MAX16052/MAX16053

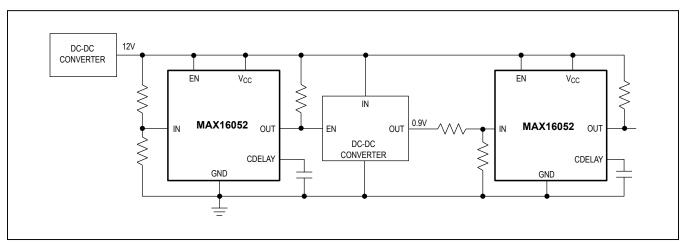
High-Voltage, Adjustable Sequencing/Supervisory Circuits

General Description

The MAX16052/MAX16053 are a family of small, low-power, high-voltage monitoring circuits with sequencing capability. These miniature devices offer very wide flexibility with an adjustable voltage threshold and an external capacitor-adjustable time delay. These devices are ideal for use in power-supply sequencing, reset sequencing, and power switching applications. Multiple devices can be cascaded for complex sequencing applications.

A high-impedance input (IN) with a 0.5V threshold allows an external resistive-divider to set the monitored threshold. The output (OUT) asserts high when the input voltage rises above the 0.5V threshold and the enable input (EN) is asserted high. When the voltage at IN falls below 0.495V or when the enable input is de-asserted (EN = low), the output deasserts (OUT = low). The devices provide a capacitor programmable delay time from when the voltage at IN rises above 0.5V to when the output is asserted.

The MAX16052 offers an active-high open-drain output while the MAX16053 offers an active-high push-pull output. Both devices operate from a 2.25V to 28V supply voltage and feature an active-high enable input. The MAX16052/MAX16053 are available in a tiny 6-pin SOT23 package and are fully specified over the automotive temperature range (-40°C to +125°C).


Benefits and Features

- Less External Circuitry Results in Smaller Solution Size
 - Open-Drain (28V Tolerant) Output Allows Interfacing to 12V Intermediate Bus Voltage
 - Operates from V_{CC} of 2.25V to 28V
 - Small 6-Pin SOT23 Package
- Ideal for Use in Power-Supply Sequencing, Reset Sequencing, and Power-Switching Applications
 - Active-High Logic-Enable Input
 - 1.8% Accurate Adjustable Threshold Over Temperature
- Fully Specified from -40°C to +125°C for Reliability in Extreme Temperatures
- Low Supply Current (18µA typ) Reduces Power Consumption

Applications

- Medical Equipment
- Intelligent Instruments
- Portable Equipment
- Computers/Servers
- Critical µP Monitoring
- Set-Top Boxes
- Telecom

