ﬁ- adafruit learning system

Adafruit 128x64 OLED Bonnet for Raspberry Pi

00000000000000000 @
[efciciclclclelclckclcleNelelcheXe]

ot L

'

-5

1.3* OLED| « #5
Bonnet -
|

Qarrult
128x64 |

ﬁ adafruit learning system
Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're looking for. The Adafruit 128x64
OLED Bonnet for Raspberry Pi is the big sister to our mini PIOLED add-on (https://adafru.it/wVd). This version has
128x64 pixels (instead of 128x32) and a much larger screen besides. With the OLED display in the center, we had
some space on either side so we added a 5-way joystick and two pushbuttons. Great for when you want to have a

control interface for your project.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 3 of 14

https://www.adafruit.com/product/3527

These displays are small, only about 1.3" diagonal, but very readable due to the high contrast of an OLED display. This
screen is made of 128x64 individual white OLED pixels and because the display makes its own light, no backlight is
required. This reduces the power required to run the OLED and is why the display has such high contrast; we really
like this miniature display for its crispness!

128x64

1:3Y GLED} .
Bonnet i "

Please note that this display is too small to act as a primary display for the Pi(e.g. it can't act like or display what
would normally be on the HDMI screen). Instead, we recommend using pygame for drawing or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go for the SSD1306 OLED chipset and
the joystick/buttons are connected to GPIO pins on the Pi. Our example code allows you to draw images, text,
whatever you like, using the Python imaging library. We also have example code for using the joystick/buttons/OLED
together. Our tests showed 15 FPS update rates once you bump the 12C speed to 1MHz, so you can do animations or
simple video.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 4 of 14

. CRCRCE ROR N N RCR R ECR B R E N N R B

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install our Python
code! Works with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 5 of 14

* adafruit learning system
Usage

This guide assumes you have your Raspberry Pi all set up with an operating system, network connectivity and

SSH!

Install CircuitPython

This guide assumes that you've gotten your Raspberry Pi up and running, and have CircuitPython installed. If not,

check out the guide:
https://adafru.it/Deo

https://adafru.it/Deo

To install the library for the Pi OLED (https://adafru.it/uf), enter the following into the terminal:

sudo pip3 install adafruit-circuitpython-ssd1306

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

We also need PIL to allow using text with custom fonts. There are several system libraries that PIL relies on, so
installing via a package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

Enable 12C

To enable i2c, you can follow our detailed guide on configuring the Pi with I12C support here. (https://adafru.it/Deo)
After you've enabled I12C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PIOLED. Now you can power the Pi back up, and log back in. Run the following
command from a terminal prompt to scan/detect the 12C devices

sudo i2cdetect -y 1

You should see the following, indicating that address Ox3c (the OLED display) was found

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 6 of 14

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#enable-i2c-and-spi-3-5

@ pi@raspberrypi: ~ = | B |-

Verify 12C Device

You can run our buttons example, which will let you press various buttons and see them mimicked on the OLED.

Create a new file with nano “pi/bonnet_buttons.py and paste this code below in! Then save it.
Temporarily unable to load content:

Run sudo python3 bonnet buttons.py to run the demo, you should see something like the below:

Press buttons to interact with the demo. Press the joystick + buttons at once for an Easter egg!

Running Scripts on Boot

You can pretty easily make it so this program (or whatever program you end up writing) run every time you boot your
Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 7 of 14

sudo python /home/pi/bonnet_buttons.py &
on its own line right before exit O

Then save and exit. Reboot to verify that the screen comes up on boot!

GNU nano 2.7.4 File: fetc/rc.local

rc.local

This script is executed at the end of each multiuser runlevel.
Make sure that the script will “exit @" on success or any other
value on error.

In order to enable or disable this script just change the execution

By default this script does nothing.

Print the IP address
_IP=%Chostname -I) || true
if ["$_IP"]; then

printf "My IP address is %s\n" "$_IP"
fi

sudo python3 /home/pi/bonnet_buttons.py &

exit @

For more advanced usage, check out our linux system services guide (https://adafru.it/wFR)

Library Usage

In the examples subdirectory of the Adafruit_CircuitPython_SSD1306 repository (https://adafru.it/EsZ), you'll find more
examples which demonstrate the usage of the library.

To help you get started, I'll walk through the bonnet_buttons.py code below, that way you can use this file as the
basis of a future project.

Python Library Setup

import board

import busio

from digitalio import DigitalInOut, Direction, Pull
from PIL import Image, ImageDraw

import adafruit ssd1306

First, a few modules are imported, including the adafruit_ssd1306 module which contains the OLED driver classes.
The code also imports board (containing the Raspbery Pi pin definitions), busio (communication with the i2c and spi
buses), and digitalio (to control the Raspberry Pi's pins).

