PC123XxYSZ1B Series # DIP 4pin Reinforced Insulation Type Photocoupler #### ■ Description **PC123XxYSZ1B** Series contains an IRED optically coupled to a phototransistor. It is packaged in a 4-pin DIP, available in wide-lead spacing option and SMT gullwing lead-form option. Input-output isolation voltage(rms) is 5kV. CTR is 50% to 400% (at I_F =5mA, V_{CE} =5V,Ta=25°C) #### ■ Features - 1. 4-pin DIP package - Double transfer mold package (Ideal for Flow Soldering) - 3. Current transfer ratio (CTR : MIN. 50% at I_F =5 mA, V_{CE} =5V, Ta=25°C) - 4. Several CTR ranks available - 5.Reinforced insulation type (Isolation distance : MIN. 0.4mm) - 6.Long creepage distance type (wide lead-form type only: MIN. 8mm) - 7. High isolation voltage between input and output (V_{iso}(rms): 5kV) - 8.RoHS directive compliant #### Agency approvals/Compliance - Recognized by UL1577 (Double protection isolation), file No. E64380 (as model No. PC123) - 2. Approved by BSI, BS-EN62368 (as model No. **PC123**) - 3. Approved by SEMKO, EN60065, EN60335-1, EN60950 (as model No. **PC123**) - 4. Approved by DEMKO, EN60065, EN60335-1,EN60950, (as model No. **PC123**) - 5. Approved by NEMKO, EN60065, EN60335-1, EN60950 (as model No. **PC123**) - Approved by FIMKO, EN60065, EN60335-1, EN60950, (as model No. PC123) - 7.Recognized by CSA file No. CA95323 (as model No. **PC123**) - 8. Approved by VDE, DIN EN60747-5-5(*) (as an option) File No. 40008087 (as model No. **PC123**) - 9. Package resin: UL flammability grade (94V 0) (*) DIN EN60747-5-5: successor standard of DIN VDE0884. #### Applications - 1. I/O isolation for MCUs (Micro Controller Units) - 2. Noise suppression in switching circuits - Signal transmission between circuits of different potentials and impedances - 4. Over voltage detection # ■ Internal Connection Diagram - 1) Anode - ② Cathode - ③ Emitter - (4) Collector #### **■** Outline Dimensions (Unit:mm) # 1 . Through-Hole 0.5 ± 0.1 Product mass: approx. 0.23g θ: 0~13° 0.25 +01 # 2 . SMT Gullwing Lead-Form [ex.PC123XNYIP1B] Product mass: approx. 0.22g # Wide Through-Hole Lead-Form [ex. PC123XNYFZ1B] ### 4 . Wide SMT Gullwing Lead-Form [ex. PC123XNYUP1B] Product mass: approx. 0.22g ### Date code indication (Ex.) 3-digit number shall be marked the age indication of 1-digit number, and week code of 2-digit number. Week code "01" indicate the week including the first Thursday of January. And later, Monday is the starting point. | Year Week | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |-----------|---| |-----------|---| | Date code | MON | TUE | WED | THU | FRI | SAT | SUN | |-----------|-------|-------|-------|-------|-------|-------|-------| | 652 | 12/26 | 12/27 | 12/28 | 12/29 | 12/30 | 12/31 | 1/1 | | 701 | 1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | 1/8 | | 702 | 1/9 | 1/10 | 1/11 | 1/12 | 1/13 | 1/14 | 1/15 | | 703 | 1/16 | 1/17 | 1/18 | 1/19 | 1/20 | 1/21 | 1/22 | | | | • | | | - | • | | | | • | • | • | • | • | • | | | | • | • | • | • | | | • | | 752 | 12/11 | 12/12 | 12/13 | 12/14 | 12/15 | 12/16 | 12/17 | | 751 | 12/18 | 12/19 | 12/20 | 12/21 | 12/22 | 12/23 | 12/24 | | 752 | 12/25 | 12/26 | 12/27 | 12/28 | 12/29 | 12/30 | 12/31 | | 801 | 1/1 | 1/2 | 1/3 | 1/4 | 1/5 | 1/6 | 1/7 | # Factory identification mark and Plating material | Factory identification Mark | Country of origin | Plating material | |-----------------------------|-------------------|------------------| | K | Japan | SnBi (Bi : 1∼4%) | #### Rank mark Refer to the Model Line-up table. # ■ Absolute Maximum Ratings $(T_a=25^{\circ}C)$ | | Parameter | Symbol | Rating | Unit | |---------------------------|-----------------------------|------------------------|-------------|---------------| | | Forward current | I_{F} | 50 | mA | | Immust | *1 Peak forward current | I_{FM} | 1 | A | | Input | Reverse voltage | V _R | 6 | V | | | Power dissipation | P | 70 | mW | | Collector-emitter voltage | | V _{CEO} | 80 | V | | Output | Emitter-collector voltage | V _{ECO} | 6 | V | | Output | Collector current | I_{C} | 50 | mA | | | Collector power dissipation | P _C | 150 | mW | | Total p | ower dissipation | P _{tot} | 200 | mW | | *2 Isolation voltage | | V _{iso} (rms) | 5 | kV | | Operating temperature | | T _{opr} | -30 to +100 | \mathbb{C} | | Storage temperature | | T _{stg} | -55 to +125 | \mathbb{C} | | *2 Solder | ing temperature | T _{sol} | 270 | ${\mathbb C}$ | ^{*1} Pulse width≦100µs, Duty ratio :0.001 *2 40 to 60%RH, AC for 1 minute *3 For 10s # ■ Electro-optical Characteristics (Ta=25°C) | | Parameter | | Symbol | Condition | MIN. | TYP. | MAX. | Unit | |-----------|-------------------------------------|------------|----------------------|---|--------------------|--------------------|------|------| | | Forward voltage | | $V_{\rm F}$ | I _F =20mA | _ | 1.2 | 1.4 | V | | Input | Reverse current | | I_R | $V_R=4V$ | _ | _ | 10 | μΑ | | | Terminal capacitance | | Ct | V=0, f=1kHz | _ | 30 | 250 | pF | | | Dark current | | I _{CEO} | $V_{CE} = 50V, I_{F} = 0$ | _ | _ | 100 | nA | | Output | Collector-emitter breakdov | vn voltage | BV _{CEO} | $I_{C}=0.1 \text{mA}, I_{F}=0$ | 80 | _ | _ | V | | | Emitter-collector breakdown voltage | | BV _{ECO} | $I_{E}=10\mu A, I_{F}=0$ | 6 | _ | _ | V | | | Collector current | | I_{C} | $I_F=5mA, V_{CE}=5V$ | 2.5 | _ | 20 | mA | | | Collector-emitter saturati | on voltage | V _{CE(sat)} | $I_F=20mA$, $I_C=1mA$ | _ | 0.1 | 0.2 | V | | Transfer | Isolation resistance | | R _{ISO} | DC500V, 40 to 60%RH | 5×10 ¹⁰ | 1×10 ¹¹ | _ | Ω | | charac- | Floating capacitance | | $C_{\rm f}$ | V=0, f=1MHz | _ | 0.6 | 1.0 | pF | | teristics | Cut-off frequency | | $f_{\rm C}$ | $V_{CE}=5V, I_{C}=2mA, R_{L}=100\Omega, -3dB$ | _ | 80 | _ | kHz | | | Pagnonga tima | Risetime | t _r | $V_{CE}=2V, I_{C}=2mA, R_{L}=100\Omega$ | _ | 4 | 18 | μs | | | Response time | | $t_{\rm f}$ | v CE-2 v , IC-2IIIA, KL=10002 | _ | 3 | 18 | μs | # ■ Model Line-up | Lead Form | Through-Hole | | I _C [mA] | |-----------|---------------|---------------|---| | | Sleeve | Rank mark | (I _F =5mA,
V _{CF} =5V, | | Package | 100pcs/sleeve | | T _a =25°C) | | | PC123XNYSZ1B | with or " _ " | 2.5 ~ 20 | | | PC123X1YSZ1B | L | 2.5 ~ 7.5 | | Model No. | PC123X2YSZ1B | М | 5.0 ~ 12.5 | | | PC123X5YSZ1B | N | 10 ~ 20 | | | PC123X8YSZ1B | E | 5.0 ~ 10 | | | | | | | | | | | | Lead Form | Wide Through-Hole | | I _C [mA] | |-----------|-------------------|---------------|---| | | Sleeve | Rank mark | (I _F =5mA,
V _{CF} =5V, | | Package | 100pcs/sleeve | | T _a =25°C) | | | PC123XNYFZ1B | with or " _ " | 2.5 ~ 20 | | | PC123X1YFZ1B | L | 2.5 ~ 7.5 | | Model No. | PC123X2YFZ1B | M | 5.0 ~ 12.5 | | | PC123X5YFZ1B | N | 10 ~ 20 | | | PC123X8YFZ1B | E | 5.0 ~ 10 | | Lead Form | SMT Gullwing | | I _C [mA] | |-----------|---------------|---------------|--------------------------------------| | | Taping | Rank mark | (I _F =5mA, | | Package | 2,000pcs/reel | | $V_{CE}=5V$,