Typical Operating Circuit

High-Voltage, Adjustable Sequencing/Supervisory Circuits

Absolute Maximum Ratings

(All voltages referenced to GND.)		Continuous Power Dissipation (T _A = +70°C)		
V _{CC}	0.3V to +30V	6-Pin SOT23 (derate 8.7mW/°C above	+70°C)695.7mW	
OUT (push-pull, MAX16053)	0.3V to (V _{CC} + 0.3V)	Operating Temperature Range	40°C to +125°C	
OUT (open-drain, MAX16052)	0.3V to +30V	Junction Temperature	+150°C	
EN, IN	0.3V to (V _{CC} + 0.3V)	Storage Temperature Range	65°C to +150°C	
CDELAY	0.3V to +6V	Lead Temperature (soldering, 10s)	+300°C	
Input/Output Current (all pins)	±20mA	Soldering Temperature (reflow)	+260°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{CC}$ = 2.25V to 28V, V_{EN} = V_{CC} , T_A = T_J = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V and T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
SUPPLY								
Operating Voltage Range	V _{CC}			2.25		28	V	
Undervoltage Lockout	UVLO	V _{CC} falling (Note 2)		1.8		2	V	
			V _{CC} = 3.3V		18	37		
		MAX16052, no load	V _{CC} = 12V		23	45	μΑ	
V _{CC} Supply Current	Icc		V _{CC} = 28V		38	61		
VCC Supply Guirent	100		V _{CC} = 3.3V		22	47	μΛ.	
		MAX16053, no load	V _{CC} = 12V		29	57		
			V _{CC} = 28V		44	71		
IN								
Threshold Voltage	V _{TH}	V _{IN} rising, 2.25V ≤ V	_{CC} ≤ 28V	0.491	0.500	0.509	V	
Hysteresis	V _{HYST}	V _{IN} falling			5		mV	
Input Current	I _{IN}	V _{IN} = 0 or 28V		-110	+25	+110	nA	
C _{DELAY}								
C _{DELAY} Charge Current	I _{CD}	V _{CDELAY} = 0V		200	250	300	nA	
C _{DELAY} Threshold	V _{TCD}	V _{CDELAY} rising		0.95	1.00	1.05	V	
C. Dulldown Booistones	_	V _{CC} ≥ 2.25V, I _{SINK} =	V _{CC} ≥ 2.25V, I _{SINK} = 200µA		15	60	Ω	
C _{DELAY} Pulldown Resistance	R _{CDELAY}	V _{CC} ≥ 3.3V, I _{SINK} = 1mA			15	60		
EN								
EN Low Voltage	V _{IL}					0.5	V	
EN High Voltage	V _{IH}			1.4			V	
EN Leakage Current	I _{LEAK}	V _{EN} = 0 or 28V		-110	+20	+110	nA	
OUT								
		V _{CC} ≥ 1.2V, I _{SINK} = 90µA				0.2		
OUT Low Voltage (Open-Drain or Push-Pull)	V _{OL}	V _{CC} ≥ 2.25V, I _{SINK} =	0.5mA			0.3	V	
(Open-Dialit of Fusil-Full)	alli or Pusii-Puli)		V _{CC} > 4.5V, I _{SINK} = 1mA			0.4		
OUT High Voltage		V _{CC} ≥ 2.25V, I _{SOURCE} = 500µA		0.8 x V ₀	CC		.,	
(Push-Pull, MAX16053)	V _{OH}	V _{CC} ≥ 4.5V, I _{SOURCE} = 800µA		0.9 x V ₀			V	
OUT Leakage Current (Open-Drain, MAX16052)	I _{LKG}	Output not asserted low, V _{OUT} = 28V				150	nA	

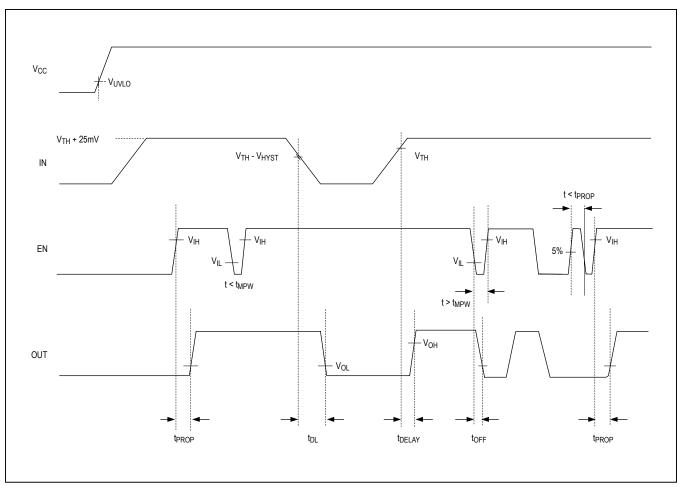
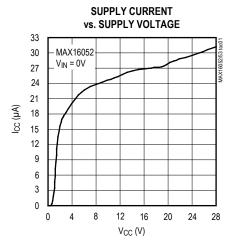
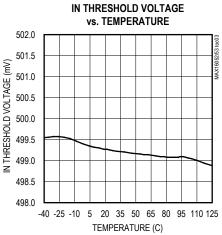
Electrical Characteristics (continued)