You can also see some of the Python Imaging Library modules like Image, ImageDraw, and ImageFont being
imported. Those are, as you can imagine, are for drawing images, shapes and text/fonts!

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 8 of 14

file:///running-programs-automatically-on-your-tiny-computer/
https://github.com/adafruit/Adafruit_CircuitPython_SSD1306/tree/master/examples

Display Setup

Create the I2C interface.

i2c = busio.I2C(board.SCL, board.SDA)

Create the SSD1306 OLED class.

disp = adafruit ssd1306.SSD1306 I2C(128, 64, i2c)

The next bit of code creates the 12C interface (which the display on the bonnet communicates over) and creates a
SSD1306 OLED class. Note that we are passing SSD1306_12C 128 and 64, those values correspond to the bonnet's
OLED display.

Pin Setup

Input pins:

button A = DigitalInOut(board.D5)
button A.direction = Direction.INPUT
button_A.pull = Pull.UP

button B = DigitalInOut(board.D6)
button B.direction = Direction.INPUT
button B.pull = Pull.UP

button L = DigitalInOut(board.D27)
button L.direction = Direction.INPUT
button_L.pull = Pull.UP

button R = DigitalInOut(board.D23)
button R.direction = Direction.INPUT
button R.pull = Pull.UP

button U = DigitalInOut(board.D17)
button U.direction = Direction.INPUT
button U.pull = Pull.UP

button D = DigitalInOut(board.D22)
button D.direction = Direction.INPUT
button D.pull = Pull.UP

button C = DigitalInOut(board.D4)

button C.direction = Direction.INPUT
button C.pull = Pull.UP

Next up we define the pins that are used for the joystick and buttons. The Joystick has Left, Right, Center (press in), Up
and Down. There's also the A and B buttons on the right. Each one should be set as an input with pull-up resistor
(Pull.UP in the code)

Display Initialization

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 9 of 14

Clear display.

disp.fill(0)

disp.show()

Create blank image for drawing.

Make sure to create image with mode 'l' for 1-bit color.
width = disp.width

height = disp.height

image = Image.new('l', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

The next chunk of code clears the display by inverting its fill with fill(0) and then writing to the display with show() .

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the image buffer is created in 1-
bit mode with the '1' parameter, this is important because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have to clear the screen again, but its a
good example of how to draw a shape!

Button Input and Drawing

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 10 of 14

while True:
if button_U.value: # button is released
draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up
else: # button is pressed:
draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1l) #Up filled

if button L.value: # button is released
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left
else: # button is pressed:
draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1l) #left filled

if button R.value: # button is released
draw.polygon([(60, 30), (42, 21), (42, 41)]1, outline=255, fill=0) #right
else: # button is pressed:
draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1l) #right filled

if button D.value: # button is released
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down
else: # button is pressed:
draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down filled

if button_C.value: # button is released
draw.rectangle((20, 22, 40, 40), outline=255, fill=0) #center
else: # button is pressed:
draw.rectangle((20, 22, 40, 40), outline=255, fill=1l) #center filled

if button A.value: # button is released
draw.ellipse((70, 40, 90, 60), outline=255, fill=0) #A button
else: # button is pressed:
draw.ellipse((70, 40, 90, 60), outline=255, fill=1) #A button filled

if button B.value: # button is released
draw.ellipse((100, 20, 120, 40), outline=255, fill=0) #B button
else: # button is pressed:
draw.ellipse((100, 20, 120, 40), outline=255, fill=1l) #B button filled

if not button A.value and not button B.value and not button C.value:
catImage = Image.open('happycat oled 64.ppm').convert('1l")
disp.image(catImage)

else:
Display image.
disp.image(image)

disp.show()

Once the display is initialized and a drawing object is prepared, you can draw shapes, text and graphics usingPIL's
drawing commands (https://adafru.it/dfH).

This is a basic polling example - we'll check each button.value in order, and draw a different shape - a directional
arrow or a round circle) depending on whether the button is pressed. If the button is pressed we have the shape filled
in. If the button is not pressed, we draw an outline only

Then we run disp.image(image) and disp.show() to actually push the updated image to the OLED. This is
required to actually make the changes appear!

Speeding up the Display

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 11 of 14

http://effbot.org/imagingbook/imagedraw.htm

For the best performance, especially if you are doing fast animations, you'll want to tweak the 12C core to run at IMHz.

