25AA02UID # 2K SPI Bus Serial EEPROM with Unique 32-Bit Serial Number #### **Device Selection Table** | Part Number | Vcc Range | Page Size | Temp. Ranges | Packages | Unique ID Length | |-------------|-----------|-----------|--------------|----------|------------------| | 25AA02UID | 1.8-5.5V | 16 Bytes | I | SN, OT | 32-Bit | #### Features: - Preprogrammed 32-Bit Serial Number: - Unique across all UID-family EEPROMs - Scalable to 48-bit, 64-bit, 128-bit, 256-bit, and other lengths - 10 MHz max. Clock Frequency - · Low-Power CMOS Technology: - Max. write current: 5 mA at 5.5V - Read current: 5 mA at 5.5V, 10 MHz - Standby current: 1 μA at 2.5V - 256 x 8-Bit Organization - Write Page mode (up to 16 bytes) - · Sequential Read - · Self-Timed Erase and Write Cycles (5 ms max.) - · Block Write Protection: - Protect none, 1/4, 1/2 or all of array - · Built-in Write Protection: - Power-on/off data protection circuitry - Write enable latch - Write-protect pin - · High Reliability: - Endurance: 1,000,000 erase/write cycles - Data retention: >200 years - ESD protection: >4000V - Temperature Ranges Supported: - Industrial (I): -40°C to +85°C - RoHS Compliant #### Package Types (not to scale) | SOT-23
(OT) | SC
(S | | |--|---------------------------------------|--| | SCK 라 1 6 원 VDD
Vss 라 ² 5원 CS
SI라 ³ 4원 SO | CS 1
SO 2
WP 3
Vss 4 | 8 2 Vcc
7 2 HOLD
6 2 SCK
5 2 SI | ## **Description:** The Microchip Technology Inc. 25AA02UID is a 2 Kbit Serial Electrically Erasable Programmable Read-Only Memory (EEPROM) with a preprogrammed, 32-bit unique ID. The memory is accessed via a simple Serial Peripheral Interface (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select (\overline{CS}) input. Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts. The 25AA02UID is available in the standard 8-lead SOIC and 6-lead SOT-23 packages. #### **Pin Function Table** | Name | Function | | | | |------|--------------------|--|--|--| | CS | Chip Select Input | | | | | SO | Serial Data Output | | | | | WP | Write-Protect | | | | | Vss | Ground | | | | | SI | Serial Data Input | | | | | SCK | Serial Clock Input | | | | | HOLD | Hold Input | | | | | Vcc | Supply Voltage | | | | # 1.0 ELECTRICAL CHARACTERISTICS # Absolute Maximum Ratings(†) | Vcc | 6.5V | |-----------------------------------|-------------------| | All inputs and outputs w.r.t. Vss | 0.6V to Vcc +1.0V | | Storage temperature | 65°C to 150°C | | Ambient temperature under bias | 40°C to 85°C | | ESD protection on all pins | 4 kV | † NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability. TABLE 1-1: DC CHARACTERISTICS | DC CHARACTERISTICS | | | Industrial (I) | Industrial (I): TA = -40° C to $+85^{\circ}$ C VCC = 1.8V to 5.5V | | | |--------------------|-----------|---|----------------|--|-------|--| | Param.