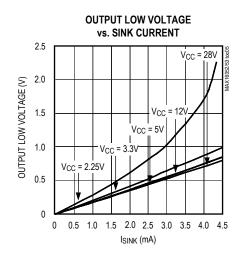
 $(V_{CC}$ = 2.25V to 28V, V_{EN} = V_{CC} , T_A = T_J = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V and $T_A = +25^{\circ}C.$ (Note 1)

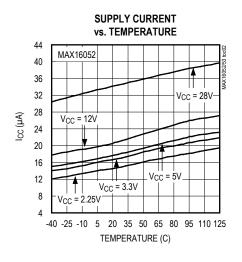
PARAMETER	SYMBOL		COND	ITIONS		MIN	TYP	MAX	UNITS
TIMING									
		$V_{CC} = 3.3V$, V_{IN} rising, $V_{IN} = V_{TH} + 25mV$		pullup C _{CDE}	MAX16052, 100k Ω pullup resistor, C _{CDELAY} = 0		30		μs
				MAX1	6053, _{LAY} = 0	30 190 F			ms
	^t DELAY			MAX10 pullup C _{CDE}	6052, 100kΩ resistor, _{LAY} = 0.047μF				
IN to OUT Propagation Delay				MAX1	6053, _{LAY} = 0.047µF		190		
		V_{CC} = 12V, V_{IN} rising, V_{IN} = V_{TH} + 25mV		pullup	6052, 100kΩ resistor, _{LAY} = 0		30		
				MAX1 C _{CDE}	6053, _{LAY} = 0		30		μs
	t _{DL}	V_{CC} = 3.3V, V_{IN} falling, V_{IN} = V_{TH} - 30mV			18				
	-DL	i e			V _{TH} - 30mV		18		
Startup Delay (Note 3)					C _{CDELAY} = 0		0.5		ms
EN Minimum Input Pulse Width	t _{MPW}	V _{CC} = 12V, V _{IN} = 12V, C _{CDELAY} = 0		1	0.5		μs		
EN Glitch Rejection	MPVV					'	100		ns
	t _{OFF} e	From device enabled to device disabled MAX1605	100kΩ	pullup	V _{CC} = 3.3V		250		
EN to OUT Delay			resisto		V _{CC} = 12V		300		ns
			053	V _{CC} = 3.3V		350			
			Wirokie		V _{CC} = 12V		400		
		From device disabled to device enabled	MAX16 100kΩ resistor	pullup	V _{CC} = 3.3V		14		μs
			C _{CDEL}	AY = 0	V _{CC} = 12V		14		
EN to OUT Delay	t _{PROP}			053	V _{CC} = 3.3V		14		
Lit to oot boldy					V _{CC} = 12V		14	-1	
					0kΩ pullup _AY = 0.047μF		190		ms
			MAX16 0.047µ		CDELAY =		190		1115

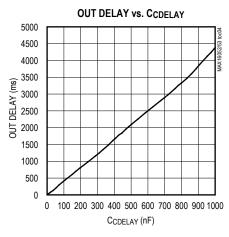
Note 1: All devices are production tested at T_A = +25°C. Limits over temperature are guaranteed by design. Note 2: When V_{CC} falls below the UVLO threshold, the outputs deassert (OUT goes low). When V_{CC} falls below 1.2V, the output state cannot be determined.

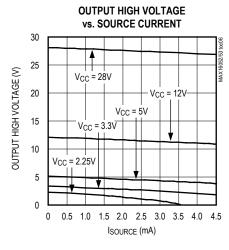
Note 3: During the initial power-up, V_{CC} must exceed 2.25V for at least 0.5ms before OUT can go high.

