes. In addition to a constructor, you can form a constant string by simply enclosing characters in
double quotes.

Although you can build a string by concatenating two or more strings, it is a better practice to use
StringBuffer to build a string. Consider this code:

String aString = "Hello ";
String bString = "Parallax";
aString = aString + bString;

Once compiled, this code creates a new aString object and discards the original one. The memory used by
the original aString is lost until the Javelin resets. See StringBuffer for a better way to manipulate and
edit strings at runtime.

Base Class: Object

8: Object Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 153

Constructors:
String() – Creates a new, empty string (length=0).
String(char[] data) – Creates a new string and initializes it from the character array.
String(String s) – Creates a new string with the same contents as s.

Methods:
char charAt(int index) – Returns the character at the specified index (the first character is at index 0).

boolean equalsIgnoreCase (String s) – Returns true if the specified string has the same value
as the string object without considering case.

int length () – Returns the length of the string.

setCharArray(char [] ary) – Sets the character array that contains the string’s characters. The string
will actually use the specified array to hold its characters. It does not make a copy of the characters.

char[] toCharArray () – Converts the string to a character array.

String toString() – Returns the string representation of the string. This is useful for cases where a
generic object reference is really a string.

static String valueOf (int v) – Converts the integer provided into a string. Use this method
judiciously because it creates a new String object each time it is used. You can avoid unwanted String objects
by using the valueOf (int v, String Result) method discussed next.

static String valueOf (int v, String result) – Converts the integer provided into a string,
storing the result in the result argument. The result string must have at least 6 characters in it, or an
exception will occur. Result is a String object of your choosing. You can create one static String that
contains six characters and use it to store each conversion you make. This can really come in hand when
sending numeric messages to a serial device.

Example:

String s = "123";
System.out.println(s.charAt(1)); // prints "2"

8: Object Reference

 Page 154 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

StringBuffer
While the contents of a String can’t change, StringBuffer is changeable. You can use a
StringBuffer to avoid the overhead involved in creating and destroying many string objects when you are
making many changes to the contents of a string. This is especially important for the Javelin Stamp since it
does not have garbage collection.

Base Class: Object

Constructors:
StringBuffer() – Creates a new, empty buffer.
StringBuffer(int length) – Creates a new buffer with the specified length.
StringBuffer(String s) – Creates a new buffer that contains the contents of the specified String
object.

Methods:
StringBuffer append (int [] str, int length) – Appends characters from an array of
characters to the end of the string buffer. The length argument determines how many characters to append.

StringBuffer append(String str) – Adds a string to the end of the buffer.

int capacity () – Returns the current size of the buffer. This is the number of potential characters – the
actual number of characters currently in the buffer may be less.

char charAt (int index) – Returns the character at the specified index. The first character in the
buffer is at index 0.

StringBuffer delete (int start, int end) – Deletes characters from the buffer starting at the
start index, up to, but not including the character at the end index.

StringBuffer insert (int offset, char c) – Inserts a character at the specified offset. The
character originally at the offset, and all characters to the right, move over by one position to make room for the
new character.

int length () – Returns the length of the string currently in the buffer.

String toString () – Converts the buffer to a String.

8: Object Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 155

Example:

StringBuffer sb = new StringBuffer("ATDT");
sb.append(getTelephoneNumber()); //getTelephoneNumber returns String
dial(sb.toString()); //dial expects a String argument

System
The System object holds static items that apply to the system as a whole. It is essentially a holder for
global methods and variables.

Base Class: Object

Fields:
static PrintStream out – A PrintStream used to send data back to the system console on the host
PC.

Example:

System.out.println("Parallax");
Throwable
Throwable is a base class for all exceptions.

Base Class: Object

Common derived classes: Error, Exception

Methods:
String getMessage () – Returns a message appropriate for the exception.

The java.io Package
The java.io package contains the PrintStream class. This is the way that the Javelin Stamp can write
data out to a stream. A stream might be a serial I/O port, or any other input and output device that works with
characters.

8: Object Reference

 Page 156 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

PrintStream

Base Class: Object

Methods:
print (boolean b), print(char c), print(int i), print(String s) – These methods
write the text representation of the argument to the output stream without any additional white space.

println (boolean b), println(int i), println(String s) – These methods write the text
representation of the argument to the output stream followed by a new line character.

The java.util Package
This package has useful classes that are not part of the core language.

Random
The Random object is useful for creating random integers. The random number algorithm uses a seed value.
Two Random objects with the same seed will generate the same sequence of randomly distributed numbers.

Constructors:
Random() – Creates an object with the default seed (a fixed number).
Random(int seed) – Creates an object with the specified seed.

Methods:
int next() – Returns the next number in the random sequence.

Example:

Random r1=new Random();
Random r2=new Random();
Random r3=new Random(139);
int j;
for (j=0;j<100;j++)
 System.out.println(r1.next() + " " + r2.next() + " " + r3.next());

The stamp.util Package
This package has useful classes that are not part of the core language and are not part of ordinary Java.

Expect
Expect allows you to wait for particular input from a Uart object.

8: Object Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 157

Constructors:
Expect() – Default constructor.

Methods:
static boolean string(Uart input, String string, int timeout) – Wait for the
specified string. Returns true on success or false if the timeout expires. The timeout value is in 100us
units.

List
The List object allows you to create and manage an ordered list of items.

Constructors:
List(int maxsize) – Creates a list of objects with the specified maximum size.

Fields:
protected Object[] list – The items in the list.
protected int numObjects – the total number of objects.

Methods:
void add(int index, Object o) – Adds the specified object at a particular position in the list.
void add(Object o) – Adds the specified object to the end of the list.
Object get(int index) – Retrieves the object at the specified position on the list.
int size() – Retrieves the number of objects in the list.

LinkedList
This object allows you to make a linked list of items.

Constructors:
LinkedList() – Default constructor.

Fields:
protected LinkedListItem list – The start of the list.

Methods:
void addItem(LinkedListItem) – Adds the item to the list.
LinkedListItem getFirst() – Retrieves the first item in the list.
LinkedListItem getLast() – Retrieves the last item in the list.
LinkedListItem getNext(LinkedListItem item) – Retrieves the next item in the list.
LinkedListItem getNextLoop(LinkedListItem item) – Retrieves the next item in the list. At
the end of the list, wrap around to the first item in the list.

8: Object Reference

 Page 158 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

void removeItem(LinkedListItem item) – Removes the item from the list. This does not reclaim
the memory the item uses on the heap. If you want to reuse the object, it is up to you to hold a reference to it.

LinkedListItem
This class represents items in a linked list.

Constructors:
LinkedListItem() – Default constructor.

Fields:
LinkedListItem nextItem – The next item in the list.

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 159

The stamp.core Package
When you want to control the Javelin Stamp’s hardware, you’ll turn to the objects in the stamp.core
package. The methods and fields in this package allow you to directly control the Javelin Stamp’s I/O pins. In
addition, you’ll find classes that can treat I/O in special ways (for example, generate PWM or perform RS-232
input and output).

Many of the objects in this package are ordinary objects. However, some are virtual peripherals (VPs). These
VPs operate at the same time your program is running and have special requirements (see Chapter 7 for more
information about VPs).

ADC
The ADC class is a VP that performs a delta sigma analog to digital conversion with the aid of two external
resistors and one external capacitor (see Figure 9.1). This conversion requires two I/O pins, outPin pin sends
pulses and inPin monitors the voltage across the capacitor. The VP attempts to keep the capacitor charged to
2.5 V. Since the input voltage will affect how many pulses the VP has to send to keep the capacitor charged to
that level, the VP can compute what the input voltage is.

Vss

C

R
Analog Input

R
outPin

inPin

Figure 9.1 Circuit for use with ADC VP

The ADC VP updates the voltage measurement every 2.1 ms. Once it determines the voltage on the input, it
stores it until it completes the next conversion is completed.

Base Class: VirtualPeripheral

Constructor
ADC(int inPin, int outPin) – Constructs an ADC object using the specified input pin (inPin) and
output pin (outPin). The VP runs continuously (and consumes one VP slot) until you uninstall it.

Methods
int value() – Returns the value between 0 and 255 that corresponds to the most recently completed
complete analog to digital conversion. 0 corresponds to 0 V and 255 corresponds to 5 V. Since a 5 V scale
maps to an 8-bit measurement (0 to 255) it means that if 2.5 V is measured, value() will return 127, and if
1.25 V is measured, value() will return 63, etc.

9: Javelin Stamp Hardware Reference

 Page 160 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Example
Program Listing 9.1 returns analog values that correspond to the analog input shown in Figure 9.1. The code
listing starts the ADC, waits so there is time for the VP to complete a conversion, and then displays the reading.
Use the following values and I/O pin connections:

• R = 10 kΩ
• C = 1.0 µF
• inPin = P9
• outPin = P8
• Analog Input: For those of you with a variable DC supply, give it a try. You can also try 1, 2, and 3

AAA batteries in series. Connect the negative terminal of the battery or series of batteries to Vss and
the positive terminal to the circuit’s analog input. You can also use a potentiometer as a voltage
divider to generate variable voltage.

Program Listing 9.1 - ADC Demo
import stamp.core.*;

public class ADCDemo {

public static void main() {
ADC adc = new ADC(CPU.pin9,CPU.pin8);
CPU.delay(1000); // wait to acquire a value
System.out.println(adc.value());

}
}

Button
The button class allows you to easily read pushbuttons connected to the Javelin Stamp’s input pins as shown
in Figure 9.2. The class handles debouncing a mechanical switch, and can optionally provide auto repeat after a
configurable delay.