No. | Sym. | Characteristic | Min. | Max. | Units | Test Conditions | | D001 | VIH1 | High-level Input voltage | 0.7 Vcc | Vcc +1 | V | | | D002 | VIL1 | Low-level Input | -0.3 | 0.3 Vcc | V | VCC ≥ 2.7V (Note 1) | | D003 | VIL2 | Voltage | -0.3 | 0.2 Vcc | V | Vcc < 2.7V (Note 1) | | D004 | Vol | Low-level Output | _ | 0.4 | V | IOL = 2.1 mA | | D005 | Vol | Voltage | _ | 0.2 | V | IOL = 1.0 mA, VCC < 2.5V | | D006 | Voн | High-level Output
Voltage | Vcc -0.5 | _ | V | ΙΟΗ = -400 μΑ | | D007 | ILI | Input Leakage
Current | _ | ±1 | μА | CS = Vcc, Vin = Vss or Vcc | | D008 | ILO | Output Leakage
Current | _ | ±1 | μА | CS = Vcc, Vout = Vss or Vcc | | D009 | CINT | Internal Capacitance
(all inputs and
outputs) | _ | 7 | pF | TA = 25°C, CLK = 1.0 MHz,
VCC = 5.0V (Note 1) | | D010 | Icc Read | | _ | 5 | mA | Vcc = 5.5V; FcLk = 10.0 MHz;
SO = Open | | | | Operating Current | _ | 2.5 | mA | VCC = 2.5V; FCLK = 5.0 MHz;
SO = Open | | D011 | Icc Write | | _ | 5 | mA | Vcc = 5.5V | | | | | _ | 3 | mA | Vcc = 2.5V | | D012 | Iccs | Standby Current | _ | 1 | μА | CS = Vcc = 2.5V, Inputs tied to Vcc or Vss, TA = +85°C | **Note:** This parameter is periodically sampled and not 100% tested. TABLE 1-2: AC CHARACTERISTICS | AC CHA | AC CHARACTERISTICS | | | TA | = -40°C 1 | to +85°C Vcc = 1.8V to 5.5V | |---------------|--------------------|--------------------------------|-------------------|------------------|-------------------|--| | Param.
No. | Sym. | Characteristic | Min. | Max. | Units | Test Conditions | | 1 | FCLK | Clock Frequency | _
_
_ | 10
5
3 | MHz
MHz
MHz | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 2 | Tcss | CS Setup Time | 50
100
150 | | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 3 | Тсѕн | CS Hold Time | 100
200
250 | | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 4 | TCSD | CS Disable Time | 50 | _ | ns | _ | | 5 | Tsu | Data Setup Time | 10
20
30 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 6 | THD | Data Hold Time | 20
40
50 | | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 7 | Tr | CLK Rise Time | _ | 100 | ns | (Note 1) | | 8 | TF | CLK Fall Time | _ | 100 | ns | (Note 1) | | 9 | Тні | Clock High Time | 50
100
150 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 10 | TLO | Clock Low Time | 50
100
150 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 11 | TCLD | Clock Delay Time | 50 | _ | ns | _ | | 12 | TCLE | Clock Enable Time | 50 | _ | ns | _ | | 13 | Tv | Output Valid from Clock
Low | _
_
_ | 50
100
160 | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 14 | Тно | Output Hold Time | 0 | | ns | (Note 1) | | 15 | TDIS | Output Disable Time | _
_
_ | 40
80
160 | ns
ns
ns | 4.5V ≤ VCC < 5.5V (Note 1)
2.5V ≤ VCC < 4.5V (Note 1)
1.8V ≤ VCC < 2.5V (Note 1) | | 16 | Тнѕ | HOLD Setup Time | 20
40
80 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | Note 1: This parameter is periodically sampled and not 100% tested. - 2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip's web site at www.Microchip.com. - **3:** Two begins on the rising edge of $\overline{\text{CS}}$ after a valid write sequence and ends when the internal write cycle is complete. TABLE 1-2: AC CHARACTERISTICS (CONTINUED) | AC CHARACTERISTICS | | | Industrial (I) | Industrial (I): TA = -40°C to +85°C Vcc = 1.8V to 5.5 | | | |--------------------|------|--|-----------------|---|----------------|--| | Param.