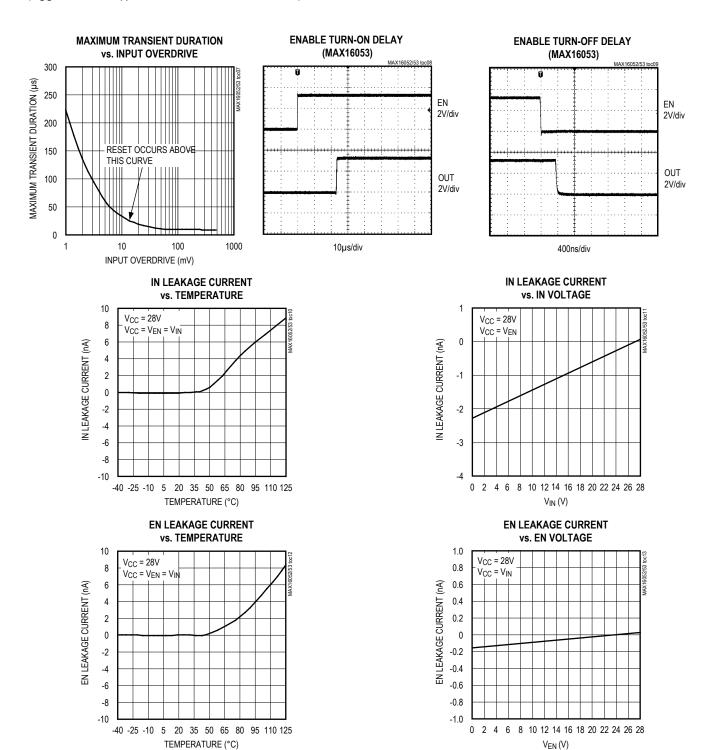




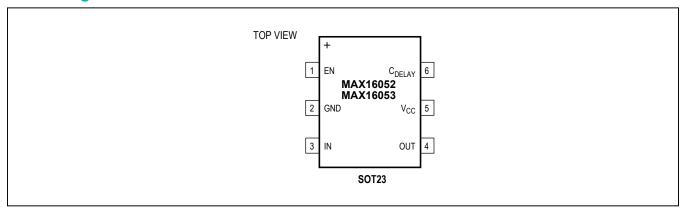

Figure 1. MAX16052/MAX16053 Timing Diagram (C_{CDELAY} = 0)


Typical Operating Characteristics


(V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)







Typical Operating Characteristics (continued)

(V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	EN	Active-High Logic-Enable Input. Drive EN low to immediately de-assert the output to its false state (OUT = low) independent of V_{IN} . With V_{IN} above V_{TH} , drive EN high to assert the output to its true state (OUT = high) after the adjustable delay period. Connect EN to V_{CC} , if not used.
2	GND	Ground
3	IN	High-Impedance Monitor Input. Connect IN to an external resistive-divider to set the desired monitor threshold. The output changes state when V_{IN} rises above 0.5V and when V_{IN} falls below 0.495V.
4	OUT	Active-High Sequencer/Monitor Output. Open-drain (MAX16052) or push-pull (MAX16053). OUT is asserted to its true state (OUT = high) when V_{IN} is above V_{TH} and the enable input is in its true state (EN = high) after the capacitor-adjusted delay period. OUT is de-asserted to its false state (OUT = low) immediately after V_{IN} drops below 0.495V or the enable input is in its false state (EN = low). The MAX16052 open-drain output requires an external pullup resistor.
1 2 1 1/00 1 111		Supply Voltage Input. Connect a 2.25V to 28V supply to V_{CC} to power the device. For noisy systems, bypass with a $0.1\mu F$ ceramic capacitor to GND.
6	C _{DELAY}	Capacitor-Adjustable Delay Input. Connect an external capacitor (C_{CDELAY}) from C_{DELAY} to GND to set the IN-to-OUT and EN-to-OUT delay period. For V_{IN} rising, $t_{DELAY} = (C_{CDELAY} \times 4.0 \times 106) + 30\mu$ s. For EN rising, $t_{PROP} = (C_{CDELAY} \times 4.0 \times 10^6) + 14\mu$ s.