$T_a=25^{\circ}C$) | | | PC123XNYIP1B | with or " _ " | 2.5 ~ 20 | | | PC123X1YIP1B | L | 2.5 ~ 7.5 | | Model No. | PC123X2YIP1B | М | 5.0 ~ 12.5 | | | PC123X5YIP1B | N | 10 ~ 20 | | | PC123X8YIP1B | E | 5.0 ~ 10 | | Lead Form | Wide SMT Gullwing | | I _C [mA] | |-----------|-------------------|---------------|---| | | Taping | Rank mark | (I _F =5mA,
V _{CF} =5V, | | Package | 2,000pcs/reel | | T _a =25°C) | | | PC123XNYUP1B | with or " _ " | 2.5 ~ 20 | | | PC123X1YUP1B | L | 2.5 ~ 7.5 | | Model No. | PC123X2YUP1B | M | 5.0 ~ 12.5 | | | PC123X5YUP1B | N | 10 ~ 20 | | | PC123X8YUP1B | E | 5.0 ~ 10 | Please contact a local SHARP sales representative to inquire about production status. Fig.1 Forward Current vs. Ambient Temperature Fig.3 Collector Power Dissipation vs. Ambient Temperature Fig.5 Peak Forward Current vs. Duty Ratio Fig.2 Diode Power Dissipation vs. Ambient Temperature Fig.4 Total Power Dissipation vs. Ambient Temperature Fig.6 Forward Current vs. Forward Voltage Fig.7 Current Transfer Ratio vs. Forward Current Fig.9 Relative Current Transfer Ratio vs. Ambient Temperature Fig.11 Collector Dark Current vs. Ambient Temperature Fig.8 Collector Current vs. Collector-emitter Voltage Fig.10 Collector - emitter Saturation Voltage vs. Ambient Temperature Fig.12 Collector-emitter Saturation Voltage vs. Forward Current Fig.13 Response Time vs. Load Resistance Fig.15 Frequency Response Fig.14 Test Circuit for Response Time Fig.16 Test Circuit for Frequency Response Remarks: Please be aware that all data in the graph are just for reference and not for guarantee. #### ■ Design Considerations #### • Design guide While operating at I_F (1mA, CTR variation may increase. Please make design considering this fact. This product is not designed against irradiation and incorporates non-coherent IRED. #### Degradation In general, the emission of the IRED used in photocouplers will degrade over time. In the case of long term operation, please take the general IRED degradation (50% degradation over 5 years) into the design consideration. #### • Recommended foot print (reference) SMT Gullwing lead-form #### Wide SMT Gullwing lead-form [☆] For additional design assistance, please review our corresponding Optoelectronic Application Notes. #### ■ Manufacturing Guidelines #### Soldering Method #### Reflow Soldering: Reflow soldering should follow the temperature profile shown below. Soldering should not exceed the curve of temperature profile and time. Please don't solder more than twice. #### Flow Soldering: Due to SHARP's double transfer mold construction submersion in flow solder bath is allowed under the below listed guidelines. Flow soldering should be completed below 270°C and within 10s. Preheating is within the bounds of 100 to 150°C and 30 to 80s. Please don't solder more than twice. # Hand soldering Hand soldering should be completed within 3s when the point of solder iron is below 400°C. Please don't solder more than twice. #### Other notice Please test the soldering method in actual condition and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the tooling and soldering conditions. #### Cleaning instructions #### Solvent cleaning: Solvent temperature should be 45°C or