Figure 9.2
Circuit for use

with button PB Switch

Vss

Vdd

10 k

pin

PB Switch

Vss

Vdd

10 k

pin

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 161

 upState = true upState = false

The button object is typically used inside a loop. The autorepeat feature works by detecting that the
switch is active for a certain number of iterations through the loop. You can assign either a 1 or a 0 to specify if
the button is up. When the button is down longer than the debounce period, buttonState returns
BUTTON_DOWN. On subsequent calls, it will return BUTTON_STILL_DOWN until the repeat delay, if one was
specified, is satisfied. Each call to buttonState while the button is down will count against the repeat
delay. When the program has called buttonState the requisite number of times (and the button has not
gone up), buttonState will return BUTTON_AUTO_REPEAT. On subsequent calls, it will return
BUTTON_STILL_DOWN until the number of calls satisfies the repeat rate setting. Then, buttonState
returns BUTTON_AUTO_REPEAT again and resets the repeat rate count. Of course, when the button goes to
the up state for at least the debounce period, buttonState always returns BUTTON_UP and resets the repeat
counters. You don’t have to specify an autorepeat delay or rate if you don’t want the button to repeat.

Base Class: Object

Fields:
static int BUTTON_AUTO_REPEAT – Constant indicating that the button repeated.

static int BUTTON_DOWN – Constant indicating that the button is down for the first time.

static int BUTTON_STILL_DOWN – Constant that indicates that the button was down, and is still down.

static int BUTTON_UP – Constant indicating that the button is not down.

int debounceDelay – The time constant for debouncing the switch. This delay is specified in 100us units.
A value of 250 (25 ms) is typical.

int repeatDelay – Number of loop iterations the button must be down before repeating starts.

int repeatRate – Number of loop iterations between BUTTON_AUTO_REPEAT indications.

Constructors:
Button(int pin, boolean upState) – Creates a button on the specified pin (for example,
CPU.pin5). The buttons default state is specified by upstate. So if the switch is normally open to ground, and
there is a pull up resistor on the input pin, you’d specify true for this parameter.

Button(int pin, boolean upState, int repeatDelay, int repeatRate) – Creates an
autorepeating button. The first two parameters are the same as for the first constructor. The last two parameters
set the repeat delay and rate.

9: Javelin Stamp Hardware Reference

 Page 162 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Methods:
int buttonState() – Returns BUTTON_UP, BUTTON_DOWN, BUTTON_STILL_DOWN, or
BUTTON_AUTO_REPEAT to reflect the current state of the button.

Example:
Here is a simple program that monitors a button on pin 15. Each time you press the button, the LED on pin 14
changes state.

Figure 9.3
Circuit for use

with button
example

PB Switch

Vss

Vdd

10 k

P15

Program Listing 9.2 - Button Demo

import stamp.core.*;

public class ButtonTest{
public static void main() {

Button blueButton = new Button(CPU.pin15, true, 5000, 10);
int lastState = Button.BUTTON_UP;
System.out.println("Press & release button.");
System.out.println("Monitoring button state...");

while (true) {
int state = blueButton.getState();

if (blueButton.buttonDown())
System.out.println(" ");

if (state != lastState) {

System.out.print("State: ");
switch (state) {
case Button.BUTTON_UP:
System.out.println("BUTTON_UP");
break;

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 163

case Button.BUTTON_DOWN:
System.out.println("BUTTON_DOWN");
break;

case Button.BUTTON_AUTO_REPEAT:
System.out.println("BUTTON_AUTO_REPEAT");
break;

case Button.BUTTON_DEBOUNCE:
System.out.println("BUTTON_DEBOUNCE");
break;

default:
System.out.println("** Unknown state ***");
break;

}

lastState = state;
}

}
} //end main

} // end class declaration

CPU
The CPU class contains specific calls to help you manage the Javelin Stamp processor resources, including I/O
pins. All the members of CPU are static, so you don’t need to create an instance of the object – you simply call
the members, as needed.

Base Class: Object

Fields: static int MAX_NUM_VPS – The maximum number of virtual peripherals allowed (6 in the
standard version). You can use this to make your software aware of how many VPs are allowed.

static int pin0, pin1, pin2, pin3, pin4, pin5, pin6, pin7, pin8, pin9, pin10, pin11,
pin12, pin13, pin14, pin15 – These constants allow you to access the pins of the Javelin Stamp when
using methods like readPin and writePin. If you wish to use sequential numbers to access pins, use the
pins array.

static int[] pins – This array contains the pin constants (e.g., pin0, pin1, etc.) in sequence. This is
useful if you want to access bits in a loop. For example:
for (int i=0;i<pins.length;i++) CPU.writePin(pins[i],true);

static int POST_CLOCK_LSB, POST_CLOCK_MSB, PRE_CLOCK_LSB, PRE_CLOCK_MSB –
Constants for use with the shiftIn and shiftOut methods. See the description for shiftIn and
shiftOut (below) for more details.

9: Javelin Stamp Hardware Reference

 Page 164 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

public static final int PORTA - A constant representing the first I/O port on the Javelin Stamp.
This port contains pins 0-7.

public static final int PORTB - A constant representing the second I/O port on the Javelin Stamp.
This port contains pins 8-15.

Methods:

carry
static boolean carry() – This method returns the internal carry bit’s state. After a 16-bit addition or
subtraction, this flag will be set if a carry or borrow occurred. For example, here is a 32-bit addition routine:

int[] word0 = new int[2];
int[] word1 = new int[2];
word0[0]=0x5aaa;
word0[1]=0x0020; // 205aaa
word1[0]=0x7999;
word1[1]=0x00FF; // 00ff7999

// compute word1=word1+word0
word1[0]=word1[0]+word0[0];
if (CPU.carry()) word1[1]++;
word1[1]=word1[1]+word0[1];

// compute word1=word1+word0 again
word1[0]=word1[0]+word0[0];
if (CPU.carry()) word1[1]++;
word1[1]=word1[1]+word0[1];

Be careful when mixing carry with other expressions, you can’t be sure which the compiler will do first. For
example, this would be a bad idea:

word1[1]=word1[1]+word0[1]+CPU.carry()?1:0;

The carry call in this case might reflect the carry of the addition that occurs on the same line instead of the
previous addition.

count
static int count(int timeout, int pin, boolean edge) – This method counts transitions
(or edges) sensed on the specified pin. The timeout parameter sets the amount of time the Javelin Stamp will
examine the pin (in 100us units). The pin argument determines the pin number to use (e.g., CPU.pin0 or
CPU.pins[3]). Finally, the edge parameter determines if the Javelin Stamp should count rising edges
(true) or falling edges (false).

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 165

Example:

Count falling edges for 200 ms on P10

CPU.count(2000, CPU.pin10, false);

delay
static void delay(int period) – The delay method pauses program execution for the specified
period in 100us units. For example, to delay for 2 seconds, you’d use a period of 20,000. Executing a
delay does not affect the execution of virtual peripherals. Although the delay call accepts signed integers, it
treats them as unsigned numbers. So setting period to –1, for example, will delay for 65535 time units. If
you need a delay greater than 32767 units, you can left shift a variable to obtain the delay you want.

Example:
int dlytime;
dlytime=30000;
System.out.println(“3 second delay”);
CPU.delay(dlytime);
System.out.println(“6 second delay”);
CPU.delay(dlytime << 1); // 60000 x 100us = 6 sec
System.out.println(“done”);

You can not however, use a constant because the compiler will pre-compute the result and you’ll get an error
since 60000 exceeds the size of a normal signed integer.

installVP
static void installVP(VirtualPeripheral vp) – When you create a virtual peripheral object,
it will typically install itself. However, you can also use this method to install a VP manually. This might be
useful if you’ve previously unloaded the VP with removeVP and want to reinstall it.

Example:

The example accompanying the removeVP method showed how to remove a VP named pwm to make room
for some other VP. Let’s say that the VP you want to replace pwm with is a DAC object named dac. This
example also assumes that the dac object has already been declared and removed once. Reinstalling the dac
object involves installVP plus reassigning it a value:

DAC dac = new DAC(CPU.pin2);
dac.update(125);
CPU.removeVP(dac);

// Later in the program after pwm was installed and removed...
CPU.installVP(dac);

9: Javelin Stamp Hardware Reference

 Page 166 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

dac.update(125);

message
static void message(char [] data, int length) – Sends a message to the Messages from
Javelin window. Note that the text is a char array, not a string. You can use String.toCharArray if you
want to provide text in a String object. You can also use System.out.println to send strings to the
Messages from Javelin window.

Example:

char [] characters = {'a', 'b'};
CPU.message(characters,2);
String s = "CDE";
CPU.message(s.toCharArray(),3);

nap
static void nap(int period) – Places the processor in a low power sleep state. All operations cease
while the Javelin is napping.

The Javelin Stamp can only call nap as a foreground process with no
background processes running. Before calling this method, you must use
VirtualPeripheral.removeItem to uninstall any VPs that are
installed. See example below.