By default it may be 100KHz or 400KHz
To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

r@ pi@raspberrypi: ~ |5IE‘&]“

GNU nano 2.2.6 File: /boot/config.txt HModified -

reboot to 'set' the change.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi

Page 12 of 14

ﬁr adafruit learning system
Downloads

Files

EagleCAD PCB files on GitHub (https://adafru.it/wWC)

UG-2864HSWEGO1 (https://adafru.it/all) Datasheet

UG-2864HSWEGO1 (https://adafru.ittwWD) User Guide

SSD1306 (https://adafru.it/aJK) Datasheet

Fritzing objects available in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic & Fabrication Print

Dimensions in mm

#
b 128x64 OLED
A~ D i x5

[=]

0 J r'n *adafruit e

128x54 OLED Bonnet rev B

4/14/2047 12:12:4@ AN | Sheet: 1/1

Orauing: >AUTHOR Adafruit Industries
i] > 3 4 5]

Adafruit
128x64
1.3 OLED
Bonnet

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 13 of 14

https://github.com/adafruit/Adafruit-128x64-OLED-Bonnet-for-Raspberry-Pi-PCB
http://www.adafruit.com/datasheets/UG-2864HSWEG01.pdf
http://www.adafruit.com/datasheets/UG-2864HSWEG01%20user%20guide.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library

© Adafruit Industries Last Updated: 2020-06-24 02:59:56 PM EDT Page 14 of 14

CraHpapT
INeKTpPOoH
ﬂ CBAA3b

Mbl MOf04aA M aKTUBHO Pa3BMBAIOLLAACA KOMMAHWA B 061acTM MOCTaBOK
3NEKTPOHHbIX KOMMOHEHTOB. Mbl NOCTAaBASEM 3/IEKTPOHHbIE KOMMOHEHTbI
OTEYEeCTBEHHOIrO U MMMOPTHOIO NMPOWU3BOACTBA HAMPAMYIO OT NPOU3BOAMUTENEN U C
KpYMHEMLWKNX CKNaZ0B MUpa.

Enaro,a,apﬂ coTpygHn4ecTtesy C MMpPOBbIMU NOCTaBWMKaMWN Mbl OCYLLECTBIAEM
KOMMNNEKCHbIE N NN1aHOBblE MNMOCTABKU LumpoqaﬁLuero CNEeKTpa 3/1EKTPOHHbIX
KOMMOHEHTOB.

CobcTtBeHHan 3¢p@eKTUBHAA NOrMCTUKA M CKNag B obecneunBaeT HageKHYHo
MOCTaBKy MNPOAYKLMM B TOYHO YKa3aHHble CPOKM Mo Bcel Poccum.

Mbl ocyuiecTBisem TEXHUYECKYI0 MNOALEPKKY HAWWM K/IMEHTaMm U
npeanpoaaxkHyto NPOBEPKY KayecTsa NpoayKumu. Ha Bce noctaBnsiemble NpoAyKTbl
Mbl MPEAOCTaBASEM TFAPaAHTUIO .

OcyuwiectBndem nNOCTaBKM NpoOAYKUMM nog, KoHTponem Bl MO PO Ha
npeanpuATUA BOEHHO-NPOMbIWIEHHOTO KoMnaekca Poccuun , a TakKe paboTtaem B
pamkax 275 ®3 c OTKpbITUEM OTAE/bHbIX CHETOB B YNONHOMOYEHHOM BaHKe. Cuctema
MeHeXMeHTa KayecTBa KomnaHum cooTBeTcTByeT TpeboBaHuam FOCT ISO 9001.

MWHUMaNbHbIE CPOKM MNOCTAaBKW, TMOKME UeHbl, HeorpaHWYeHHbIN
aCCOPTUMEHT UM WHAMBMAYANbHbLIN MNOAXOA K KAMEHTaM ABAAIOTCA OCHOBOW ANA
BbICTPAMBaHMA A0FOCPOYHOIO M 3GPEKTUBHOIO COTPYAHMYECTBA C NPEeANPUATUAMM
PaANO3NEKTPOHHOMW NPOMBIWAEHHOCTU, NPEeanPUATUAMM BMNK u HayuHo-
nccnenoBaTeNbCKUMKU MHCTUTYTaMm Poccun.

C Hamu Bbl CTAaHOBMUTECH elle ycnewHee!

[HaLLIM KOHTAKTbI: \

TenedoH: +7 812 627 14 35

dNeKTpPOHHaA nouTa: sales@st-electron.ru

Appec: 198099, CaHkT-MNeTepbypr,
MpomblwneHHasa yn, gom Ne 19, nutepa H,
nometleHune 100-H Oduc 331

_

J

mailto:sales@st-electron.ru