below. Immersion time should be 3 minutes or less. #### Ultrasonic cleaning: The impact on the device varies depending on the size of the cleaning bath, ultrasonic output, cleaning time, size of PCB and mounting method of the device. Therefore, please make sure the device withstands the ultrasonic cleaning in actual conditions in advance of mass production. #### Recommended solvent materials: Ethyl alcohol, Methyl alcohol and Isopropyl alcohol. In case the other type of solvent materials are intended to be used, please make sure they work fine in actual using conditions since some materials may erode the packaging resin. #### Presence of ODC This product shall not contain the following materials. And they are not used in the production process for this product. Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform) Specific brominated flame retardants such as the PBB and PBDE are not used in this product at all. - The RoHS directive(2011/65/EU) This product complies with the RoHS directive(2011/65/EU) Object substances: mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) - (2) Content of six substances specified in Management Methods for Control of Pollution Caused by Electronic Information Products Regulation (Chinese: 电子信息产品污染控制管理办法). #### Marking Styles for the Names and Contents of the Hazardous Substances | | Hazardous Substances | | | | | | | |--------------|----------------------|-----------------|-----------------|---|--------------------------------------|---|--| | Category | Lead
(Pb) | Mercury
(Hg) | Cadmium
(Cd) | Hexavalent
chromium
(Cr ⁶⁺) | Polybrominated
biphenyls
(PBB) | Polybrominated
diphenyl ethers
(PBDE) | | | Photocoupler | 0 | 0 | 0 | 0 | 0 | 0 | | This table is prepared in accordance with the provisions of SJ/T 11364. ^{• :} Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572. #### ■ Package specification #### • Sleeve package #### 1. Through-Hole, Wide Through-Hole #### Package materials Sleeve: HIPS/PS or PC (with anti-static material) Stopper: EPM #### Package method MAX. 100pcs. of products shall be packaged in a sleeve and both of sleeve edges shall be fixed by stoppers. MAX. 25 sleeves (Product: 2,500pcs.) above shall be packaged in inner case and sealed by tape. Max 2 bags(product: 5,000pcs) above shall be packaged in packing case, and put a cushioning material inside. #### Sleeve outline dimensions # • Tape and Reel package # 1. SMT Gullwing # Package materials Carrier tape: PS Cover tape: PET (three layer system) Reel: PS # Carrier tape structure and Dimensions Dimensions List (Unit: mm) | A | В | С | D | Е | F | G | |----------------------|---------------------|-----------------------|---------------------|---------|---------------------|--------------------------------------| | 16.0±0.3 | 7.5 ^{±0.1} | 1.75 ^{±0.10} | 8.0 ^{±0.1} | 2.0±0.1 | 4.0 ^{±0.1} | φ1.5 ^{+0.1} _{-0.0} | | Н | I | J | K | | | | | 10.3 ^{±0.1} | $0.40^{\pm0.05}$ | $4.0^{\pm0.1}$ | 5.3 ^{±0.1} | | | | # Reel structure and Dimensions | Dimensio | ns List | (U | nit: mm) | |----------|----------|---------|-----------------------| | a | b | с | d | | ф330 | 17.5±1.5 | φ100±1 | ф13.0 ^{±0.5} | | e | f | g | | | φ21.0±1 | 2.0±0.5 | 2.0±0.5 | | # Direction of product insertion [Packing: 2,000pcs/reel] # 2. Wide SMT Gullwing # Package materials Carrier tape: PS Cover tape: PET (three layer system) Reel: PS # Carrier