The period argument can range from 0 to 7, depending on how long you want to the Javelin Stamp to nap
(see below). However, the nap time is only approximate and should not be used for timing where accuracy is
required. The primary reason you’ll use nap is to conserve power when operating the Javelin from batteries.
Here are the values for the period argument:

0 – 16 ms
1 – 32 ms
2 – 64 ms
3 – 128 ms
4 – 256 ms
5 – 512 ms
6 – 1024 ms
7 – 2048 ms

Example:

System.out.println(“Time to take about a 2-second nap”);
CPU.nap(7);

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 167

System.out.println(“Nap completed.”);

pulseIn
static int pulseIn(int timeout, int portPin, boolean pinState) – This method
measures a pulse using a 8.68us timer. You can specify a maximum amount of time for this command to run
(again, using 8.68us units) with the timeout parameter. The portPin parameter specifies which pin to
monitor (for example, CPU.pin0). If the pinState parameter is true, the method measures a high pulse,
otherwise it looks for a low pulse.

Example:

// Count rising clock edges for 173.6 µµµµs.
int pulseValue = CPU.pulseIn(20000, CPU.pin0, true);

The Javelin Stamp will not exceed the timeout value while executing this command. Suppose you set the
timeout parameter to 100 (8.68 us). If the Javelin Stamp waits for 500us and senses a pulse, it will still
terminate this command after 868 us, even if the pulse is not complete. In this case, the return value will be –1,
indicating that no stop edge was detected. If no starting edge occurs during the timeout period, the method
returns 0. Obviously, pulses shorter than 8.68us may escape detection.

The return value and the timeout value are actually unsigned. Even though integers nominally range only to
32767, these values actually extend beyond, but the compiler treats them as negative numbers. There are
several ways to deal with this problem. One easy way is to use shifts, but it does cut your timing resolution in
half. For example, suppose you want to wait for 195.3 ms. This corresponds to a timeout argument of 45000
– too big for a signed integer. However, what if you pretended, the actual resolution was not 8.68us, but double
that (8.68 us). Now the timeout argument for 195.3 ms would be 22500 – an acceptable number.

Of course, the resolution is 8.68us, so you would have to double the timeout value using a shift. You can’t,
however, use a constant, because the compiler is smart enough to pre-calculate the constant and will detect it is
“too big”. For example:

int time_out = 22500;
int pulsed = CPU.pulseIn(time_out << 1, CPU.pin0, true); // wait 390.6mS

However, you can not write:

CPU.pulseIn(22500 << 1, CPU.pin0, true);

The output in this case, might also be negative, indicating the pulse was longer than 142.2ms. Simply shift the
result right, and again, pretend the resolution is 8.68us. For example, suppose the above example detected a
pulse of 173.6 ms (40000). This will show up as a negative number (-255). However, you can shift it down to
use 8.68us units:

9: Javelin Stamp Hardware Reference

 Page 168 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

pulsed=pulsed>>>1;

If you don’t want to lose resolution, you’ll need to analyze the results as a binary number. For example, using
the & operator, you can strip the most significant bit (the sign bit). This will provide the amount over 32768.
For example:

System.out.println(pulsed & 0x7FFF);

If pulsed contained 40000 (173.6 ms) the display would show 7232 (40000 minus 32768).

Figure 9.4
pulseIn

Measurements

Vdd = 5 V

Vss = 0 V

pin

length

Vdd = 5 V

Vss = 0 V
pin

length
 (a) pinState = true (b) pinState = false

Example
This method takes three arguments: a time out duration, a pin number, and a boolean that indicates if you are
looking for a one pulse (true) or a zero pulse (false).

Program Listing 9.3 - Pulse Class 1
import stamp.core.*;

public class PulseClass1 {
static int n;
public static void main() {

while (true) {
n = CPU.pulseIn(32767,CPU.pin14, false);
System.out.println(n);

}
}

}

pulseOut
static void pulseOut(int length, int portPin) – When you call pulseOut, the Javelin
Stamp inverts the state of the specified portPin (for example, CPU.pin0) and holds it in that state for the
time you specify in length. The length argument is in terms of 8.68 us units and is unsigned (see the
discussion under pulseIn for more information on dealing with unsigned numbers). A positive pulse is a
low-high-low sequence as shown in Figure 9.5a while a negative pulse is a high-low-high sequence as shown in

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 169

Figure 9.5b. If you want to deliver a positive pulse, set the pin low (false) first using CPU.writePin.
Likewise, if you want to deliver a negative pulse, set the pin high (true) first using CPU.writePin.

Figure 9.5
pulseOut Pulses

Vdd = 5 V

Vss = 0 V

pin

length Vdd = 5 V

Vss = 0 V
pin

length
 (a) Positive Pulse (b) Negative Pulse

rcTime
static int rcTime(int timeout, int portPin, boolean pinState) – This method
measures the amount of time required for the pin you specify to reach a desired state. The time and the
timeout parameter are in 8.68 µs units. The portPin argument is one of the pin constants (like
CPU.pin0), and pinState is the desired ending state (true or false). If the pin does not reach the
specified state before the time out expires, the call returns –1.

The rcTime method is useful in applications where you want to measure the charge or discharge of an RC
(resistor/capacitor) network. You might want to do this, for example, to read a potentiometer, a thermistor, or
any resistive or capacitive sensor.

When rcTime executes, it starts a counter that increments every 8.68 µs. It stops this counter as soon as the
specified pin reaches pinState. If portPin is not in the opposite of pinState when the instruction is
executed, rcTime returns 1, since the instruction requires one timing cycle to discover this fact. If pin remains
in the opposite of pinState longer than the number of 8.68 µs timing cycles specified in the timeOut
argument, rcTime returns 0.

Figure 9.6 RCTime circuits for recommended

R

C

Vdd

Vss

portPin
220

R

C

Vdd

Vss

portPin
220

9: Javelin Stamp Hardware Reference

 Page 170 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

(a) circuit for use with a
pinState of false

(b) circuit for use with a
pinState of true

Before rcTime executes, the capacitor must be put into the state specified in the call. For example, with
Figure 9.6a, the capacitor must be discharged until both plates of the capacitor approach 5 V using:

CPU.writePin(CPU.pin4, true);
CPU.delay(1000);

Then, you can call the rcTime method. Assuming i is an int value, you can use:

i = CPU.rcTime(32767,CPU.pin4,false); // timeout of 284 ms

It may seem counterintuitive that discharging the capacitor is accomplished by sending a true signal, but
remember that a capacitor is charged when there is a voltage difference across its plates. When both plates are
in the neighborhood of 5 V, there is almost no voltage across the plates, so it is considered discharged. When
the rcTime method is called, the portPin that was output-true changes to input. The rcTime method then
records the time it takes for the voltage at the capacitor’s lower plate to cross the I/O pin’s 2.5 V (true-false)
logic threshold.

Using rcTime is very straightforward, except for one detail: For a given R and C, what value will rcTime
return? It’s easy to figure, based on a value called the RC time constant or tau (τ) for short. You can compute
tau by simply multiplying R (in ohms) by C (in farads):

τ = R × C

The general RC time formula tells you the time required for an RC circuit to change from one voltage to
another:

time = τ(ln(Vbegin/Vend))

In this formula ln is the natural logarithm; it’s a key labeled ln on most scientific calculators. Vbegin is the
starting voltage, while Vend is the ending voltage. Assume you’re interested in a 10 kΩ resistor and 1.0 µF cap.
Calculate τ:

τ = (10 x 103) x (1.0 x 10-6) = 10 x 10–3

The RC time constant is 10 x 10-3 or 10 milliseconds. Now calculate the time required for this RC circuit to go
from 5 V to 2.5 V.

10 × 10 –3 × ln(5/2.5) = 6.93 × 10-3

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 171

In RCTime units of 8.68 µs, that time (6.93 × 10-3) works out to 798.4 ≈ 800 units. Since Vbegin and Vend don’t
change, we can use a simplified rule of thumb to estimate rcTime results for circuits like the one in Figure 9.6
(a) and (b):

rcTime units ≈ 800 × R (in kΩ) x C (in µF)

Another handy rule of thumb can help you calculate how long to charge or discharge the capacitor before
rcTime. A given RC charges or discharges 98 percent of the way in 4 time constants (4 x R x C). In Figure
9.6, the charge/discharge current passes through the 220 ohm series resistor and the capacitor. So if the
capacitor were 1.0 µF, the minimum charge/discharge time should be:

Charge time = 4 x 220 x (1.0 x 10-6) = 880 x 10-6

It takes only 880 µs (about 1 ms) for the capacitor to charge/discharge. In practice, you could set the pin true
and delay for 1 ms to be safe. Here is a code snipped that would work for the rcTime circuit from Figure 9.6.

A couple of final notes about Figure 9.6. You may be wondering why the 220 ohm resistor is necessary at all.
Consider what would happen if resistor R were a potentiometer adjusted to 0 Ω. When the I/O pin went high to
discharge the cap, it would see a short direct to ground. The 220 Ω series resistor limits limit the short circuit
current to 5 V/220 Ω = 23 mA and protect the Javelin Stamp from damage.

The 220 Ω resistor also forms a voltage divider with the 10 kΩ resistor that prevents the voltage from ever
getting to 5 V. The formula for calculating the voltage divider created by the two resistors in Figure 9.6 (a) is:

21

2

RR
RVV DDdivider
+

=

Given values of R1 = 220, R2 = 10 k, and VDD the true value of Vbegin works out to:

VVVV dividerbegin 89.4
000,10220

000,105 =

+

==

The return value and the timeout parameter are actually unsigned integers. See the above discussion for
pulseIn for more details about using unsigned parameters.

readPin
static boolean readPin(int portPin) – Use readPin to determine the state of an input pin.
The pin is forced to an input if it isn’t already set to input. To use readPin use a port number like

9: Javelin Stamp Hardware Reference

 Page 172 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

CPU.pin0. If you want to access the pin by its number, use the pins array (as in CPU.pins[2], for pin 2,
for example).

