

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

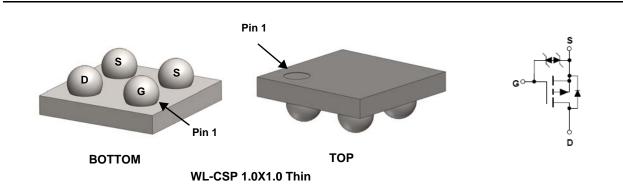
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

P-Channel 1.5 V Specified PowerTrench[®] Thin WL-CSP MOSFET -20 V, -3.7 A, 75 m Ω

Features

- Max $r_{DS(on)} = 75 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -2.0 \text{ A}$
- Max $r_{DS(on)}$ = 90 m Ω at V_{GS} = -2.5 V, I_D = -1.5 A
- Max $r_{DS(on)}$ = 110 m Ω at V_{GS} = -1.8 V, I_D = -1.0 A
- Max $r_{DS(on)}$ = 150 m Ω at V_{GS} = -1.5 V, I_D = -1.0 A
- Occupies only 1.0 mm² of PCB area.Less than 30% of the area of 2 x 2 BGA
- Ultra-thin package: less than 0.4 mm height when mounted to PCB
- HBM ESD protection level >4.4kV typical (Note 3)
- RoHS Compliant



General Description

Designed on Fairchild's advanced 1.5 V PowerTrench[®] process with state of the art "fine pitch" Thin WLCSP packaging process, the FDZ371PZ minimizes both PCB space and $r_{DS(on)}$. This advanced WLCSP MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, ultra-low profile packaging, low gate charge, and low $r_{DS(on)}$.

Applications

- Battery management
- Load switch
- Battery protection

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			-20	V	
V _{GS}	Gate to Source Voltage			±8	V	
I	-Continuous	T _A = 25°C	(Note 1a)	-3.7	٨	
D	-Pulsed			-12	A	
D	Power Dissipation	T _A = 25°C	(Note 1a)	1.7	w	
P _D	Power Dissipation	T _A = 25°C	(Note 1b)	0.5		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	75	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	260	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
K	FDZ371PZ	WL-CSP 1.0X1.0 Thin	7 "	8 mm	5000 units

July 2014

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \ \mu A, \ V_{GS} = 0 \ V$	-20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		22		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±10	μΑ
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.35	-0.6	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-4		mV/°C
	Static Drain to Source On Resistance	V _{GS} = -4.5 V, I _D = -2.0 A		55	75	mΩ
		V _{GS} = -2.5 V, I _D = -1.5A		65	90	
r _{DS(on)}		V_{GS} = -1.8 V, I _D = -1.0 A		80	110	
DS(on)		V_{GS} = -1.5 V, I _D = -1.0 A		100	150	
		V _{GS} = -4.5 V, I _D = -2.0 A, T _J =125°C		80	124	
9 _{FS}	Forward Transconductance	V _{DD} = -5 V, I _D = -3.3 A		14		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			750	1000	pF
C _{oss}	Output Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz		110	145	pF
C _{rss}	Reverse Transfer Capacitance			100	150	pF
Switching	g Characteristics					
				5.0	40	
t _{d(on)}	Turn-On Delay Time			5.9	12	ns

ld(on)	Tum-On Delay Time		5.9	12	ns
t _r	Rise Time	V _{DD} = -10 V, I _D = -3.3 A,	9.1	18	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω	124	198	ns
t _f	Fall Time		88	140	ns
Qg	Total Gate Charge	V 45VVV 40V	12	17	nC
Q _{gs}	Gate to Source Charge	V _{GS} = -4.5 V, V _{DD} = -10 V, I _D = -3.3 A	1.1		nC
Q _{gd}	Gate to Drain "Miller" Charge		3.4		nC

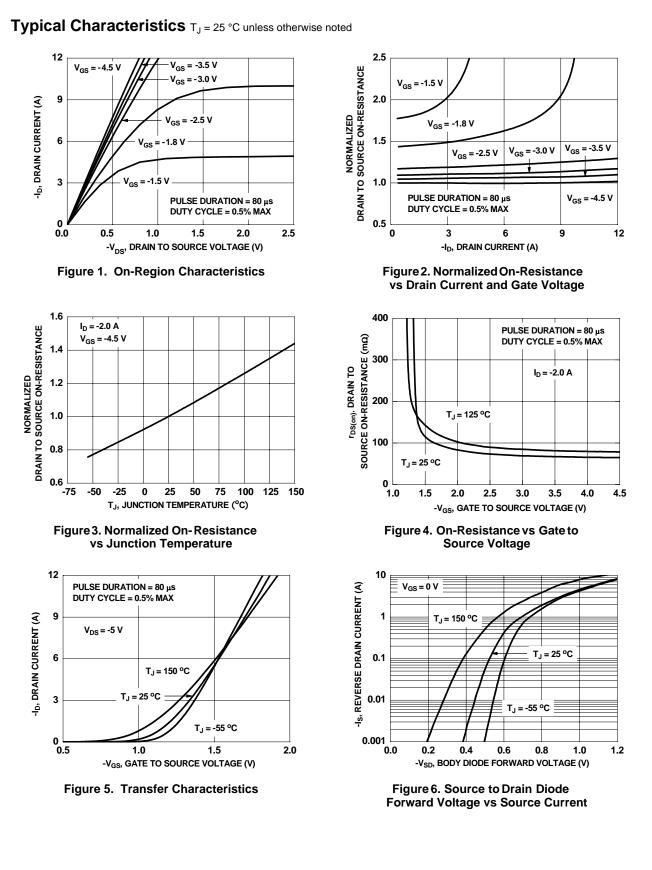
Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain-Source Diode Forward Current			-1.1	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.3 A$ (Note 2)	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	- I _F = -3.3 A, di/dt = 100 A/μs	61	98	ns
Q _{rr}	Reverse Recovery Charge	$F = -3.3 \text{ A}, \text{ u/ut} = 100 \text{ A/}\mu\text{S}$	29	47	nC