tape structure and Dimensions | _ | Dimensior | ns List | | | | (L | Jnit: mm) | |---|-----------|----------------------|-----------------------|---------------------|---------------------|----------------|--------------------------| | Ī | A | В | С | D | Е | F | G | | | 24.0±0.3 | 11.5 ^{±0.1} | 1.75 ^{±0.10} | 8.0 ^{±0.1} | 2.0 ^{±0.1} | $4.0^{\pm0.1}$ | $\phi 1.5^{+0.1}_{-0.0}$ | | | Н | I | J | K | | | | | • | 12.5±0.1 | $0.40^{\pm0.05}$ | 4.05 ^{±0.1} | 5.3 ^{±0.1} | | | | #### Reel structure and Dimensions | Dimensio | ns List | (Unit: mm) | | | |-------------------|----------------------|--------------------|-------------------|--| | a | b | c | d | | | ф330 | 25.5 ^{±1.5} | $\phi 100^{\pm 1}$ | \$\phi13.0\pmu0.5 | | | e | f | g | | | | $\phi 23^{\pm 1}$ | 2.0±0.5 | $2.0^{\pm0.5}$ | | | #### Direction of product insertion [Packing: 2,000pcs/reel] #### ■ Important Notices •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. ·Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: (i) The devices in this publication are designed for use in general electronic equipment designs such as: - --- Personal computers - --- Office automation equipment - --- Telecommunication equipment [terminal] - --- Test and measurement equipment - --- Industrial control - --- Audio visual equipment - --- Consumer electronics (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - --- Traffic signals - --- Gas leakage sensor breakers - --- Alarm equipment - --- Various safety devices, etc. (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - --- Space applications - --- Telecommunication equipment [trunk lines] - --- Nuclear power control equipment - --- Medical and other life support equipment (e.g., scuba). ·If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices. ·This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. ·Contact and consult with a SHARP representative if there are any questions about the contents of this publication. Мы молодая и активно развивающаяся компания в области поставок электронных компонентов. Мы поставляем электронные компоненты отечественного и импортного производства напрямую от производителей и с крупнейших складов мира. Благодаря сотрудничеству с мировыми поставщиками мы осуществляем комплексные и плановые поставки широчайшего спектра электронных компонентов. Собственная эффективная логистика и склад в обеспечивает надежную поставку продукции в точно указанные сроки по всей России. Мы осуществляем техническую поддержку нашим клиентам и предпродажную проверку качества продукции. На все поставляемые продукты мы предоставляем гарантию. Осуществляем поставки продукции под контролем ВП МО РФ на предприятия военно-промышленного комплекса России, а также работаем в рамках 275 ФЗ с открытием отдельных счетов в уполномоченном банке. Система менеджмента качества компании соответствует требованиям ГОСТ ISO 9001. Минимальные сроки поставки, гибкие цены, неограниченный ассортимент и индивидуальный подход к клиентам являются основой для выстраивания долгосрочного и эффективного сотрудничества с предприятиями радиоэлектронной промышленности, предприятиями ВПК и научноисследовательскими институтами России. С нами вы становитесь еще успешнее! #### Наши контакты: Телефон: +7 812 627 14 35 Электронная почта: sales@st-electron.ru Адрес: 198099, Санкт-Петербург, Промышленная ул, дом № 19, литера Н, помещение 100-Н Офис 331