Example:

Let’s assume that you have already declared a boolean variable called valueP5 using:

boolean valueP5;

You can use readPin to load the logic value seen by P5 into the int valueP5 using the command:

valueP5 = CPU.readPin(CPU.pin5);

You can also display the value of P5 in the Messages from Javelin window using:

System.out.println(CPU.readPin(CPU.pin5));

readPort
public static byte readPort(int port) - Read the value on a port. Read the value currently on
a port.

Parameters:
port - the port to read. Can be either P0 through P7, which is CPU.PORTA, or P8-P15, which is
CPU.PORTB.

Returns:
The value on the port. This value is a binary number that corresponds to the values seen at the I/O pins.

Examples:

If you have an 8-bit parallel device connected to PORTB (P8-P15), you can load the data from the parallel
device using readPort. Let’s say you declared a variable named parallelData earlier in the program,
and you want to load the 8-bit value transmitted by the parallel device into this variable, simply use:

int parallelData;
parallelData = CPU.readPort(CPU.PORTA);

Let’s say that you have a four bit parallel device that is sending data to P4-P7. You can read the value by using
readPort. Let’s also say that you want to load this value into the lower four bits of an int variable named
nibble that you declared earlier in the program.

int nibble;

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 173

nibble = CPU.readPort(CPU.PORTA);

Your nibble variable now contains the entire contents of PORTA. You can use the >> operator to shift the
contents of nibble four binary slots to the right, for example:

nibble = CPU.readPort(CPU.PORTA) >> 4;

You can also use the & operator to mask data. For example, if you want the 4 bits to stay in bits 4-7 of your
nibbleP4_7 variable, you can do this:

nibble = CPU.readPort(CPU.PORTA) & 0x00F0;

Keep in mind that if you do not apply the mask (or shift the data to the right by four bits), nibble will contain
the data read from I/O pins P0 through P3 along with the data you want.

removeVP
static void removeVP(VirtualPeripheral vp) – Virtual peripherals typically install themselves
when you instantiate them. You can use removeVP to unload a currently executing VP. You can have up to
six VPs running at any given time, but your program may make use of more than six VPs. You can use this
method to remove a VP that you want to halt. You can then load a different VP (or re-load the same one) using
the installVP method.

The VP halts immediately when using removeVP. This could cause a Uart object to stop sending mid-byte
or a PWM object to halt in the middle of the true part of its signal when you wanted the PWM signal to go to a
false resting state. Keep this in mind when writing your code. For example, you can use the
Uart.byteAvailabe method to make sure the Uart’s buffer is empty before removing the VP. Likewise,
you can use CPU.writePin to make sure the I/O pin is false before moving on.

Example:

Let’s say you created a PWM object named pwm, and that you have all six VP slots in use. You can remove the
pwm VP to make room for another VP using:

// Earlier in the program, the pwm object is loaded.
PWM pwm = new PWM(CPU.pin9, 100, 200);

// Later in the program it is removed to make room for a different VP
CPU.removeVP(pwm);

See the installVP method for information on adding a VP.

9: Javelin Stamp Hardware Reference

 Page 174 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

setInput
public static void setInput(int portPin) - Make a pin an input. The specified pin will be
converted to an input. More than one pin can be specified using the + operator, as long as all pins are on the
same port (P0 through P7 or P8 through P15).
Parameters:
portPin - the pin to make into an input.

Note, if you want to change an I/O pin back to an output, use CPU.writePin.

Examples:

Lets’ say you want to change P15 from output to input, just use:

CPU.setInput(CPU.pin15);

You can toggle more than one I/O pin from output to input using the + operator. For example, if you want to
change P5, P6, P7, P8, and P9 from output to input, keep in mind that you are dealing with two different ports.
Use two separate commands:

CPU.setInput(CPU.pin5 + CPU.pin6 + CPU.pin7);
CPU.setInput(CPU.pin8 + CPU.pin9);

shiftIn
public static int shiftIn(int dataPortPin, int clockPortPin, int bitCount,
int mode)

The shiftin method is used to read data from a synchronous serial device. The clockPortPin is used to
send clock pulses to the synchronous serial device. The dataPortPin is used to read the binary output
values sent by the synchronous serial device in response to each clock pulse. If the dataPortPin is set to
output before the method is called, shiftIn will change the dataPortPin to input and leave it that way.
Likewise, if the clockPortPin is set to input before the method is called, shiftIn changes the
clockPortPin to output and leaves it that way. The initial output state of clockPortPin will determine
the polarity of the pulses delivered. If the clockPortPin is set to false before the method is called, the
pulses will be positive (false – true – false). Occasionally, you will find a synchronous serial device that
requires negative pulses. You can deliver negative pulses by setting the clockPortPin to true before
calling the shiftOut method. Then the clock pulses will be negative (true – false – true). The mode
parameter selects pre/post clock sampling as shown in Figure 9.7. The figure also shows the pulse durations,
which are th = 8.68 µs and tl = 17.36 µs.

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 175

Figure 9.7 shiftIn PRE/POST_CLOCK_LSB/MSB

th

Clock
(Cpin)

Data
(Dpin)

-t-l

-pre modes
sample data
before
clock pulse

1st

-post modes
sample data
before
clock pulse

2nd

Post clock sampling makes more sense at first glance since the pulse is applied, then the data value is checked.
On the other hand, when pre-clock sampling is used, the dataPortPin is sampled to obtain the first data bit
before delivering any pulses on clockPortPin. The most common reason that a data bit is already available
is because the last pulse from a previous shiftOut call caused the first data bit to appear at the synchronous
serial device’s output. Keep this in mind if you are using a device that requires a write (shiftOut) prior to a
read (shiftIn). In some cases, the device must be read without first being written to. You can apply an extra
pulse simply by modifying the bitCount to request an extra bit, then use post clock sampling. Note that the
bitCount can be set to higher than 16 (up to 256) if desired. When a number greater than 16 is used, only the
last 16-bits will be returned.

Parameters:
dataPortPin - I/O pin that reads the data sent by the peripheral device.
clockPortPin - I/O pin that delivers clock pulses to the external device.
bitCount - the number of binary values to be shifted in (from 1 to 16). bitCount must not be 0.
mode - the shifting and clocking mode to employ. This parameter is used to tell the Javelin Stamp whether the
binary values read by the dataPortPin are sent in ascending order starting with the least significant bit
(LSb-first) or in descending order starting with the most significant bit (MSb-first). The clocking mode also
determines whether the data is sampled before or after the first clock transition. The mode arguments are
summarized in Table 9.1.

9: Javelin Stamp Hardware Reference

 Page 176 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Table 9.1: shiftIn Mode Arguments
Field Mode Function

CPU.POST_CLOCK_LSB Post-clock sampling and LSB-first transmission
CPU.POST_CLOCK_MSB Post-clock sampling and MSB-first transmission
CPU.PRE_CLOCK_LSB Pre-clock sampling and LSB-first transmission
CPU.PRE_CLOCK_MSB Pre-clock sampling and MSB-first transmission

Returns:
This method returns an int value that contains the bits that were received by the data pin. The result contains
bitCount bits and is justified according to the mode setting. If MSb-first (CPU.POST_CLOCK_MSB or
CPU.PRE_CLOCK_MSB) is chosen, the data will be shifted left into the least significant bit, and the data bits
will be right justified. For example, if four bits (the binary value 1011) are shifted in, they will be loaded into
an int value as: 0000000000001011.

If LSb-first (CPU.POST_CLOCK_LSB or CPU.PRE_CLOCK_LSB) is chosen, the data will be shifted right
into the most significant bit, and the data will be left justified. Let’s take a look at shifting in the same four bits
(binary 1011) again. This time, your int value would contain: 1011000000000000. Instead of a small positive
number, you would end up with a large negative number. The >> operator is used to shift the contents of the
int value twelve more bits to the right using >>12 to get the LSb where it should be in the rightmost bit. The
final result is then 0000000000001011.

Examples:
Here are a few code snippets that demonstrate how to use the shiftIn method. For executable code
examples, see Communicating with Peripheral ICs section of Chapter 4. The first statement uses writePin to
set the I/O pin delivering the clock signal to false. This causes the shiftIn method to deliver positive pulses.

// Initialize clock pin
CPU.writePin(CPU.pin5, false);

The shiftIn method call shown below uses the CPU.PRE_CLOCK_MSB mode. The data is shifted in MSb-
first, and it is already “right justified”. This means the data does not have to be shifted any further to correct the
value even though only 8-bits were shifted into value.

int value;
//…
// Shift in data
value = CPU.shiftIn(CPU.pin6, CPU.pin5, 8, CPU.PRE_CLOCK_MSB);

This next shiftIn call shifts in a 9-bit value from a DS1620. Remember, if you are shifting a value that’s
less than 16 bits and storing it in a variable using either CPU.POST_CLOCK_LSB or CPU.PRE_CLOCK_LSB,

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 177

you have to use the >> operator to “right justify” the value. Before storing the value in the tempIn field,
the value was shifted right by another 7-bits using the >> operator.

int tempIn;
// …
// Shift in 9-bits then shift right by another 7-bits
tempIn = (CPU.shiftIn(CPU.pin6,CPU.pin5,9,CPU.POST_CLOCK_LSB) >> 7);

shiftOut
public static void shiftOut(int dataPortPin, int clockPortPin, int
bitCount, int mode, int data)

The shiftOut method sends data to a synchronous serial device by making a data value available on the
dataPortPin then applying a clock pulse on the clockPortPin as shown in Figure 9.8. The durations
shown in the figure are th = ta = tb = 8.68 µs, and tl = 17.36 µs. The number of data values sent is determined by
bitCount. The mode determines whether the most significant bit (MSb) or the least significant bit (LSB) is
sent first. The data parameter is the int field that contains the value to be transmitted to the synchronous
serial device.