Notes:

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

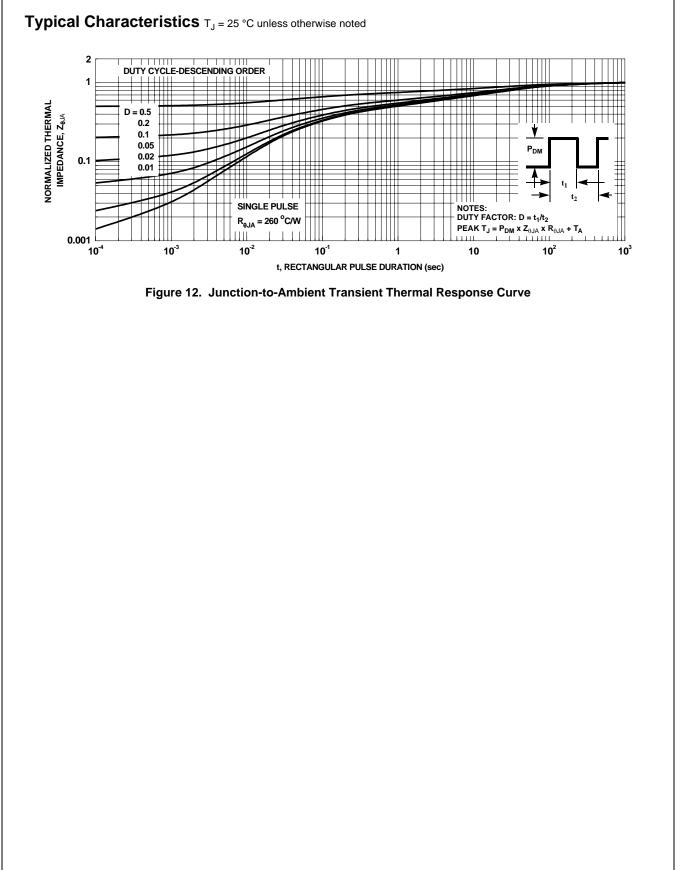
a. 75 °C/W when mounted on a 1 in² pad of 2 oz copper.

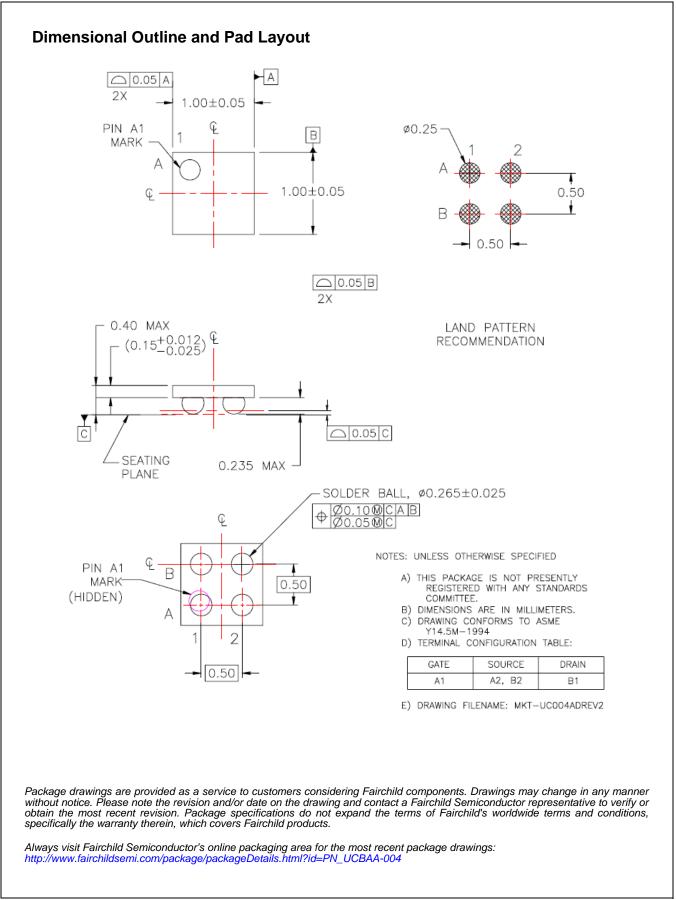

b. 260 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.

©2009 Fairchild Semiconductor Corporation FDZ371PZ Rev.C1


www.fairchildsemi.com



©2009 Fairchild Semiconductor Corporation FDZ371PZ Rev.C1 www.fairchildsemi.com

FDZ371PZ P-Channel 1.5 V Specified PowerTrench[®] Thin WL-CSP MOSFET

FDZ371PZ P-Channel 1.5 V Specified PowerTrench[®] Thin WL-CSP MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FDZ371PZ</u>

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331