No. | Sym. | Characteristic | Min. | Max. | Units | Test Conditions | | 17 | Тнн | HOLD Hold Time | 20
40
80 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 18 | THZ | HOLD Low to Output
High-Z | 30
60
160 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V (Note 1)
2.5V ≤ VCC < 4.5V (Note 1)
1.8V ≤ VCC < 2.5V (Note 1) | | 19 | THV | HOLD High to Output
Valid | 30
60
160 | _
_
_ | ns
ns
ns | 4.5V ≤ VCC < 5.5V
2.5V ≤ VCC < 4.5V
1.8V ≤ VCC < 2.5V | | 20 | Twc | Internal Write Cycle Time (byte or page) | _ | 5 | ms | (Note 3) | | 21 | | Endurance | 1M | _ | E/W
Cycles | 25°C, Vcc = 5.5V (Note 2) | - Note 1: This parameter is periodically sampled and not 100% tested. - 2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip's web site at www.Microchip.com. - **3:** Two begins on the rising edge of $\overline{\text{CS}}$ after a valid write sequence and ends when the internal write cycle is complete. TABLE 1-3: AC TEST CONDITIONS | AC Waveform: | | | | | |------------------------------------|----------|--|--|--| | VLO = 0.2V | _ | | | | | VHI = VCC - 0.2V | (Note 1) | | | | | VHI = 4.0V | (Note 2) | | | | | CL = 100 pF | _ | | | | | Timing Measurement Reference Level | | | | | | Input | 0.5 Vcc | | | | | Output | 0.5 Vcc | | | | Note 1: For Vcc ≤ 4.0V.2: For Vcc > 4.0V. FIGURE 1-1: HOLD TIMING FIGURE 1-2: SERIAL INPUT TIMING FIGURE 1-3: SERIAL OUTPUT TIMING #### 2.0 FUNCTIONAL DESCRIPTION # 2.1 Principles of Operation The 25AA02UID is a 256-byte Serial EEPROM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today's popular microcontroller families, including Microchip's PIC® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in software to match the SPI protocol. The 25AA02UID contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the <u>rising</u> edge of SCK. The $\overline{\text{CS}}$ pin must be low and the $\overline{\text{HOLD}}$ pin must be high for the entire operation. Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses, and data are transferred MSb first, LSb last. Data $\underline{(SI)}$ is sampled on the first rising edge of SCK after \overline{CS} goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the \overline{HOLD} input and place the $\underline{25AA02UID}$ in 'HOLD' mode. After releasing the \overline{HOLD} pin, operation will resume from the point when the \overline{HOLD} was asserted. ## 2.2 Read Sequence The device is selected by pulling $\overline{\text{CS}}$ low. The 8-bit READ instruction is transmitted to the 25AA02UID followed by an 8-bit address. See Figure 2-1 for more details. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. Data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses to the slave. The internal Address Pointer automatically increments to the next higher address after each byte of data is shifted out. When the highest address is reached (FFh), the address counter rolls over to address 00h, allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the $\overline{\text{CS}}$ pin (Figure 2-1). #### 2.3 Write Sequence Prior to any attempt to write data to the 25AA02UID, the write enable latch must be set by issuing the $\underline{\mathtt{WREN}}$ instruction (Figure 2-4). This is done by setting \overline{CS} low and then clocking out the proper instruction into the 25AA02UID. After all eight bits of the instruction are transmitted, \overline{CS} must be driven high to set the write enable latch. If the write operation is initiated immediately after the \mathtt{WREN} instruction without \overline{CS} driven high, data will not be written to the array since the write enable latch was not properly set. After setting the <u>write</u> enable latch, the user may proceed by driving $\overline{\text{CS}}$ low, issuing a WRITE instruction, followed by the remainder of the address, and then the data to be written. Up to 16 bytes of data can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page. Additionally, a page address begins with XXXX 0000 and ends with XXXX 1111. If the internal address counter reaches XXXX 1111 and clock signals continue to be applied to the chip, the address counter will roll back to the first address of the page and overwrite any data that previously existed in those locations. Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or 'page size') and, end at addresses that are integer multiples of page size – 1. If a page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary. For the data to be actually written to the array, the CS must be brought high after the Least Significant bit (D0) of the n^{th} data byte has been clocked in. If $\overline{\text{CS}}$ is driven high at any other time, the write operation will not be completed. Refer to Figure 2-2 and Figure 2-3 for more detailed illustrations on the byte write sequence and the page write sequence, respectively. While the write is in progress, the STATUS register may be read to check the status of the WIP, WEL, BP1 and BP0 bits (Figure 2-6). Attempting to read a memory array location will not be possible during a write cycle. Polling the WIP bit in the STATUS register is recommended in order to determine if a write cycle is in progress. When the write cycle is completed, the write enable latch is reset. ## **BLOCK DIAGRAM** TABLE 2-1: INSTRUCTION SET | Instruction Name | Instruction Format | Description | |------------------|--------------------|---| | READ | 0000 x011 | Read data from memory array beginning at selected address | | WRITE | 0000 x010 | Write data to memory array beginning at selected address | | WRDI | 0000 x100 | Reset the write enable latch (disable write operations) | | WREN | 0000 x110 | Set the write enable latch (enable write operations) | | RDSR | 0000 x101 | Read STATUS register | | WRSR | 0000 x001 | Write STATUS register | x = don't care FIGURE 2-1: READ SEQUENCE # **25AA02UID** ### FIGURE 2-2: BYTE WRITE SEQUENCE ## FIGURE 2-3: PAGE WRITE SEQUENCE # 2.4 Write Enable (WREN) and Write Disable (WRDI) The 25AA02UID contains a write enable latch. See Table 2-4 for the Write-Protect Functionality Matrix. This latch must be set before any write operation will be completed internally. The \mathtt{WREN} instruction will set the latch, and the \mathtt{WRDI} will reset the latch. The following is a list of conditions under which the write enable latch will be reset: - Power-up - WRDI instruction successfully executed - WRSR instruction successfully executed - WRITE instruction successfully executed - WP pin is brought low FIGURE 2-4: WRITE ENABLE SEQUENCE (WREN) FIGURE 2-5: WRITE DISABLE SEQUENCE (WRDI) # 2.5 Read Status Register Instruction (RDSR) The Read Status Register instruction (RDSR) provides access to the STATUS register. See Figure 2-6 for the RDSR timing sequence. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as follows: TABLE 2-2: STATUS REGISTER | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|-----|-----|-----|-----| | _ | - | - | _ | W/R | W/R | R | R | | X | Х | Х | Χ | BP1 | BP0 | WEL | WIP | | W/R = writable/readable. R = read-only. | | | | | | | | The **Write-In-Process (WIP)** bit indicates whether the 25AA02UID is busy with a write operation. When set to a '1', a write is in progress, when set to a '0', no write is in progress. This bit is read-only. The **Write Enable Latch (WEL)** bit indicates the status of the write enable latch and is read-only. When set to a '1', the latch allows writes to the array, when set to a '0', the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 2-4 and Figure 2-5. The **Block Protection (BP0 and BP1)** bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction, which is shown in Figure 2-7. These bits are nonvolatile and are described in more detail in Table 2-3. FIGURE 2-6: READ STATUS REGISTER TIMING SEQUENCE (RDSR) # 2.6 Write Status Register Instruction (WRSR) The Write Status Register instruction (WRSR) allows the user to write to the nonvolatile bits in the STATUS register, as shown in Table 2-2. See Figure 2-7 for the WRSR timing sequence. Four levels of protection for the array are selectable by writing to the appropriate bits in the STATUS register. The user has the ability to write-protect none, one, two, or all four of the segments of the array as shown in Table 2-3. **TABLE 2-3: ARRAY PROTECTION** | BP1 | BP0 | Array Addresses
Write-Protected | |-----|-----|------------------------------------| | 0 | 0 | none | | 0 | 1 | upper 1/4
(C0h-FFh) | | 1 | 0 | upper 1/2
(80h-FFh) | | 1 | 1 | all
(00h-FFh) | #### 2.7 Data Protection The following protection has been implemented to prevent inadvertent writes to the array: - The write enable latch is reset on power-up - A write enable instruction must be issued to set the write enable latch - After a byte write, page write or STATUS register write, the write enable latch is reset - CS must be set high after the proper number of clock cycles to start an internal write cycle - Access to the array during an internal write cycle is ignored and programming is continued #### 2.8 Power-On State The 25AA02UID powers on in the following state: - The device is in low-power Standby mode (CS = 1) - · The write enable latch is reset - · SO is in high-impedance state - A high-to-low-level transition on CS is required to enter active state TABLE 2-4: WRITE-PROTECT FUNCTIONALITY MATRIX | WP