Figure 9.8 shiftOut
PRE/POST_CLOCK_LSB/MSB

Both the dataPortPin and clockPortPin are changed to outputs when the shiftOut method is called,
and they remain outputs after the method is executed. The initial output state of clockPortPin determines
the polarity of the pulses delivered. If the clockPortPin is set to false before the method is called, the
pulses will be positive (false – true – false). Occasionally, you will find a synchronous serial device that
requires negative pulses. You can deliver negative pulses by setting the clockPortPin to true before
calling the shiftOut method. Then the clock pulses will be negative (true – false – true).

9: Javelin Stamp Hardware Reference

 Page 178 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Note: If you are shifting out less than 16-bits using CPU.SHIFT_MSB, make sure to shift your valid data to the
left using the << operator. See the examples below.

Parameters:
dataPortPin - I/O pin that sends the data to the peripheral device.
clockPortPin - I/O pin that delivers clock pulses to the peripheral device.
bitCount - the number of binary values to be shifted in (from 1 to 16). bitCount must not be 0.
mode - the shifting mode to employ. The mode specifies whether to shift the data MSb first using
CPU.SHIFT_MSB or LSb first using CPU.SHIFT_LSB.

Examples:
The code snippets below demonstrate using the shiftOut method. For executable code examples, see
Communicating with Peripheral ICs section of Chapter 4.

Before calling shiftIn, remember to initialize the value of the clockPortPin using CPU.writePin, for
example:

// Initialize P1 for delivering positive pulses.
CPU.writePin(CPU.pin1, false);

Let’s say the int value number stores the value 254. In terms of an int field, this is really the decimal
number +00254, which will appear as a hexadecimal value 0x00FE if viewed with the Debugger. In binary, this
value is: 0000000011111110. If you want to shift LSb-first using CPU.SHIFT_LSB, the data is ready to be
justified to the right, so simply use the shiftOut method.

int number = 254;
CPU.shiftOut(CPU.pin0,CPU.pin1,8,CPU.SHIFT_LSB,number);

If you are shifting out MSb-first using CPU.SHIFT_MSB, the value needs to be first shifted left by 8-bits using
the << operator. Otherwise, all that will get shifted out are the leading zeros. After the << shift, your binary
value will be 1111111000000000. Now the correct values will be shifted out when shiftOut is called.

CPU.shiftOut(CPU.pin0, CPU.pin1, 8, CPU.SHIFT_MSB, number <<8);

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 179

Figure 9.9 shiftOut example using the 74HC595

74HC595

To P0

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

Vss

LEDs 470 (all)Ω
Vdd

Vdd

Vss

To P2

To P1

Program Listing 9.4 - Using shiftOut on 75xx595 shift register
import stamp.core.*;

public class Shift74595 {

final static char HOME = 0x01;
final static int DATA_PIN = CPU.pin0;
final static int CLOCK_PIN = CPU.pin1;
final static int PULSE_595 = CPU.pin2;

static void write595(int number){
CPU.shiftOut(DATA_PIN, CLOCK_PIN, 8, CPU.SHIFT_MSB, number <<8);
CPU.pulseOut(5,PULSE_595);

} // end write595

public static void main() {

CPU.writePin(PULSE_595,false);
CPU.writePin(CLOCK_PIN,false);

while(true){

for (int i = 0; i <= 255; i++){
write595(i);
CPU.delay(2500);

} // end for
} // end while

9: Javelin Stamp Hardware Reference

 Page 180 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

} // end main
} // end class

writePin
public static void writePin(int portPin, boolean value) - Set a pin to a logic state.
Makes the selected pin high or low as selected by the value parameter. If the pin is an input then it will be
changed to be an output and remain as an output when complete.

Parameters:
portPin - the I/O pin to write.
value - the state the set the pin to.

Examples:
You can change the state of one pin or of multiple pins on the same port (P0-P7 or P8-P15).

// Set P5 to output-true.
CPU.writePin(CPU.pin5, true);

//Set P11 and P15 to output-false.
CPU.writePin(CPU.pin11 + CPU.pin15, false);

writePort
public static void writePort(int port, byte value) - Output a value onto a port. The
lower 8 bits of value will be written to the port. Pins on the port will not be converted to outputs first. This
method does not affect the direction of the port. It will disturb any virtual peripherals which are using the port.

You can use this method to change the output values of groups of I/O pins on a given port. Since this does not
change the direction of an I/O pin, I/O pins that are inputs remain inputs. You can use this method to write
values to PORTA (I/O pins P0 through P7) or PORTB (I/O pins P8-P15).

Parameters:
port - the port to control. Can be either CPU.PORTA, or CPU.PORTB.
value - the value to write to the port (true or false).

Examples:
Let’s say that P4 and P5 are inputs, and the rest of the I/O pins on CPU.PORTA are outputs (P0-P3 and P6-P7).
If you want to set all the I/O pins that are already outputs to true regardless of their current state, you can use
this command:

CPU.writePort(CPU.PORTA, (byte)0xFF);

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 181

Since 0xFF is binary 11111111, it writes binary 1s to all CPU.PORTA. This sets all the I/O pins that are
already outputs to true. Since writePort does not make any changes to the I/O pin’s, direction, the I/O pins
that were inputs, are still inputs.

Let’s say that now you want to change the output values of P0 through P3 to false. But leave the upper I/O
pins true. You can do this using 0xF0, which corresponds to binary 11110000.

CPU.writePort(CPU.PORTA, (byte) 0xF0);

DAC
The DAC class is a VP that performs single bit digital to analog conversion with the aid of an external resistor
and capacitor (see Figure 9.10). The DAC generates a train of pulses that the resistor and capacitor integrates
into a constant voltage. The values or R and C depend on the application. The example code works fine with
values of:

• R = 1 kΩ
• C = 1 µF

When R × C is larger, the voltage will be steadier, but it will respond less quickly when you want to change it.
When R × C is smaller, the output voltage will respond more quickly but you will see more fluctuations in the
analog voltage because of the pulses that are delivered to maintain that voltage. In general, it’s better to place
an op-amp in between the analog output if you plan on driving a load that has any appreciable current draw. If
the current draw is small, yet appears to have an effect, use a larger value of C, which will store more electrons
to supply the small current draw.

Figure 9.10
Circuit for use with

DAC object

 Vss

C

pin
R

Analog Output

DAC is really s special case of PWM. DAC is designed to allow the Javelin Stamp (a purely digital device) to
generate an analog voltage. The basic idea is this: If you make a pin output high, the voltage at that pin will be
close to 5 V. Output low is close to 0 V. What if you switched the pin rapidly between high and low, so that it
was high half the time and low half the time? The average voltage over time would be halfway between 0 and
5—2.5 V. This is the idea behind DAC; that you can produce an analog voltage by outputting a stream of digital
1s and 0s in a particular proportion. The proportion of 1s to 0s in DAC is called the duty cycle. The duty cycle
controls the analog voltage in a very direct way. The higher the duty cycle the higher the voltage. In the case
of the Javelin Stamp, the duty cycle is the ratio between the high time and the low time. To determine the

9: Javelin Stamp Hardware Reference

 Page 182 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

proportional PWM output voltage, use this formula: (highTime/(lowTime+highTime)) * 5 V. For example, if
highTime is 49 and lowTime is 13, the duty cycle is 0.79. The output, then, is .79*5 V = 3.95 V.

Base Class: VirtualPeripheral

Constructors
DAC(int pin) – Creates a DAC object that uses the specified pin.

Methods
void update(int value) – Sets the DAC’s output. The value argument must be between 0 and 255.

Example: See the Digital to Analog Conversion section of Chapter 4.

Once you set the DAC it continues to output the requested voltage until you change it or until you stop or
remove the VP. The example below cycles the output voltage from 0 to 5V in a steady ramp.

EEPROM
The Javelin Stamp contains an EEPROM onboard that stores your program. You may use unused portions of
EEPROM to write data that persists even when the Javelin Stamp loses power. Like all EEPROMs, there is a
limit to how many times you can write to the EEPROM before it will fail (usually in the neighborhood of 1
million cycles).

Although 1 million writes sounds like a lot, you should be careful when writing programs that take advantage of
EEPROM. For example, if you wrote a data logging program that wrote to the same EEPROM cell every
second, you’d write 1 million times in less than 12 days. Even at once a minute, you could wear out the
EEPROM in less than 2 years.

EEPROM storage is best for configuration options and other data that does not frequently change.

The Javelin Stamp organizes its EEPROM so that address 0 is always in the same place regardless of the
program you have loaded. This allows you to load the EEPROM with values using one program and retrieve
them with another program you load later. Of course, when you share EEPROM like this, the largest program
determines the maximum address you can use.

Base Class: Object

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 183

Methods:
static byte read(int address) – The read method reads a single byte from the specified address.
You may use addresses ranging from 0 to the amount returned by size –1. If you specify an invalid address, the
method will throw an IndexOutOfBoundsException.

static int size() – Use the size method to determine how much EEPROM is available. You may use
addresses from 0 up to, but not including the value of size.

static void write(int address, byte value) – This method writes the indicated byte to the
specified address. If you specify an invalid address, the method will throw an
IndexOutOfBoundsException.