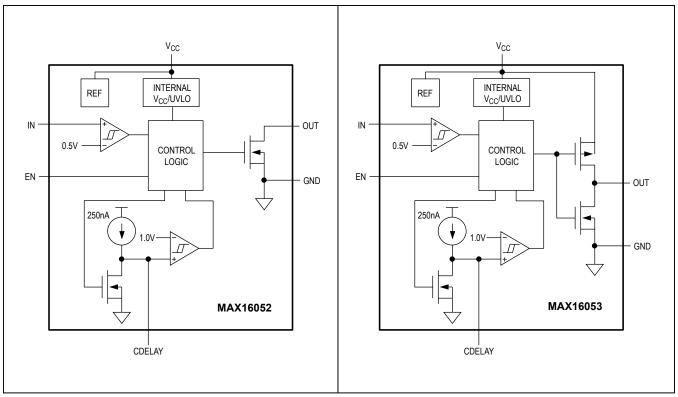


Figure 2. Simplified Functional Diagram

Detailed Description

The MAX16052/MAX16053 family of high-voltage, sequencing/supervisory circuits provide adjustable voltage monitoring for inputs down to 0.5V. These devices are ideal for use in power-supply sequencing, reset sequencing, and power-switching applications. Multiple devices can be cascaded for complex sequencing applications.

The MAX16052/MAX16053 perform voltage monitoring using a high-impedance input (IN) with an internally fixed 0.5V threshold. When the voltage at IN falls below 0.5V or when the enable input is de-asserted (EN = low) OUT goes low. When V_{IN} rises above 0.5V and the enable input is asserted (EN = high), OUT goes high after a capacitor-adjustable time delay.

With V_{IN} above 0.5V, the enable input can be used to turn on or off the output. <u>Table 1</u> details the output state depending on the various input and enable conditions.

Table 1. MAX16052/MAX16053

IN	EN	OUT
V _{IN} < V _{TH}	Low	Low
V _{IN} < V _{TH}	High	Low
V _{IN} < V _{TH}	Low	Low
V _{IN} > V _{TH}	High	OUT = High Impedance (MAX16052)
		OUT = V _{CC} (MAX16053)

Supply Input (V_{CC})

The device operates with a V_{CC} supply voltage from 2.25V to 28V. In order to maintain a 1.8% accurate threshold at IN, V_{CC} must be above 2.25V. When V_{CC} falls below the UVLO threshold, the output deasserts low. When V_{CC} falls below 1.2V, the output state is not guaranteed. For noisy systems, connect a 0.1 μ F ceramic capacitor from V_{CC} to GND as close to the device as possible.

High-Voltage, Adjustable Sequencing/Supervisory Circuits

Monitor Input (IN)

Connect the center point of a resistive-divider to IN to monitor external voltages (see R1 and R2 of Figure 4). IN has a rising threshold of V_{TH} = 0.5V and a falling threshold of 0.495V (5mV hysteresis). When V_{IN} rises above V_{TH} and EN is high, OUT goes high after the adjustable tDFI AY period. When V_{IN} falls below 0.495V, OUT goes low after a 18µs delay. IN has a maximum input current of 60nA, so large value resistors are permitted without adding significant error to the resistive-divider.

Adjustable Delay (CDELAY)

When $V_{\mbox{\footnotesize{IN}}}$ rises above $V_{\mbox{\footnotesize{TH}}}$ with EN high, the internal 250nA current source begins charging an external capacitor connected from C_{DELAY} to GND. When the voltage at CDELAY reaches 1V, the output asserts (OUT goes high). When the output asserts, $C_{\mbox{\scriptsize CDELAY}}$ is immediately discharged. Adjust the delay (tDELAY) from when VIN rises above V_{TH} (with EN high) to OUT going high according to the equation:

$$t_{DELAY} = C_{CDELAY} \times (4 \times 10^6 \Omega) + (30 \mu s)$$

where t_{DELAY} is in seconds and C_{CDELAY} is in Farads.