(pin 3) | WEL
(SR bit 1) | Protected Blocks | Unprotected Blocks | STATUS Register | |---------------|-------------------|------------------|--------------------|-----------------| | 0 (low) | Х | Protected | Protected | Protected | | 1 (high) | 0 | Protected | Protected | Protected | | 1 (high) | 1 | Protected | Writable | Writable | x = don't care # 3.0 PREPROGRAMMED UNIQUE 32-BIT SERIAL NUMBER The 25AA02UID is programmed at the factory with a unique 32-bit serial number stored in the upper 1/4 of the array and write-protected through the STATUS register. The remaining 1,536 bits are available for application use. Note: The 32-bit serial number is unique across all Microchip UID-family serial EEPROM devices. #### FIGURE 3-1: MEMORY ORGANIZATION The 4-byte serial number is stored in array locations 0xFC through 0xFF, as shown in Figure 3-2. #### 3.1 Manufacturer and Device Codes In addition to the serial number, a manufacturer code is stored at location 0xFA and a device identifier is stored at 0xFB. The manufacturer code is fixed as 0x29. For the 25AA02UID, the device identifier is 0x51. The '5' indicates the SPI family and the '1' indicates a 2 Kbit memory density. # 3.2 Factory-Programmed Write Protection In order to help guard against accidental corruption of the serial number, the BP1 and BP0 bits of the STATUS register are programmed at the factory to '0' and '1', respectively, as shown in the following table: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|-----|-----|-----|-----| | Х | Х | Х | Х | BP1 | BP0 | WEL | WIP | | | _ | _ | _ | 0 | 1 | _ | _ | This protects the upper 1/4 of the array (0xC0 to 0xFF) from write operations. This array block can be utilized for writing by clearing the BP bits with a Write Status Register (WRSR) instruction. Note that if this is performed, care must be taken to prevent overwriting the serial number. FIGURE 3-2: SERIAL NUMBER PHYSICAL MEMORY MAP EXAMPLE | Description | Manufacturer
Code | Device
Code | | 32-bit Seri | al Number | | |------------------|----------------------|----------------|-----|-------------|-----------|-----| | Data | 29h | 51h | 12h | 34h | 56h | 78h | | Туре | Fixed | | | Seria | ılized | | | Array
Address | FAh | FBh | FCh | FDh | FEh | FFh | # 3.3 Extending the 32-bit Serial Number For applications that require serial numbers larger than 32 bits, additional data bytes can be used to pad the provided serial number to meet the required length. Any data byte values can be used for padding as the 32-bit serial number ensures the extended serial number remains unique. The padding can be performed in two ways. The first method is to pad the data in software by combining the 32-bit serial number from the 25AA02UID with fixed data. The second method is to extend the number of bytes read from the 25AA02UID to meet the required length. Table 3-1 shows example address ranges and their corresponding serial number lengths. TABLE 3-1: EXTENDED READ EXAMPLES | Start Address | End Address | Serial Number
Length | |---------------|-------------|-------------------------| | 0xFC | 0xFF | 32 bits | | 0xFA | 0xFF | 48 bits | | 0xF8 | 0xFF | 64 bits | | 0xF0 | 0xFF | 128 bits | | 0xE0 | 0xFF | 256 bits | #### 4.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 4-1. TABLE 4-1: PIN FUNCTION TABLE | Name | SOIC | SOT-23 | Function | |------|------|--------|--------------------| | CS | 1 | 5 | Chip Select Input | | SO | 2 | 4 | Serial Data Output | | WP | 3 | _ | Write-Protect Pin | | Vss | 4 | 2 | Ground | | SI | 5 | 3 | Serial Data Input | | SCK | 6 | 1 | Serial Clock Input | | HOLD | 7 | _ | Hold Input | | Vcc | 8 | 6 | Supply Voltage | # 4.1 Chip Select (CS) A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle which is already initiated or in progress will be completed, regardless of the $\overline{\text{CS}}$ input signal. If $\overline{\text{CS}}$ is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low-to-high transition on $\overline{\text{CS}}$ after a valid write sequence initiates an internal write cycle. After power-up, a low level on $\overline{\text{CS}}$ is required prior to any sequence being initiated. #### 4.2 Serial Output (SO) The SO pin is used to transfer data out of the 25AA02UID. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock. # 4.3 Write-Protect (WP) The \overline{WP} pin is a hardware write-protect input pin. When it is low, all writes to the array or STATUS register are disabled, but any other operations function normally. When \overline{WP} is high, all functions, including nonvolatile writes operate normally. At any time, when \overline{WP} is low, the write enable Reset latch will be reset and programming will be inhibited. However, if a write cycle is already in progress, \overline{WP} going low will not change or disable the write cycle. See Table 2-4 for the Write-Protect Functionality Matrix. ## 4.4 Serial Input (SI) The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock. #### 4.5 Serial Clock (SCK) The SCK is used to synchronize the communication between a master and the 25AA02UID. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input. # 4.6 Hold (HOLD) The HOLD pin is used to suspend transmission to the 25AA02UID while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-tolow transition. The 25AA02UID must remain selected during this sequence. The SI, SCK and SO pins are in a high-impedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line. ## 5.0 PACKAGING INFORMATION # 5.1 Package Marking Information | Example: | | |------------------|--| | | | | AAAD3
O 271L7 | | | | | | | 1st Line Ma | arking Code | |-------------|-------------|-------------| | Part Number | SOIC | SOT-23 | | | l Temp. | l Temp. | | 25AA02UID | 25A2UIDT | AAADY | | Legend: | T
Y
YY
WW
NNN | Part number or part number code Temperature (I, E) Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code (2 characters for small packages) Ph-free JEDEC designator for Matte Tin (Sn) | |---------|---------------------------|---| | | e 3 | Pb-free JEDEC designator for Matte Tin (Sn) | **Note**: For very small packages with no room for the Pb-free JEDEC designator (e3), the marking will only appear on the outer carton or reel label. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. ^{*}Standard OTP marking consists of Microchip part number, year code, week code, and traceability code. # 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing No. C04-057C Sheet 1 of 2 ## 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------|-------------|------|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Number of Pins | N | | 8 | | | Pitch | е | | 1.27 BSC | | | Overall Height | Α | - | - | 1.75 | | Molded Package Thickness | A2 | 1.25 | - | = | | Standoff § | A1 | 0.10 | ı | 0.25 | | Overall Width | Е | | 6.00 BSC | | | Molded Package Width | E1 | | 3.90 BSC | | | Overall Length | D | | 4.90 BSC | | | Chamfer (Optional) | h | 0.25 | - | 0.50 | | Foot Length | L | 0.40 | - | 1.27 | | Footprint | L1 | | 1.04 REF | | | Foot Angle | φ | 0° | - | 8° | | Lead Thickness | С | 0.17 | - | 0.25 | | Lead Width | b | 0.31 | - | 0.51 | | Mold Draft Angle Top | α | 5° | - | 15° | | Mold Draft Angle Bottom | β | 5° | - | 15° | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing No. C04-057C Sheet 2 of 2 # 8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-------------------------|-------------|-----|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Contact Pitch | Ш | | 1.27 BSC | | | Contact Pad Spacing | C | | 5.40 | | | Contact Pad Width (X8) | X1 | | | 0.60 | | Contact Pad Length (X8) | Y1 | | | 1.55 | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2057A # 6-Lead Plastic Small Outline Transistor (OT) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------|-------------|------|----------|------| | Dimensio | n Limits | MIN | NOM | MAX | | Number of Pins | N | | 6 | | | Pitch | е | | 0.95 BSC | | | Outside Lead Pitch | e1 | | 1.90 BSC | | | Overall Height | Α | 0.90 | _ | 1.45 | | Molded Package Thickness | A2 | 0.89 | _ | 1.30 | | Standoff | A1 | 0.00 | _ | 0.15 | | Overall Width | Е | 2.20 | _ | 3.20 | | Molded Package Width | E1 | 1.30 | _ | 1.80 | | Overall Length | D | 2.70 | _ | 3.10 | | Foot Length | L | 0.10 | _ | 0.60 | | Footprint | L1 | 0.35 | _ | 0.80 | | Foot Angle | ф | 0° | _ | 30° | | Lead Thickness | С | 0.08 | _ | 0.26 | | Lead Width | b | 0.20 | - | 0.51 | ## Notes: - 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side. - 2. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-028B # 6-Lead Plastic Small Outline Transistor (OT) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |-------------------------|-------------|------|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Contact Pitch | Е | | 0.95 BSC | | | Contact Pad Spacing | С | | 2.80 | | | Contact Pad Width (X6) | Х | | | 0.60 | | Contact Pad Length (X6) | Υ | | | 1.10 | | Distance Between Pads | G | 1.70 | | | | Distance Between Pads | GX | 0.35 | | | | Overall Width | Z | | | 3.90 | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2028A # APPENDIX A: REVISION HISTORY # **Revision A (05/2013)** Initial release. # **25AA02UID** NOTES: #### THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. #### CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - · Technical Support - · Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com ## **READER RESPONSE** It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. | RE: | Reader Response | Total Pages Sent | |-----|--|--| | | m: Name Company Address City / State / ZIP / Country | | | App | Telephone: ()
plication (optional): | FAX: () | | | uld you like a reply?YN | | | | vice: 25AA02UID | Literature Number: DS20005205A | | Que | estions: | | | 1. | What are the best features of this do | cument? | | 2. | How does this document meet your | hardware and software development needs? | | 3. | Do you find the organization of this o | document easy to follow? If not, why? | | 4. | What additions to the document do y | ou think would enhance the structure and subject? | | 5. | What deletions from the document c | ould be made without affecting the overall usefulness? | | 6. | Is there any incorrect or misleading i | nformation (what and where)? | | | | | | 7. | How would you improve this docume | ent? | | | | | # PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | to order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | | | | | | | | |--|------------|--|---|--|--|----|---| | PART NO. Device | _ | X - X /XX
Tape & Reel Temperature Package | | | | | Examples: a) 25AA02UID-I/SN = 2k-bit, 16-byte page, 1.8V Serial EEPROM with 32-bit serial number, Industrial temp., SOIC package | | Device: | 25AA0 | 2UID = | 2k-Bit, 1.8V, 16-Byte Page, SPI Serial EEPROM with 32-bit Serial Number | | | b) | 25AA02UIDT-I/SN = 2k-bit, 16-byte page, 1.8V
Serial EEPROM with 32-bit serial number,
Industrial temp., Tape & Reel, SOIC package | | Tape & Reel: | Blank
T | = | Standard packaging
Tape & Reel | | | | | | Temperature
Range: | I | = | -40°C to+85°C | | | | | | Package: | SN
OT | = | Plastic SOIC (3.90 m
SOT-23, 6-lead (Tape | | | | | | | | | | | | | | # **25AA02UID** NOTES: #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - · Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 9781620772294 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # **Worldwide Sales and Service** #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 **Australia - Sydney** Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 **China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 **China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 **China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 **China - Hangzhou** Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 **China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 **China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 **China - Shenyang** Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 **China - Shenzhen** Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 **China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 **China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 **China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130 **China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 **Japan - Osaka** Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 **Japan - Tokyo** Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 **Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302 **Korea - Seoul** Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 **Malaysia - Kuala Lumpur** Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 **Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068 **Philippines - Manila** Tel: 63-2-634-9065 Fax: 63-2-634-9069 **Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850 **Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955 **Taiwan - Kaohsiung** Tel: 886-7-213-7828 Fax: 886-7-330-9305 **Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 **Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820 11/29/12 Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331