Example:

Program Listing 9.5 – EEPROM Test
import stamp.core.*;

public class EETest {

static void setEEProm(int n) {
// have to chop n into bytes
EEPROM.write(0,(byte)(n&0xFE));
EEPROM.write(1,(byte)(n>>8));

}

static int getEEProm() {
int x;
x=EEPROM.read(1);
x=(x<<8)+EEPROM.read(0);
return x;

}

public static void main() {
setEEProm(2300);
System.out.println("Bytes available in EEPROM:");
System.out.println(EEPROM.size());
System.out.println("The value you wrote to EEPROM:");
System.out.println(getEEProm());

} // end main
} // end class

9: Javelin Stamp Hardware Reference

 Page 184 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Memory

Base Class: Object

Methods: static int freeMemory()

Returns: The number of bytes available in the SRAM.

Example:

int mem;
mem = Memory.freeMemory();
System.out.println(mem);

PWM
The PWM class is a Virtual Peripheral (VP) that can generate a train of pulses. You can use these pulses to
control motor speeds, LED or lamp brightness, or – with the addition of a simple filter circuit – generate analog
voltages. You can think of PWM as a programmable pulse generator. By setting the ratio of time the pin is on to
the time the pin is off, you can control the average power sent to a device.

Since PWM is a VP, once you set a channel to output PWM (short for pulse width modulation) it will continue to
do so until you stop it. You specify the amount of time you want the PWM generator to output a high pulse and
the amount of time you want the pin to be low. The time units are 8.68uS. To set the duty cycle to 50%, for
example, you’d set the high time and low time to be 1 (or any two equal numbers from 1 to 255).

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 185

Figure 9.11 Pulse train generated by PWM object

Vdd = 5 V

Vss = 0 V

pin

lowTime

highTime

Base Class: VirtualPeripheral

Constructors:
PWM(int pin, int highTime, int lowTime) – Creates a PWM object on the specified pin (for
example, CPU.pin1) with the specified high and low times (in 8.68us units).

Methods:
void update(int highTime, int lowTime) – Changes the pulse widths associated with the PWM
object.

Terminal
When debugging a Javelin program, you may want to supply input to your program using the debugging
terminal. You can do this with the Terminal class, which allows you to read keystrokes from the debug
terminal. You can also determine if any characters are waiting to be read. The Terminal class contains
static members. There is no need to instantiate a copy of Terminal.

Base Class: Object

Methods
static boolean byteAvailable() – Returns true if one or more characters are available to be read.

9: Javelin Stamp Hardware Reference

 Page 186 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

static char getChar() – Returns a character from the terminal. If no character is available, this call
waits until there is something to return.

Example
The example program reads characters from the Terminal until the user presses Enter. As the user types, the
program compares the input with the password string. At the end, if the characters match, the program prints
a welcome message. Otherwise, it prints an access denied message.

You can send the Javelin messages by typing them into the field below the area where the messages are
displayed in the messages from Javelin window.

Program Listing 9.6 - Password Gate
import stamp.core.*;

public class PasswordGate {

static String password = "Parallax";

public static void main() {
int i=0;
int c; // character
boolean access=false;
System.out.println("Enter password: ");
do {
c=Terminal.getChar();
if (c==13) {

access=(i==password.length());
break;

} // end if
if (i==-1) continue; // already blew it!
if (password.charAt(i)==c)

i++;
else

i=-1;
} while (c!=13);
if (access)
System.out.println("Welcome!");

else
System.out.println("Unauthorized access forbidden!");

} // end main
} // end class declaration

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 187

Timer
The Timer virtual peripheral (VP) provides you with a 32-bit timer with 8.68us resolution. The first time you
create a Timer object, the class installs itself as a virtual peripheral. However, any subsequent timers use the
same VP.

Each timer has a mark that can store the current time (by calling the mark method). Once marked, you can test
to see if any number of milliseconds (or timer ticks) has passed since the mark call. You can also simply read
the tick values if you like.

Base Class: VirtualPeripheral

Methods:
void mark() – Use the mark method to remember the current time. You can later test to see if a given
number of milliseconds have elapsed (or you can test timer ticks). See timeout for more information.

static void start() – This method starts the master timer VP. The timer automatically starts when you
first create it, so you won’t need to use this method unless you’ve previously called stop.

static void stop() – This method stops the master timer VP. Notice that calling stop will make any
previous mark calls to any timer inaccurate.

int tickHi(), int tickLo() – These two methods return the high-order 16 bits and low-order 16 bits
of the current timer value. ntegers are signed, values greater than 32767 will appear negative.

boolean timeout(int milliseconds), boolean timeout(int hi, int lo) – The
timeout method returns true if the specified period has elapsed since the last call to mark. The single
integer argument specifies the number of milliseconds. If you use two arguments, they are the high and low
parts of the period in 8.68 us units. The method will return true if the current time is the same or greater than
the marked time plus the period. Otherwise, the method returns false.

Example:

Program Listing 9.7 – Timer Example
import stamp.core.*;

public class TickTock {

static boolean tick=true;

public static void main() {

9: Javelin Stamp Hardware Reference

 Page 188 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Timer clock = new Timer();
while (true) {
for (clock.mark(); !clock.timeout(1000);) ; // wait for one second

System.out.println(tick?"tick":"tock");
tick=!tick;

} // end while
} // end main

} // end class

Uart
The Uart object is a Virtual Peripheral that can act as a serial receiver or transmitter. Using the Uart does not
cause your program to stop, so you can receive or transmit serial data while your program continues to execute.
If you want to send and receive, no problem, just use two Uart objects, one for each communication channel.
Each Uart object has a 256 byte buffer for receive or transmit operations. You can specify a handshaking pin
to send a stop signal to the sender when the buffer has 16 bytes or fewer remaining.

Base Class:
VirtualPeripheral

Fields:
final static int dirReceive – Set the Uart to receive mode (see Constructors).
final static int dirTransmit – Set the Uart to transmit mode (see Constructors).

These constants allow you to easily set the baud rate to any standard baud rate:
final static int speed2400
final static int speed4800
final static int speed7200
final static int speed9600
final static int speed14400
final static int speed19200
final static int speed38400
final static int speed57600

final static boolean invert – selects inverted mode. Use inverted mode when working with line
drivers like the MAX232 or the COM port on the Javelin Stamp Demo Board.

final static boolean dontInvert – selects non-inverted mode. You can use non-inverted mode to
connect directly to many normal RS-232 receivers; however, keep in mind that some receivers do not accept the
nonstandard voltage. You can also use non-inverted mode to connect to a normal RS-232 transmitter so long as
you provide a 22 kΩ series resistor between the RS232 transmit pin and the Javelin Stamp’s I/O pin. Without
this series resistor, the RS232 transmitter, the Javelin Stamp, or both could be damaged.

9: Javelin Stamp Hardware Reference

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 189

final static int stop1
final static int stop2
final static int stop3
final static int stop4
final static int stop5
final static int stop6
final static int stop7
final static int stop8

These constants allow you to select the number of stop bits the Uart object will expect. Remember, stop bits
are not true bits, but rather idle line time. Most devices require 1 stop bit as a minimum and some older devices
expect 2 stop bits. Adding extra stop bits increases the amount of time between characters. The exact amount
of time depends on the baud rate. For example, at 9600 baud, each bit is about 1.04 ms long. So four stop bits
would create 4.16 ms between each character. If the device you are connecting to expects a certain number of
stop bits, you’ll need to specify at least that many stop bits in the Uart constructor. Specifying more will still
work, but will slow communications.

TIP

For devices that need pacing, you can get breaks longer than eight stop bits by using the
Timer VP in conjunction with the sendByte method. You can also use sendByte
in conjunction with CPU.delay().

Constructors:
Uart (int direction, int dataPin, boolean dataInvert, int baudRate, int
stopBits)

The constructor is used to create and start a Uart object. Many of the parameters to the constructor should be
from the list of the final static fields just discussed. The direction parameter specifies if the Uart is
a transmitter (Uart.dirTransmit) or a receiver (Uart.dirReceive). The dataPin parameter
specifies the pin you wish to use for serial communications (for example, CPU.pin2). For inverted mode, set
dataInvert to Uart.invert, for non-inverted mode, use Uart.dontInvert. Finally select a
baudRate and stopBits constant (for example, Uart.speed9600 and Uart.stop1).

Uart(int direction, int dataPin, boolean dataInvert, int hsPin, boolean
hsInvert, int baudRate, int stopBits) – This constructor takes the same arguments as the first
constructor (see above) but it also allows you to select a handshaking pin (e.g., CPU.pin3) and the polarity for
that pin. If the hsInvert parameter is Uart.dontInvert and if the Uart object is a receiver, the pin will
be true if there are at least 16 bytes available in the buffer. Otherwise, the flow control pin will be false. If
the Uart object is a transmitter, using Uart.dontInvert, the Uart object will transmit serial data when
the receiver sends a false signal on the handshaking pin. When you use Uart.Invert, it expects a true
signal on the handshaking pin.

9: Javelin Stamp Hardware Reference

 Page 190 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Methods:
void start() – starts the Uart virtual peripheral. By default, the Uart starts when you create it, so you’ll
only need to use start after you’ve stopped it.

void stop() – stops the Uart virtual peripheral. This method stops the virtual peripheral immediately. It
does not check to see if there are any bytes remaining in the buffer or if the Uart is in the middle of transmitting
or receiving a byte.