Enable Input (EN)

The MAX16052/MAX16053 offer an active-high enable input (EN). With V_{IN} above V_{TH}, drive EN high to force OUT high after the capacitor-adjustable delay time. The EN-to-OUT delay time (tpROP) can be calculated from when EN goes above the EN threshold using the equation:

$$t_{PROP} = C_{CDFLAY} \times (4 \times 10^6 \Omega) + (14 \mu s)$$

where t_{PROP} is in seconds and C_{CDELAY} is in Farads. Drive EN low to force OUT low within 300ns for the MAX16052 and within 400ns for the MAX16053.

Output (OUT)

The MAX16052 offers an active-high, open-drain output while the MAX16053 offers an active-high push-pull output. The push-pull output is referenced to V_{CC}. The open-drain output requires a pullup resistor and can be pulled up to 28V.

Applications Information

Input Threshold

The MAX16052/MAX16053 monitor the voltage on IN with an external resistive-divider (Figure 4). R1 and R2 can have very high values to minimize current consumption due to low IN leakage currents (60nA max). Set R2 to some conveniently high value (200kΩ for ±1% additional variation in threshold, for example) and calculate R1 based on the desired monitored voltage using the following formula:

$$R1 = R2 \times \left[\frac{V_{MONITOR}}{V_{TH}} - 1 \right]$$

where $V_{\mbox{\scriptsize MONITOR}}$ is the desired monitored voltage and V_{TH} is the reset input threshold (0.5V).

Pullup Resistor Values (MAX16052 Only)

The exact value of the pullup resistor for the open-drain output is not critical, but some consideration should be made to ensure the proper logic levels when the device is sinking current. For example, if V_{CC} = 2.25V and the pullup voltage is 28V, keep the sink current less than 0.5mA as shown in the Electrical Characteristics table. As a result, the pullup resistor should be greater than $56k\Omega$. For a 12V pullup, the resistor should be larger than $24k\Omega$. Note that the ability to sink current is dependent on the V_{CC} supply voltage.

Ensuring a Valid OUT Down to $V_{CC} = 0V$ (Push-Pull OUT)

In applications in which OUT must be valid down to $V_{CC} = 0V$, add a pulldown resistor between OUT and GND for the push-pull output (MAX16053). The resistor sinks any stray leakage currents, holding OUT low (Figure 3). The value of the pulldown resistor is not critical; $100k\Omega$ is large enough not to load OUT and small enough to pull OUT to ground. The external pulldown cannot be used with the open-drain OUT output.

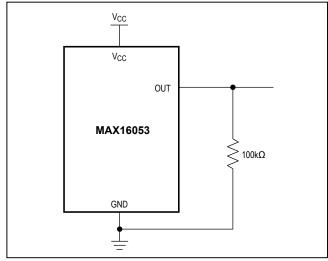


Figure 3. Ensuring OUT Valid to $V_{CC} = 0V$

High-Voltage, Adjustable Sequencing/Supervisory Circuits

Typical Application Circuits

Figure 4 through Figure 6 show typical applications for the MAX16052/MAX16053. Figure 4 shows the MAX16052 used with a pMOSFET in an overvoltage protection circuit. Figure 5 shows the MAX16053 in a low-voltage sequencing application using an nMOSFET. Figure 6 shows the MAX16053 used in a multiple output sequencing application.

Using an n-Channel Device for Sequencing

In higher power applications, using an n-channel device reduces the loss across the MOSFET as it offers a lower drain-to-source on-resistance. However, an nMOSFET the MAX\overline{1}6053 in a switch sequencing application using an nMOSFET.

Similarly, if a higher voltage is present in the system, the open-drain version can be used in the same manner.

requires a sufficient VGS voltage to fully enhance it for a

low R_{DS ON}. The application shown in Figure 5 shows

Power-Supply Bypassing

In noisy applications, bypass V_{CC} to ground with a $0.1\mu F$ capacitor as close to the device as possible. The additional capacitor improves transient immunity. For fast-rising V_{CC} transients, additional capacitors may be required.