TIP

Use byteAvailable() to find out if there is a byte in the buffer before calling
the stop() method.

void sendByte(int data) – stores a byte in the outgoing buffer for transmission as soon as possible.

void sendString(String data) – stores a string in the outgoing buffer for transmission as soon as
possible.

int receiveByte()– reads the next byte from the serial input buffer. If no bytes are present in the buffer,
this call will wait until a character arrives.

Caution

If the buffer is empty, this method blocks your foreground code until a byte is
received. You can use byteAvailable() to be sure there is a byte in the buffer
before calling receiveByte(). If a byte is not available, the code can do
something else and check to see if there is a byte available later.

boolean byteAvailable() – returns true if there are characters available for receiveByte() to
return.

Example:

See the following sections in Chapter 4 for Examples:

• Communicating with Computers
• Communicating with Peripheral Devices.

10: Technical Details

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 191

Summary of Java Differences
This section explains the differences (listed below) between workstation Java and the subset of Java used by the
Javelin Stamp. Recommendations for how to approach writing code for the Javelin Stamp are made for each
difference.

• Single Thread
• No Garbage Collection
• Subset of Primative Data Types
• Subset of Java Libraries
• Strings are ASCII
• No Interfaces
• One Dimensional Arrays

Single Thread
The Javelin Stamp only supports one thread. However, you can schedule multiple tasks to execute on the same
thread with the Timer object. You can also run up to six background VP objects. See Chapter 7 for a Timer
example. Background VP objects are first introduced in the Javelin Stamp Features section of Chapter 1, and
examples making use of these VPs can be found in Chapters 4 and 9.

No Garbage Collection
Once memory has been allocated for an object, that memory is never reclaimed for use with another object. For
embedded systems, this is not usually a big limitation, especially since garbage collection can wreak havoc with
real time system performance. In a PC based Java system, garbage collection may occur at any time. This can
cause problems when you are trying to do processing in real time.

Most embedded applications involve allocating memory or buffers at the start of a program and not allocating
more memory as the program progresses. When writing programs for the Javelin Stamp, make sure that your
programs do not allocate memory every time an event occurs, or at regular intervals.

If you want to reuse memory, it is up to you to program that behavior. Even though the obj variable is a single
variable, it will hold 100 different objects. Each object will persist for the life of the program. When possible
reuse objects instead of creating new ones.

There are several strategies you can use to make sure your programs are efficient:

• Use static variables whenever possible.
• Use the StringBuffer object instead of String objects if you have significant amounts of text

information that change frequently.

10: Technical Details

 Page 192 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Avoid creating new object instances whenever possible. Here are a few ways that unwanted new objects are
created that you should watch out for when writing applications for the Javelin Stamp:

• Creating new objects in loops or based on recurring events.
• Concatonating data, example: System.out.println(a + b).
• Concatonating String objects: a = a + b;

Particularly, be wary of allocating memory within loops. For example:

// Avoid writing code that creates new objects in loops!

for (int i=0;i<100;i++) {

SomeObject obj = new SomeObject();
.
.
.

}

A similar problem can arise when you use string concatenation. If a and b are String object references, you
might write:

a = a + b;

This creates a temporary StringBuffer (internally handled by the compiler) and it orphans the original
contents of a (assuming there are no other references to that string). So now you have two objects taking up
space that you can’t possibly use.

Subset of Primitive Data Types
Table 10.1 lists the primitive data types supported by the Javelin Stamp. Note that the int type is 16 bits wide.
Therefore, the largest signed value you can place in an int is 32,767 (0x7FFF). Values above 0x7FFF appear
negative. The byte type is 8 bits, and the short type is 16 bits, just as in Java on your PC. With the byte
data type, the values range from –128 to 127. If you need unsigned bytes, use char, which can range from 0 to
255.

10: Technical Details

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 193

Table 10.1: Primitive Data Types
Supported by the Javelin Stamp

Type Support
boolean Yes

byte Yes
char Yes

short Yes
int 16-bit instead of 32

float No
double No

long No

The Javelin Stamp firmware does not support floating point types such as float and double. The long
data type is also unsupported. If you need numbers larger than 16-bits, you may be able to build your own
routines to handle the larger numbers. Of particular use is the CPU.carry method. This method allows you
to read the overflow result after a 16-bit addition or subtraction. This makes it straightforward to add and
subtract 32-bit (or larger) words. See the article on CPU.carry in Chapter 9 for an example.

The Javelin’s int type spans –32,768 to 32,767, but there is a way around this if you need a positive value
between than 32,767 and 65535 (0x7FFF to 0xFFFF). For example, if you need a delay of 6.4 seconds, you
need to pass CPU.delay a value of 0xFA00. You can set a variable to 0x7D00 and shift it left:

int dly=0x7D00;
CPU.delay(dly<<1);

You can’t simply use 0xFA00 or 0x7D00<<1 because the compiler will attempt to do the math at compile
time and determine that the result is not a valid integer.

Subset of Java Libraries
A subset of the standard Java libraries is available to the Javelin. A PC Java installation provides a large
number of libraries in the java.* packages. Many of these libraries are only applicable to workstation based
programs. You should not assume that all of the same methods are available to your Javelin Stamp programs.
Also, some methods that are available, they may have different behavior than you are used to because of data
type differences, for example. In addition, the Javelin Stamp has many additional packages to provide support
for various hardware and peripheral devices. These packages and how they are used are discussed in Chapters 8
and 9.

10: Technical Details

 Page 194 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

Strings are ASCII
Javelin Stamp Strings and characters are composed of single-byte ASCII characters, not double-byte Unicode
characters. For embedded system programming, you’ll usually prefer to handle ASCII characters. If necessary,
you can store Unicode characters in an int variable.

No Interfaces
Interfaces are not available; however, you can create abstract classes that other classes can extend.

One Dimensional Arrays
The Javelin Stamp only supports single dimensioned arrays. You can always unwrap your multi-dimensional
array into a single dimension. For example, suppose you have an 8 by 8 matrix that represents a checkerboard.
You might write:

contents = checkboard[x*8+y];

You could even wrap the array in a method, to make the syntax clearer. For example:

int checkerboard(int x, int y) {

return checkboard[x*8+y];
}

void checkerboard(int x, int y, int value) {
checkboard[x*8+y]=value;

}

You can also create an array of arrays. The key to making this work, is to make the containing array (or arrays)
contain Objects. Since all objects derive from Object and arrays are objects, you can store arrays in an
Object reference.

Here’s how you might implement the checkerboard using this strategy:

Object checkboard[] = new Object[8];
for (int i=0;i<checkboard.length;i++)

checkboard[i] = new int[8];

Referencing a particular cell on the board is a bit cumbersome:

((int [])checkboard[x])[y]=1;

You can also decompose the array into individual rows:

int row2[] = (int [])checkboard[2];
row2[y]=0;

10: Technical Details

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 195

Understanding the Javelin Stamp’s Memory Management
The Javelin stores your program in EEPROM. That means that your program remains in the Javelin even when
the power is off. When you apply power to the Javelin, it copies this EEPROM to high-speed RAM memory
for speedy execution.

The 32K of RAM also holds the stack and the heap which are both areas used to store your program’s data and
variables. When you create objects with new or define static variables, they consume space on the heap. You
must carefully manage the heap since once you create an object on the heap, there is no way for the Javelin to
reclaim it (until you reset or cycle the power, of course). Strings are specially treated and have their own heap.
You can examine the size of the various memory areas using the Memory Usage tab of the debugger window
(see Figure 10.1).

Figure 10.1
Javelin Stamp
IDE Debugger
memory usage

page

The stack, on the other hand, is used for local variables and method parameters. The stack can grow and shrink
at will, so there are fewer concerns with managing its size. However, you can’t create objects on the stack –
only simple variables and object references.

For example, consider this example:

void somemethod(String s) {

StringBuffer work = new StringBuffer(s);
. . .

}

Here, the variables s and work are on the stack. However, these variables are simply object references – not
the objects themselves. The new operator creates a StringBuffer object on the heap and presumably, the
actual String that s refers to is also on the heap.

A problem arises if you write a method like somemethod because once it returns to its caller the object in
work is effectively lost. Your program no longer has a reference to this StringBuffer so it is effectively
unusable. In a workstation Java, the system software would eventually notice that it was out of memory and

10: Technical Details

 Page 196 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

reclaim this variable using a process called garbage collection. However, garbage collection happens at
unpredictable times and may take a long time to complete. This makes it unsuitable for embedded programs
where you need to know when things occur and how long they take to execute.

The problem isn’t so much that the object is on the heap. Rather, it is that the object’s only reference is on the
stack. When the Javelin reclaims the work variable, the object it refers to is still on the heap, but you no longer
have a way to access it.

The answer, then, is to store object references in fields that will exist for the life of your program. In many
cases, these will be per instance fields or static fields in an object. There is one case where you might as well
use stack variables to hold object references in your main program loop. For example, consider this bit of code:

static void main() {

StringBuffer buff = new StringBuffer();
while (true) {

. . .
}

}

In this case, when buff goes out of scope, the program will stop running anyway. Therefore, there is no harm
that you will lose access to the underlying StringBuffer object. The same principle applies anywhere you
have code that you will effectively execute forever (or, at least, until your program terminates).

A common strategy for dealing with this problem is to create a pool of objects and keep them for the entire time
your program is running. Then, different parts of your program can check out a few of these objects and return
them to the pool when you are done with them. For more information on pools refer to the Javelin’s IDE on-
line documentation.

Another important consideration is where the compiler generates objects on your behalf. Since your program
doesn’t know about these objects, it is impossible for you to ever reclaim them. For example, consider this
code:

int t=33;
System.out.println("The value is " + t);

For a simple example, or for debugging purposes, this might be acceptable. However, it is wasting memory.
Why? Because the compiler is automatically generating a StringBuffer and a String object that it uses
to build the concatenated string. Since your program doesn’t directly work with these objects, they consume
space in the heap that you can’t recover. It would be better to create a StringBuffer as part of the object or
in a static variable and then use it to synthesize the String.

StringBuffer buf=new StringBuffer(32); // 32 byte string

10: Technical Details

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 197

void display() {
buf.append("The value is ");
buf.append(t);
System.out.println(buf.toString());
}

Memory and Variable Types
This information may come in handy if your application is running short on memory space:

• All types (including char and byte) use 2 bytes of memory.
• Arrays require the amount of space to store their elements (that is, 2 times the number of elements)

plus 4 additional bytes.
• Exception: byte and char arrays use one byte per element.
• Local variables deduct from your stack and are reclaimed when they go out of scope.
• Objects require space for their non-static fields, plus two bytes of overhead.

Index

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 199

-- (Decrement), 94, 96, 134
- (Subtraction), 94, 96, 135
! (Boolean Invert), 94, 138
!= (Not Equal to), 94, 136
% (Modulus), 94, 135
& (Bitwise AND), 94, 97, 137
&& (Logical AND), 94, 97
 () (Parentheses), 95, 135
* (Multiplication), 95, 96, 135
*/ (Multi-line Remark, closing), 97
/ (Division), 96, 135
/* (Multi-line Remark, opening), 97
/** (JavaDoc Remark), 97
// (Remark), 97
; (Semicolon), 89
?: (Conditional), 94, 138
 [] (Square Brackets), 95, 134
^ (Bitwise XOR), 94, 137
{ } (Curly Braces), 90–91
| (Bitwise OR), 94, 137
|| (Logical OR), 94
~ (Bitwise Invert), 94, 138
+ (Addition), 94, 95, 96, 135
++ (Increment), 94, 96, 134
< (Less Than), 94, 136
<< (Left-Shift), 94, 136
<= (Less Than Equal to), 94, 136
== (Equal to), 94
> (Greater Than), 94, 136
>= (Greater Than Equal to), 94, 136
>> (Right-Shift, Signed Extension), 94, 136
>>> (Right-Shift), 94, 136

 - A -
abstract, 117
Abstraction, 112
ADC, 165, 166
Analog to Digital, 165, 166
Arrays, 104–6, 202
ASCII, 42

 - B -
Base

Hexadecimal, 93
Octal, 93

boolean, 91, 117, 155
break, 40, 98, 117
Button, 166
byte, 91, 118

 - C -
Cache, 115
Calculations, 34
carry, 170
case, 99, 118
case sensitive, 32
cast, 109, 118, 134
catch, 113, 114, 118, 132, 156
char, 42, 91, 118
Checked Exceptions, 114
class

definition, 31
Library, 49

Classes, 100–101, 118
Basic Type, 110
Clone, 107
Constructors, 110
DS1620, 61
Equals, 107
Extending. See extends
HashCode, 107
import, 116
Integer, 111
Member, 100
Relationships, 144
toString, 107
Virtual Peripherals. See Virtual Peripherals
wrapper. See wrapper

CLASSPATH, 86, 115
Clock, 181
COM Ports, 30

Index

 Page 200 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

const, 139
constant, 32
Constants. See final
construct, 102
continue, 40, 98, 119
count, 171
Counter, 176–78
CPU, 169

Message, 42–44

 - D -
DAC, 61, 188
Debug, 80–83, 192
delay, 171, 201
Digital to Analog, 188
do, 37, 38, 117, 119
double, 139
DS1620, 8, 61–66

 - E -
Editor, 85
EEPROM, 189
else, 97, 119
Encapsulation, 142
Errors, 78–80, 113, 156–57
Escape Sequences, 93
Exception Handling, 112, 156–57
Exceptions, 150
Expressions, 94–97
extends, 107–11, 120

 - F -
final, 32, 108, 120
finally, 120, 132
float, 139, 201
for, 39–40, 90, 97, 117, 120

 - G -
Garbage Collection, 102, 199
getMessage, 156
Global Options, 73–74

goto, 139

 - H -
Hardware, 11–14

EEPROM, 189
Hexadecimal, 93

 - I -
I/O, 193
I/O Pins, 169, 171, 173, 175, 176, 178, 181
IDE, 2, 14–17, 14–30, 14–30

Call Stack, 82
CLASSPATH, 86
Compile, 78
Debug, 27–28, 78

Step Into, 83
Editor, 85
Installation, 14–17
Link, 78
Memory Usage, 82
Menubars, 85
Packages, 86–87
Program, 78
Projects, 87
Resume Debug, 78
Starting a Project, 74–75
Toolbars, 85

if, 35–37, 90–91, 97, 122
implements, 139
import, 116, 123
Inheritance, 107
Inputs, 162, 166
installVP, 172
instanceof, 139
int, 91, 123, 200
interface, 139

 - J -
Java Differences, 89, 199–205

break, 98
const, 139

Index

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 201

continue, 98
double, 139
Floating Point, 201
for, 97
Garbage Collection, 199
goto, 139
if, 97
implements, 139
int, 200
interface, 139
long, 139
Loops, 200
native, 139
objects, 200
static, 199
StringBuffer, 199, 200
Strings, 106, 200
synchronized, 139
Threads, 199
transient, 139
Unicode, 202
volatile, 139
while, 99

Javelin Stamp
Architecture, 3–4
Demo Board, 7
Hardware, 1, 4, 5
Heavy Loads, 59
I/O pins, 12–14
Power Supply, 13–14
Starter Kit, 5

 - K -
Keywords, 117–34

 - L -
Libraries, 201
Library Class, 49
Lists, 163, 164
long, 139
Loops, 37–40

break, 40
continue, 40
do, 37, 38
for, 39–40, 90, 97
while, 37–39, 38, 90

 - M -
Math, 157, 170
message, 42–44, 172
Methods, 101, 192

Constructors, 102
equals, 101
Returning a Value, 101
void, 101

 - N -
nap, 172, 173
native, 139
new, 102, 124
null, 125

 - O -
Object Oriented, 144, 152
Objects, 100–101, 141–42, 157

Arrays, 104–6
casting. See cast
keywords. See the key word
new, 102
Pointers, 103–4
Strings, 106–7

substring, 107
this, 104
Timer, 151
UART(s), 141, 150

Octal, 93
Online Resources, 116
Operators

Basic Java Operators, 94
Order of Operations, 95

Order of Operations, 95
override, 108

Index

 Page 202 • Javelin Stamp Manual v1.0 • www.parallaxinc.com

 - P -
Packages, 86–87, 115, 125

CLASSPATH. See CLASSPATH
Pointers, 103–4
Polymorphism, 108, 143
print, 41–42, 161, 162
println, 41–42, 161, 162
PrintStream, 161
private, 108, 126
protected, 108, 126
public, 108, 126
pulseIn, 173
pulseOut, 175
PWM, 60, 150, 190–92

 - R -
Random, 162
RC circuit, 177
RC timing, 177
rcTime, 176–78
readPin, 178
readPort, 179
removeVP, 180
return, 101, 127

 - S -
Serial Port, 30
setInput, 180
shiftln, 181
short, 91, 127
static, 33, 128
StringBuffer, 42, 103, 106, 160, 200
Strings, 106–7, 158, 200

StringBuffer. See StringBuffer
substring, 107

super, 108, 110, 129
switch, 99, 117, 130
synchronized, 139
System.out

print, 41–42, 161, 162
println, 41–42, 161, 162

 - T -
Template, 74–75
Terminal, 192
this, 130
Threads, 199
throw(s), 114, 131, 156
throwIt, 158
Timer, 150, 151, 194
toString, 111
transient, 139
try, 113, 114, 132, 156
Type, 134

Garbage Collection, 199
int, 200

 - U -
UART(s), 66, 150, 195
Unicode, 202
URL's, 116

 - V -
Variables, 32–34

boolean, 91
byte, 91
Calculations, 34
char, 91
Declaration, 91–93, 91–93
final, 32–34, 32, 93
int, 91
short, 91
static, 82
static final, 93

Virtual Peripherals, xiv, 3, 150, 169, 172,
180, 191
ADC, 165
Background, 3
DAC, 61
Foreground, 3
PWM, 60, 150, 190–92
Timer, 194
UART(s), 66, 195

Index

 Javelin Stamp Manual v1.0 • www.parallaxinc.com • Page 203

void, 101, 133
volatile, 139

 - W -
while, 37–39, 38, 90, 99, 117, 133
wrapper, 111

Мы молодая и активно развивающаяся компания в области поставок

электронных компонентов. Мы поставляем электронные компоненты

отечественного и импортного производства напрямую от производителей и с

крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем

комплексные и плановые поставки широчайшего спектра электронных

компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную

поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и

предпродажную проверку качества продукции. На все поставляемые продукты

мы предоставляем гарантию .

Осуществляем поставки продукции под контролем ВП МО РФ на

предприятия военно-промышленного комплекса России , а также работаем в

рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система

менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный

ассортимент и индивидуальный подход к клиентам являются основой для

выстраивания долгосрочного и эффективного сотрудничества с предприятиями

радиоэлектронной промышленности, предприятиями ВПК и научно-

исследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331

mailto:sales@st-electron.ru