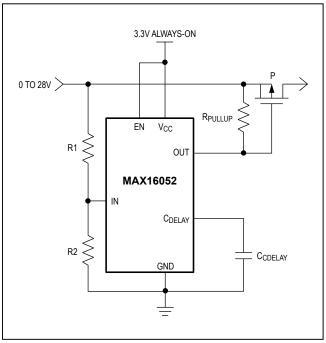


Figure 4. Overvoltage Protection

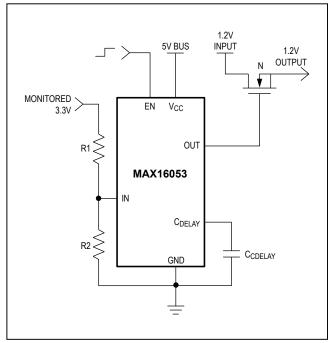


Figure 5. Low-Voltage Sequencing Using an nMOSFET

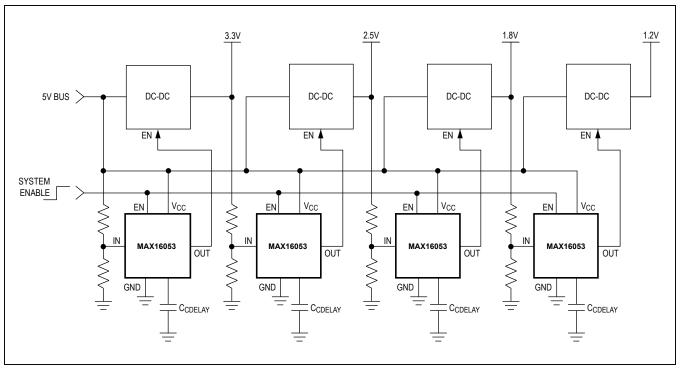


Figure 6. Multiple Output Sequencing

Ordering Information

PART	OUTPUT	PIN- PACKAGE	TOP MARK	
MAX16052AUT+T	Open-Drain	6 SOT23	+ACLW	
MAX16053AUT+T	Push-Pull	6 SOT23	+ACLX	

Note: All devices operate over the -40°C to +125°C operating automotive temperature range.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND PATTERN
TYPE	CODE	NO.	NO.
6 SOT23	U6+1	<u>21-0058</u>	

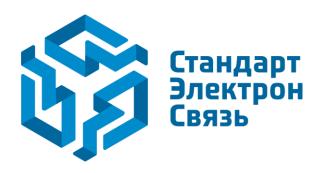
Chip Information

PROCESS: BiCMOS

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel, offered in 2.5k increments.

MAX16052/MAX16053


High-Voltage, Adjustable Sequencing/Supervisory Circuits

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	0 5/08 Initial release		_
1	1 10/08 Update Adjustable Delay (CDELAY) and Power-Supply Bypassing sections.		9, 10
2	1/10	Revised the Features, General Description, Absolute Maximum Ratings, Electrical Characteristics, Typical Operating Characteristics, Pin Description, and the Supply Input (VCC) sections.	1, 2, 3, 5–8
3	4/14	No /V OPNs; removed Automotive reference from Applications section	1
4	5/15	Added the Benefits and Features section	1
5	3/16	Updated package outline drawing number in Ordering Information table	12
6	8/16	Updated Table 1	8
7	5/18	Updated TOC10	6

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира.

Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов.

Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России.

Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию.

Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001.

Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России.

С нами вы становитесь еще успешнее!

Наши контакты:

Телефон: +7 812 627 14 35

Электронная почта: sales@st-electron.ru

Адрес: 198099, Санкт-Петербург,

Промышленная ул, дом № 19, литера Н,

помещение 100-Н Офис 331